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synthesis of alkyl 2-alkynoates. The catalyst contains large-
scale CuNPs covered by oxide layer and less prone to ero-
sion, resulting in its high selectivity and efficiency unusual 
for the particles of this size.
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1 Introduction

Recently, reactions involving  CO2 as the most available 
and cheap source of C1 attract attention of many research 
groups [1, 2]. Many routes of  CO2 application in fine 
organic synthesis such as reactions with alkenes [3–5], 
alkynes [6–8], dienes and allenes [9–11], aromatic [12, 13] 
and heteroaromatic compounds [14, 15] have already been 
found. However, taking into account kinetic and thermo-
dynamic stability of the molecule, it is evident that either 

Abstract The copper particles, supported on  Al2O3 were 
for the first time used as heterogeneous, highly active, eas-
ily available, and recyclable copper catalyst of direct car-
boxylation of various terminal alkynes with  CO2 (2  bar) 
in the presence of cesium carbonate, allowing for the 
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active substrates, primarily organometallic compounds 
[16], or active catalysts [17] should necessarily be used in 
the reactions. In the last case, availability and recyclability 
are important in addition to the catalyst efficiency.

Naturally, organic molecules functionalization involving 
 CO2 cannot affect such processes as global warming and 
can hardly solve the problem of binding greenhouse vapors, 
but the use of nontoxic carbon dioxide in organic synthesis 
as an alternative for phosgene or isocyanate seems to be an 
important area of its application.

Since the reactions involving  CO2 molecule are greatly 
variable, it is evident that different catalytic systems would 
be needed for each specific reaction [18]. For example, 
the carboxylation of epoxides needs another catalytic sys-
tem than the activation of С–Н bonds. The copper and sil-
ver salts turned out to be optimum catalysts for the widely 
studied carboxylation of terminal alkynes [19]. Silver com-
plexes with carbene ligands efficiently catalyse the carbox-
ylation processes and exhibit high yields in mild conditions 
[20–22].

Saegusa and coauthors in 1974 pioneered this field [23] 
in describing stoichiometric alkyne carboxylation in the 
presence of the copper salts and showed [24] reversibility 
of the reaction even at 35 °C, which can partially be avoided 
by “capturing” the formed carboxylate by alkyl halide. 
Only 20 years later, in 1994, Inoue and coworkers used cat-
alytic amounts (4 mol%) of the copper(I) and silver(I) salts 
in the carboxylation of terminal acetylenes [25]. The inten-
sive search for mild reaction conditions (room temperature, 
 CO2 pressure of 1 bar) and, if possible, for avoiding revers-
ibility has started only in the XXI century. Different cop-
per salts [26, 27] and their complexes with various ligands 
[28–30] were tested in the reaction and the systems with 
carbenes CuCl-polyNHC were most efficient [30]. Exclu-
sive importance of base and of DMA and DMF as solvent 
was also reported [25]. There are examples of the reactions 
in ionic liquids [31] and supercritical  CO2 [27].

It should be mentioned that the system CuCl-polyNHC 
[30] was heterogeneous and manifested considerable advan-
tages since it catalyzed the reactions even with electron-
withdrawing alkynes (for example, nitrophenylacetylene) in 
the presence of small catalyst amounts (0.5  mol%); how-
ever, the authors [30] did not perform recycling. Another 
heterogeneous system consisting of CuBr on active carbon 
was recycled five times without a significant loss in activity 
[32].

The chemistry of metallic nanoparticles has recently 
become very important in synthesis, catalysis, and medi-
cine [33]. The catalytic properties of the nanoparticles were 
especially pronounced in the palladium catalysis where the 
variation of the support and reaction conditions made it 
possible to carry out reactions of poorly substrates such as 
aryl chlorides [34, 35] in the absence of any ligands, while 

for more active substrates fantastic values of TON and TOF 
can be obtained under mild conditions [36, 37].

Thus, the advantages of the heterogeneous catalysts 
(easy separation of the catalyst from the reaction product 
and recyclability) are accompanied by the high catalytic 
activity quite comparable with that of the homogeneous 
catalysts, whereas such a high activity is not observed for 
the last in the absence of toxic and/or expensive ligands.

Copper(II) nanooxide was successfully used as a cata-
lyst in the C–S cross-coupling [38, 39], arylation of active 
methylene compounds [40] and syntheses of thiol esters 
in ionic liquid [41] and flavanones [42]. In addition, nano-
CuO can be applied as sensor [43]. In the most cases, the 
use of complicated ligands is not required for successful 
reactions in the presence of these systems.

CuNPs can catalyze “click” process but the authors 
note that the reactions involved a film containing copper 
oxide(s) on the CuNPs surface [44, 45], which is thermo-
dynamically more stable than the non-oxidized metallic 
copper surface [46]. The observed activity of these cata-
lysts significantly exceeds the catalytic activity of CuO and 
 Cu2O.

Similar particles, as well as nanoparticles CuNPs/Cu2O, 
exhibit synergic properties [47] and, hence, can be used as 
efficient catalysts. For example, the Cu/Cu2O nanoparticles 
can manifest high activity in the photocatalytic reactions 
due to the properties of the corresponding redox pair [48, 
49]. The calculated data for carbon dioxide adsorption on 
the copper(I) oxide show that the geometry of the adsorb-
ate molecule is influenced by its coordination at the surface 
copper and oxygen atoms [50]. The electron transfer due to 
the coordinatively unsaturated copper atoms occurs when 
the carbon dioxide molecule gains bent form [51].

In continuation of our work with transition metal nano-
particles [52, 53] we decided to try copper NPs in alkyne 
carboxylation. We focused on a catalyst based on CuNPs 
covered by a thin layer of copper oxide assuming that 
alkyne would interact with the copper surface not covered 
by oxides (for example, in crystal defects), while carbon 
dioxide, on the contrary, would be adsorbed on copper 
oxide. And this symbiotic microreactor would provide a 
good selectivity of direct carboxylation.

2  Results and Discussion

CuNPs obtained by the method earlier proposed by us for 
AuNPs [54] (impregnation of the support with an aque-
ous solution of  CuSO4 followed by evaporation and heat-
ing at 300 °C in a hydrogen flow) gave rather large (up to 
50  nm) copper crystallites which turned out to be active 
in the carboxylation of para-methoxyphenylacetylene 
1a in DMF at 60 °C, 2  atm.  CO2 and  Cs2CO3 as a base 
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(Scheme 1, Fig. 1). CuNPs/Al2O3 catalyzed the reaction to 
give the corresponding ester 2a in an almost quantitative 
yield. The catalysts on the carbon supports also showed 
high activity: the yields of the product for CuNPs/C and 
CuNPs/GrOx (GrOx-graphite oxide) were 76 and 86%, 
respectively. These yields significantly exceeded both the 
yields obtained using other supports (Cu/CaCO3, Cu/TiO2, 
and Cu/SiO2) and those for unsupported CuO and  Cu2O, 
as well as the yields for nano-Cu2O/SiO2 (note that the last 
three exhibited similar catalytic activity) (Fig. 1).

Our attempts to use CuNPs supported on the surface 
of  TiO2,  Al2O3 and zeolite prepared according to a known 
method [44] that gives small particles (~1.5 nm) active in 
click reactions [45] were unsuccessful, and we failed to 
perform the carboxylation of alkyne 1a in the presence of 

these catalysts under standard conditions (Scheme  1). On 
the other hand, the Sonogashira reaction and azide–alkyne 
addition (“click” reaction, CuAAC) [45] which can be per-
formed with the small nanoparticles did not occur in the 
presence of CuNPs/Al2O3 (50 nm) obtained by our method 
mentioned above.

The SEM, XPS, and XRD studies were carried out for 
the most efficient catalysts. The copper particles in the 
CuNPs/Al2O3 catalyst sample observed in the SEM image 
(Fig.  2a) are fairly large (about 50–100  nm) (Fig.  2b), 
whereas the crystallites in the CuNPs/C and CuNPs/GrOx 
samples are larger and beyond the nano dimensionality 
range (~250–500 nm) (Fig. 2b, c), and the smaller effective 
surface area of these particles results in decrease of their 
catalytic activity. These catalysts are also difficult to recy-
cle and we excluded them from further investigations.

The powder XRD pattern of the CuNPs/Al2O3 sample 
(Fig. 3) exhibits characteristic peaks (marked by blue) of 
the metallic phase of CuNPs corresponding to 2θ values 
of 43.4°, 50.5°, and 74.2° and signals of the aluminoxide 
support (2θ values of 14.5°, 28.2°, 38.3°, 45.8°, 48.8°, 
49.2°, 51.7°, 55.2°, 60.5°, 64.2°, 64.9°, 66.9°, 67.7°, 
72.0°, 72.2°, and 79.2° marked by red) corresponding 
to the typical spectrum of the amorphous sandwich-like 
form of alumina, boehmite, formed under high-temper-
ature conditions of catalyst calcination under hydrogene 
atmosphere. The oxygen ions located in the octahedral 
layers are bound to the aluminum ions only, whereas 
the external oxygen ions are also linked to the hydrogen 
ions [55]. The layered structure of boemite and presence 

Scheme 1  CuNPs catalyzed carboxylation of 4-methoxy-1-ethynylbenzene
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Fig. 1  Screening of the catalyst activity in the carboxylation of 
4-methoxy-1-ethynylbenzene

Fig. 2  SEM micrograph of the CuNPs in CuNPs/Al2O3 (a), CuNPs/C (b) and CuNPs/GrOx (c)
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О–Н–О–Н–О bonds on its surfaces promote better 
adsorption of metal ions, which makes it the best support 
for our catalyst.

The presence of an oxide layer with different Cu(I)/
Cu(II) ratios on the catalyst surface was shown by XPS 
(Fig.  4): 41/59% for CuNPs/C and 51/49% for CuNPs/
Al2O3 (signal of  Cu+ from 930 to 935 eV and that of  Cu2+ 
from 931 to 947 eV).

Note that the reaction was successfully performed by 
using the special nanoparticles and supports as well as cer-
tain base and solvent. We showed that  K2CO3,  Bu4NOAc 
and DABCO widely used in copper catalysis were quite 
inactive as bases in our case. The results indicated were 
obtained using two equivalents of  Cs2CO3 (Fig.  1) (using 
only 1 equiv. of base sharply decreased the yield of 
the product). As it was shown [56] the reaction can be 

Fig. 3  X-ray diffraction patterns of the powder sample of CuNPs/Al2O3

Fig. 4  XPS spectra of the surface of the CuNPs/C (a) and CuNPs/Al2O3 (b) catalysts
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performed in non-catalytic conditions in the presence 
of cesium carbonate only but requires high temperature 
(120 °C), whereas our reaction conditions are much milder. 
We also confirmed the importance of CuNPs catalysis by 
carrying out the reaction in the presence of  Cs2CO3 and 
support  (Al2O3) only and obtaining a negligible yield (<5% 
within 6  h). Except for DMF and DMA, all other tested 
solvents turned out to be inactive. In the case of CuNPs/C, 
the DMF and DMA solvents showed similar results (86 
and 89%, respectively, within 6 h). The reaction catalyzed 
by CuNPs/Al2O3 turned out to be more sensitive to the 
solvent nature, and the yield close to quantitative (97%) 
was obtained in DMF only. Therefore, all other catalysts 
were also tested in the  Cs2CO3 (2 equiv.)—DMF system 
(Scheme 1).

Kinetic studies of three selected catalysts (Fig.  5) 
showed that the kinetic curves resembled each other, as a 
whole, but the carbon supports exhibited a specific feature 
already noted in previous publications [32], namely, the 
yield relatively rapidly reached a maximum after which 
began to decrease with time. This effect is explained by 
the equilibrium between the carboxylation and backward 
decarboxylation [24]. The study of the latter process, which 
has also been performed previously [57], showed that, in 

our case in the absence of  CO2 under standard conditions, 
product 2а decarboxylated almost completely within 6 h.

Our attempt to reduse  CO2 pressure to 1.5 atm. resulted 
in decrease of alkynoate yield to 75% what probably caused 
by reversibility of the process.

The study of the temperature dependence was also car-
ried out for the most promising catalyst CuNPs/Al2O3 
(Fig.  6). At 80 °C the maximum conversion was achieved 
within 1.5  h, at 70 °C it took 2  h, and at 60 °C—16  h 
(Fig.  5). At temperatures below 40 °C, the reaction was 
very slow and the yield of the product did not exceed 20% 
even in 16 h. It should be mentioned that at 80 and 70 °C 
after reaching the maximum the yield began to decrease 
(Fig. 6), which was also observed for the carbon supports 
[32] and can be explained by an increase in the decarboxy-
lation rate with temperature.

We proposed the mechanism for the direct catalytic 
carboxylation of terminal alkynes on the surface of 
nanocrystalline copper covered by copper oxides (Fig. 7). 
Terminal alkyne appears to be coordinated on the cop-
per surface and carbon dioxide is adsorbed on  Cu2O sur-
face [49, 50]. To check the possibility of leaching from 
the catalyst surface, a hot centrifugation test was car-
ried out. It showed that the reaction did not occur in the 

Fig. 5  Comparison of the 
kinetic profiles for the catalysts 
CuNPs/Al2O3 (filled rhombus), 
CuNPs/C (filled circle), and 
CuNPs/GrOx (filled triangle) 
in 4-methoxy-1-ethynylbenzene 
1a carboxylation. Experimental 
conditions: alkyne/Cs2CO3/
BuBr/catalyst = 1/2/1.2/0.05; 
 CO2 pressure: 2 atm.; DMF, 
60 °C. Kinetic profile of butyl 
3-(4-methoxyphenyl)propionate 
2a decarboxylation performed 
in the absence of  CO2 (filled 
square)
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Fig. 6  The reaction kinetic 
data of butyl 2-alkynoate 2a 
yield versus time in 4-methoxy-
1-ethynylbenzene 1a carboxyla-
tion catalyzed by CuNPs/Al2O3 
at 80 °C (filled rhombus), 70 °C 
(filled square) and 60 °C (filled 
triangle). Experimental condi-
tions: alkyne/Cs2CO3/BuBr/
catalyst = 1/2/1.2/0.05;  CO2 
pressure: 2 atm.; DMF. Hot cen-
trifugation test (filled circle)

0

20

40

60

80

100

0 60 120 180 240 300 360

Yi
el

d,
 %

t, min

80oC

70oC

60oC

hot centrifuga�on



 G. N. Bondarenko et al.

1 3

centrifugate of the reaction mixture sampled after 2  h 
from reaction start with a new portion of the base and 
heating for 4 h (Fig. 6). The absence of copper traces in 
the centrifugate was also confirmed by inductively cou-
pled plasma mass spectroscopy analysis (ICP/MS).

According to the SEM data, the isolated catalyst sam-
ples contain a significant amount of adsorbed salts on its 
surface even after washing with an aqueous-alcohol solu-
tion (Fig.  8). Washing of the catalyst by other solvents 
except DMF influenced dramatically its recyclization, 
probably because traces of alcohols and oxygen were 
destroying the catalyst surface. Therefore, the CuNPs/
Al2O3 catalyst was recycled with washing it by DMF 
only.

The yield of the product upon recycling was determined 
within kinetic-controlled region at the time of half com-
pletion τ1/2 (2 h, 60 °С). The results of these experiments 
presented in Fig. 9 show that the catalyst activity changes 
insignificantly after five cycles.

The carboxylation of a series of terminal alkynes was 
carried out under the found optimum conditions (2 equiv. 
 Cs2CO3, 5  mol% CuNPs/Al2O3, 1.2 equiv. BuBr, 2  atm. 
 CO2, 60 °C, DMF) (Fig.  10). Whereas for alkynes 1a–d 
reaction was completed after 6 h, for alkynes 1e–m needed 
at least 16 h.

Thus in the case of phenylacetylene 1b and aromatic 
alkynes with electron-donating substituents 1a, c–d, the 
corresponding esters 2a–d were obtained in high yields of 
78–92%. However, in the case of 4-tert-butyl-substituted 
phenylacetylene 1e, the reaction time had to be increased 
to 16  h to obtain an almost quantitative yield of 97%, 

Fig. 7  Mechanism proposed for direct alkyne carboxylation on the surface of nanocrystalline copper covered by the thin oxide layer

Fig. 8  SEM micrograph of the CuNPs/Al2O3 sampled from the reac-
tion



Copper(0) Nanoparticles Supported on  Al2O3 as Catalyst for Carboxylation of Terminal…

1 3

which can be explained by a larger volume of the tert-butyl 
group having weak electron-donor properties and impeding 
adsorption on the catalyst surface. Less reactive alkynes 
with the electron-withdrawing substituents, aliphatic alkyne 
and heteroaromatic (thienyl, pyrazolyl, quinolil-substituted) 
alkynes reacted somewhat more slowly: the corresponding 
products 2f–m were formed within 16 h in 61–96% yields. 
Both the elongation of the reaction time and an increase 
in the temperature and  CO2 pressure to 80 °C and 4 atm., 
respectively, were needed for heteroaromatic alkyne 1l and 
aliphatic alkyne 1m. However in all cases, the reactions 
proceeded without by-product formation.
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Fig. 9  Recovery of NPs Cu/Al2O3 in 4-methoxy-1-ethynylben-
zene 1a carboxylation at 60 °C for 2 h with a negligible loss in cata-
lytic efficiency

Fig. 10  Direct carboxylation of terminal alkynes with  CO2 catalyzed by CuNPs/Al2O3
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3  Experimental

3.1  Materials and Methods

All starting materials were purchased from Sigma 
Aldrich except   graphite oxide, 97% purchased from NPO 
Unichemtech (http://www.unichimtek.ru) and 4-ethy-
nyl-1-methyl-1H-pyrazole obtained by Bestmann–Ohira 
method [58]. Solvents were dried and deoxygenated using 
standard procedures. Carbon dioxide gas 99,99% purity 
was used. Carboxylation reactions were performed in 
15  mL capacity glass low pressure reactor RLP25ML 
(http://www.openscience.ru) equipped with gas feeding 
system, magnetic stirrer and manometer. For all products 
NMR spectra were recorded on a Bruker Avance 400 and 
Agilent 400MR spectrometers (1H NMR 400 MHz and 13C 
NMR 100.6  MHz) at ambient temperature in  CDCl3 and 
DMSO-d6. Chemical shifts are reported in ppm relative 
to  SiMe4 in the 1H NMR spectra and to chemical shifts of 
the solvent peaks as a secondary standard in the 13C NMR 
spectra. ESI-TOF spectra were recorded with a Thermo 
Scientific Orbitrap Elite instrument. Column chromatog-
raphy was carried out on Merck silica gel 60 (40–63 µm) 
with mixture of petroleum ether (60–90 °C) and ethylac-
etate 20:1 as eluent. For the catalytic carboxylation reac-
tions, the reaction mixtures were analyzed by gas chroma-
tography, using a Chromatec Crystal 5000 GC instrument. 
The melting point was measured using capillary sealed at 
one end in an Electrothermal 9100 melting point indicator. 
Target-oriented approach was utilized for the optimization 
of the analytic measurements [59]. Before measurements 
the samples were mounted on a 25  mm aluminum speci-
men stub and fixed by carbon conductive paste. Samples 
morphology was studied under native conditions to exclude 
metal coating surface effects [60]. The observations were 
carried out using Hitachi SU8000 field-emission scanning 
electron microscope (FE-SEM). Images were acquired in 
secondary electron mode at 1, 2, 3, 5 and 15 kV accelerat-
ing voltage and at working distance 2–9  mm. X-ray pho-
toelectron spectra (XPS) were recorded on a Kratos Axis 
Ultra DLD. The X-ray diffraction data were collected on an 
X-ray diffractometer DRON-3 (Co-Kα radiation, θ/2θ scan-
ning technique). Detection of copper in reaction mixture 
was performed on inductively coupled plasma mass spec-
trometer (ICP-MS)—element-2 (Thermo Fisher Scientific).

3.2  Preparation of Cu/Support Catalysts

To 0.125 g  CuSO4 dissolved in water 0.95 g of support was 
added. The mixture was stirred for 1 h, the solvent was then 
removed in vacuo. The dried catalyst was heated at 300 оС 
for 2–3 h in a stream of hydrogen (15–20 mL min−1) using 
a tubular furnace.

3.2.1  Preparation of CuO/SiO2 Catalyst

To 0.125 g  CuSO4 dissolved in water 0.95 g of  SiO2 was 
added. The mixture was stirred for 1 h, 1 М KOH solu-
tion was then added to alkaline the reaction. The precipi-
tate was centrifuged and calcined in air to dark-brown 
colour.

3.3  Carboxylation Reactions

3.3.1  General Procedure of Alkyne Carboxylation

To a low pressure reactor equipped with magnetic stirrer 
alkyne (0.15  mmol),  Cs2CO3 (0.30  mmol), copper cata-
lyst (0.0075 mmol), n-BuBr (0.18 mmol) and DMF (2 mL) 
were added.  CO2 (2  atm.) was introduced into the reac-
tion mixture by triply purging the reactor with  CO2. The 
reaction mixture was stirred at 60 °C for 6 h or 16 h. After 
the reaction, the mixture was cooled to room temperature 
and diluted with DMF. After centrifugation, the organic 
phase was concentrated under reduced pressure and puri-
fied by column chromatography on silica gel (eluent petro-
leum ether/EtOAc 20:1). Isolated product was dried under 
vacuum.

3.3.2  Spectral Characteristics of Carboxylation Products

3.3.2.1 Butyl 3-(4-methoxyphenyl)propionate 2a White 
solid, 1H NMR (400 MHz,  CDCl3, δ): 7.54 (d, J = 8.8 Hz, 
2H), 6.88 (d, J = 8.8 Hz, 2H), 4.22 (t, J = 6.8 Hz, 2H), 3.83 
(s, 3H), 1.72–1.65 (m, 2H), 1.47–1.38 (m, 2H), 0.95 (t, 
J = 7.3  Hz, 3H). 13C NMR (100  MHz,  CDCl3, δ): 161.4, 
154.5, 134.9, 114.2, 111.4, 86.9, 80.1, 65.8, 55.4, 30.5, 19.1, 
13.7. The spectroscopic data matched those reported in the 
literature [CAS: 1359848-70-6].

3.3.2.2 Butyl 3-phenylpropionate 2b Colorless oil, 1H 
NMR (400 MHz,  CDCl3, δ): 7.59–7.56 (m, 2H), 7.46–7.41 
(m, 1H), 7.38–7.34 (m, 2H), 4.23 (t, J = 6.8 Hz, 2H), 1.73–
1.65 (m, 2H), 1.47–1.38 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 
13C NMR (100 MHz,  CDCl3, δ): 154.2, 132.9, 130.5, 128.5, 
119.6, 86.0, 80.7, 65.9, 30.5, 19.0, 13.6. The spectroscopic 
data matched those reported in the literature [CAS: 80220-
93-5].

3.3.2.3 Butyl 3-(p-tolyl)propionate 2c Light yellow solid, 
1H NMR (400 MHz,  CDCl3, δ): 7.48 (d, J = 8.2 Hz, 2H), 
7.17 (d, J = 8.0 Hz, 2H), 4.22 (t, J = 6.7 Hz, 2H), 2.36 (s, 3H) 
1.72–1.65 (m, 2H), 1.47–1.38 (m, 2H), 0.95 (t, J = 7.4 Hz, 
3H). 13C NMR (100 MHz,  CDCl3, δ): 154.3, 141.2, 132.9, 
129.3, 116.5, 86.6, 80.3, 65.8, 30.5, 21.7, 19.0, 13.6. The 

http://www.unichimtek.ru
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spectroscopic data matched those reported in the literature 
[CAS: 1359848-69-3].

3.3.2.4 Butyl 3-mesitylpropionate 2d Colorless oil, 
1H NMR (400  MHz,  CDCl3, δ): 6.87 (s, 2H), 4.23 (t, 
J = 6.8 Hz, 2H), 2.43 (s, 6H), 2.28 (s, 3H), 1.73–1.66 (m, 
2H), 1.48–1.38 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). 13C NMR 
(100  MHz,  CDCl3, δ): 154.6, 142.4, 140.4, 127.9, 116.5, 
88.2, 84.5, 65.7, 30.5, 21.5, 20.8, 19.1, 13.7. HRMS: Calcd. 
for  C16H20O2: 244.1505, found: 244.1498.

3.3.2.5 Butyl 3-(4-(tert-butyl)phenyl)propionate 
2e Colorless oil, 1H NMR (400 MHz,  CDCl3, δ): 7.53 (d, 
J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 4.22 (t, J = 6.7 Hz, 
2H), 1.73–1.65 (m, 2H), 1.47–1.38 (m, 2H), 1.3 (s, 9H), 0.95 
(t, J = 7.2 Hz, 3H). 13C NMR (100 MHz,  CDCl3, δ): 154.4, 
154.2, 132.9, 125.6, 116.5, 86.6, 80.3, 65.9, 35.0, 31.0, 30.5, 
19.1, 13.7. HRMS: Calcd. for  C17H22O2: 258.1643, found: 
258.1648.

3.3.2.6 Butyl 3-(4-(trifluoromethyl)phenyl)propion-
ate 2f Colorless oil, 1H NMR (400  MHz,  CDCl3, δ): 
7.70 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 4.25 (t, 
J = 6.7  Hz, 2H), 1.73–1.66 (m, 2H), 1.48–1.39 (m, 2H), 
0.95 (t, J = 7.5 Hz, 3H). 13C NMR (100 MHz,  CDCl3, δ): 
153.7, 133.1, 125.6-125.5, 83.8, 82.3, 66.2, 30.4, 19.0, 13.6. 
HRMS: Calcd. for  C14H13F3O2: 270.0965, found: 270.0959.

3.3.2.7 Methyl 4-(3-butoxy-3-oxoprop-1-yn-1-yl)benzoate 
2g Colorless oil, 1H NMR (400 MHz,  CDCl3, δ): 8.04 (d, 
J = 8.3 Hz, 2H), 7,65 (d, J = 8.3 Hz, 2H), 4.24 (t, J = 6.7 Hz, 
2H), 3.92 (s, 3H), 1.73–1.65 (m, 2H), 1.48–1.38 (m, 2H), 
0.95 (t, J = 7.3  Hz, 3H). 13C NMR (100  MHz,  CDCl3, 
δ): 166.1, 153.8, 132.8, 131.6, 129.6, 124.2, 84.5, 82.7, 
66.1, 52.4, 30.4, 19.0, 13.6. HRMS: Calcd. for  C15H16O4: 
260.1038, found: 260.1042.

3.3.2.8 Butyl 3-(4-cyanophenyl)propionate 2h Colorless 
oil, 1H NMR (400 MHz,  CDCl3, δ): 7.66 (s, 4H), 4.24 (t, 
J = 6.7 Hz, 2H), 1.72–1.65 (m, 2H), 1.47–1.37 (m, 2H), 0.95 
(t, J = 7.3 Hz, 3H). 13C NMR (100 MHz,  CDCl3, δ): 153.5, 
133.2, 133.2, 124.5, 117.8, 113.9, 83.7, 83.1, 66.3, 30.4, 
19.0, 13.6. The spectroscopic data matched those reported 
in the literature [CAS: 1359848-71-7].

3.3.2.9 Butyl 3-(4-fluorophenyl)propionate 2i Yellow 
oil, 1H NMR (400  MHz,  CDCl3, δ): 7.59–7.56 (m, 2H), 
7.08–7.04 (m, 2H), 4.22 (t, J = 6.7 Hz, 2H), 1.72–1.65 (m, 
2H), 1.47–1.38 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). 13C NMR 
(100  MHz,  CDCl3, δ): 165.1, 162.6, 154.1, 135.3, 116.2, 
85.0, 80.6, 66.0, 30.4, 19.0, 13.6. The spectroscopic data 
matched those reported in the literature [CAS: 1449127-55-
2].

3.3.2.10 Butyl 3-(3-thienyl)propionate 2j Yellow oil, 
1H NMR (400 MHz,  CDCl3, δ): 7.73–7.72 (m, 1H), 7.31–
7.29 (m, 1H), 7.22–7.20 (m, 1H), 4.21 (t, J = 6.7 Hz, 2H), 
1.71–1.64 (m, 2H), 1.46–1.36 (m, 2H), 0.94 (t, J = 7.4 Hz, 
3H). 13C NMR (100 MHz,  CDCl3, δ): 154.2, 133.6, 130.1, 
126.0, 118.8, 81.5, 80.7, 65.9, 30.4, 19.0, 13.6. The spectro-
scopic data matched those reported in the literature [CAS: 
1359848-76-2].

3.3.2.11 Butyl 3-(1-methyl-1H-pyrazol-4-yl)propionate 
2k Yellow oil, 1H NMR (400  MHz,  CDCl3, δ): 7.68 (s, 
1H), 7.64 (s, 1H), 4.19 (t, J = 6.7  Hz, 2H), 3.89 (s, 3H), 
1.69–1.62 (m, 2H), 1.45–1.35 (m, 2H), 0.93 (t, J = 7.4 Hz, 
3H). 13C NMR (100 MHz,  CDCl3, δ): 154.3, 143.5, 135.0, 
99.9, 82.7, 79.2, 65.7, 39.3, 30.4, 19.0, 13.6. HRMS: Calcd. 
for  C11H14N2O2: 206.1133, found: 206.1140.

3.3.2.12 Butyl 3-(quinolin-3-yl)propionate 2l Brown 
solid, m.p. 92–93 °C, 1H NMR (400 MHz, DMSO-d6, δ): 
8.79 (s, 1H), 8.03 (t, J = 9.1 Hz, 2H), 7.92 (s, 1H), 7.86 (t, 
J = 7.3 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 4.20 (t, J = 6.8 Hz, 
2H), 1.64–1.49 (m, 2H), 1.38–1.29 (m, 2H), 0.87 (t, 
J = 7.4 Hz, 3H). 13C NMR (100 MHz, DMSO-d6, δ): 153.5, 
151.7, 147.3, 141.8, 132.1, 129.0, 128.6, 128.1, 126.5, 
112.8, 83.3, 83.1, 66.1, 29.9, 18.7, 13.6. HRMS: Calcd. for 
 C16H15NO2: 253.1161, found: 206.1155.

3.3.2.13 Butyl oct-2-ynoate 2m Colorless oil 1H NMR 
(400  MHz,  CDCl3, δ): 4.13 (t, J = 6.7  Hz, 2H), 2.30 (t, 
J = 7.2  Hz, 2H), 1.66–1.53 (m, 4H), 1.42–1.26 (m, 6H), 
0.93–0.86 (m, 6H). 13C NMR (100 MHz,  CDCl3, δ): 154.0, 
89.5, 73.1, 65.6, 31.0, 30.4, 27.2, 22.1, 19.0, 18.6, 13.8, 
13.6. The spectroscopic data matched those reported in the 
literature [CAS: 127794-10-9].

3.4  Recyclization Studies and Leaching Experiments

For the studies of the catalysts recyclization, the follow-
ing procedure was used. After 2 h from the start of the car-
boxylation reaction, the reactor was allowed to rest, organic 
phase was decanted to separate it from the solid catalyst. 
The solid residue was twice washed with DMF. Combined 
organic layers were concentrated and analyzed by GLC. A 
fresh charge of reagents was introduced into reactor and 
the reaction was carried as described previously. This was 
repeated for every recycle reaction.

The possibility of leaching from the catalyst surface 
was studied by centrifugation of the hot reaction mixture 
at 333 K by abruptly stopping the reaction at ∼50% conver-
sion. The collected centrifugate of the reaction mixture was 
heated for 4 h with  CO2 (2 atm.) and a new portion of the 
base filtered and no reaction was observed. The filtrate of 
the mixture was analyzed by ICP-MS (inductively coupled 
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plasma for atomic emission spectroscopy) investigation and 
no copper signal was detected in it.

4  Conclusions

The first CuNPs catalyzed direct carboxylation reaction 
of terminal alkynes was carried out. A comparison of the 
activity of a number of oxide- and carbon-based supports 
was performed. The best of the tested catalytic supports, 
i.e., highly active, selective, easily available, and recycla-
ble was the Cu/Al2O3 containing medium and large CuNPs 
particles (up to 50–100 nm) covered by the thin oxide layer. 
The catalyst was successfully applied in the carboxylation 
of various terminal alkynes with  CO2 affording the cor-
responding alkyl 2-alkynoates in good yields. A possible 
mechanism was proposed for the reaction that, according to 
leaching tests, occurred on the catalyst surface.
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