
Pergamon 
Bioorganic & Medicinal Chemistry Letters, Vol. 7, No. 8, pp. 1017-1020, 1997 

© 1997 Elsevier Science Ltd 
All rights reserved. Printed in Great Britain 

PII:  S 0 9 6 0 - 8 9 4 X ( 9 7 ) 0 0 1 6 4 - 9  0960-894X/97 $17.00 + 0.00 

3 , 7 - F U N C T I O N A L I Z E D - 1 0 - M E T H Y L  P H E N O T H I A Z I N E :  A P O T E N T I A L  T U R N  
S C A F F O L D  I N  P E P T I D O M I M E T I C S  

T, Kline,*,§ E. Sieber-McMaster, W. F. Lau,~ and S. Natarajan 

Bristol-Myers Squibb Pharmaceutical Research Institute. P.O. Box 4000, Princeton, New Jersey 08543 

Abstract. Molecular modeling studies suggest that the phenothiazine nucleus, embedded in a peptide via 
attachments at the 3- and 7-positions, may be a possible surrogate for the (x-carbon backbone of five residue turns 
in a variety of proteins. The synthesis of the orthogonally-protected Fmoc 3-aminoethyl-7-carboxyethyl-10- 
methylphenothiazine (1) is described. © 1997 Elsevier Science Ltd. 

Scaffolding of the backbone is an established way to probe for the active conformation of a protein or peptide.1 A 

suitable scaffold should mimic the active backbone motif (e.g., (x helix, turn, or 1~ sheet) and should permit 

suitable functionalization to append the required sidechain groups. The phenothiazine nucleus was selected as a 

potential scaffold for the middle three residues for a five residue turn. Figure 1 shows how a 3,7-functionalized 

phenothiazine orients X and Y, the peptide chains at, respectively, the amino and carboxy termini of the scaffold, 

with respect to the i and i+4 residues flanking the turn. A ring-substituted phenothiazine might also be designed to 

add substituents congruent to the R(i+l), R(i+2), and R(i+3) sidechains, although (x carbon chiraiity would be lost. 
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Figure 1: Sequence of a peptide replaced by phenothiazine scaffold. The portions X and Y of the peptide (above) are outside 
the turn; residues with sidechains Rr~:R,÷4j describe the turn. These functional groups can be substituted onto the phenothiazine 
(below). 

A search of secondary structures gave over 75 proteins containing this turn/loop motif in which the backbone 

atoms of the i+1, i+2, and i+3 residues overlap well with the phenothiazine template. In these proteins the 

distances between Ccx(i) and C(x(i+4) are within 9.2-9.6 ~,, and the distances between C(x(i+l) and C(x(i+3) are 

between 6.9-7.1/~. 2 The corresponding distances in the phenothiazine compound are 9.6-12.3 .~ and 7.3 /~. In 

Figure 2, the phenothiazine is shown superimposed on one example of this turn motif that spans Asp 133-Asn 137 

in the calmodulin structure determined by Babu et al. 3 In this example, the congruent region of the protein is one 

of the calcium-binding sites. 
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Figure 2: Stereo view of superimposed structures of calmodulin Asp133-Asn137 and 2-ethyl, 3-(2-N-methylamido)ethyl, 7-(2- 
aceto)ethyl, 10-pentylphenothiazine. The view shows the region of the protein backbone corresponding to the template. 

In our target, phenothiazine 1, the residues that compose the turn are replaced by the tricyclic ring system. Thus 

successful use of this surrogate requires that the sacrifice of the sidechains of i+1, i+2, and i+3 be compensated 

by the proper orientation of the i and i+4 sidechalns. Positions 3 and 7, with orthogonal protection on the N- and 

C-termini, are the points of attachment to the peptide chains. It was expected that 1 would be amenable to beth 

solution- and solid-phase chemistry. 

Me R = Fmoc 
R'=H 

1 

Our initial attempts for the synthesis of 1 followed literature reports of phenothiazine formylationl, 4 and 

cyanomethylation. 5 In our hands, however, these reactions (Scheme I) gave disappointing yields and tedious 

separations. The generation of 2- cyanomethyl compound 5A along with the desired regioisomer 511 is likely to 

arise from an aryne intermediate. 6 

Me Me Me 
2 

b j NOI 4 I d A CN 

3 12:1 5B:SA 

Me 
Path B 

6 
Path A 
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Scheme I 

A more efficient strategy uses essentially the same chemistry to append both the aminoethyl and earboxyethyl 

sidechains. 7 As shown in Scheme II, arylbromide 4 was readily alkylated by the Heck reaction 8 to the c~,13- 

unsaturated ester 7. 9 Reduction, 10 saponification, and Curtius rearrangement gave 10, protected as a benzyl 

carbamate. Partial repetition of the sequence (regioselective bromination, Heck reaction, reduction) gave the 



3,7-Funcfionalized-lO-methyl phenothiazine 1 O19 

methyl ester 12, an intermediate (unlike 7) unstable to silica chromatography. The C u/NaBI-I4 system was highly 

sensitive to the impurities in crude 12, whereas Ni/NaBH4 was not; the latter gave good yields of 13 that could 

then be purified. The Cbz protecting group at the N-terminus was exchanged for a Fmoc group as shown, and the 

ester saponified. 
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a. ~ COzM~ Pd(OAc)2, (o-to%P, NEt 3, 155 "C, 74 % 

b. NaBH4 - Cu2CI2, MeOH-THF (7:3) 0 °C, 87% c. LiOH, THF-I-~O, 95% 

d. (i) EtOCOCl/NMM, (ii) NaNa, (iii) BzOH/A toluene, 55% • B r a t  CH2CI 2, -10 *C, 72% f. reaction as in a 
" B r ' ~ B r  

g.. NaBH 4 - NiCI2, MeOH-THF (7:3) 0 "C, 31% from 11 h. HBr/AcOH i. 2.1 equiv. NaOH j. Fmoc-OSu, 
THF-dioxane-10% Na2CO3, 73% from 13 

Scheme H 

The phenothiazine nucleus occurs in biologically-active compounds that span a wide spectrum of therapeutic 

effects; atoms 3, 7, and 10 are frequently (although not exclusively) the substituted positions. 11 By modeling 

studies, we have superimposed peptide-substituted 3-aminoethyl-7-carboxyethyl phenothiazines on a commonly- 

observed turn in diverse proteins. We then synthesized a scaffold having a methylated N-10 and ordaogonally 

protected amino and carboxy groups at, respectively, the 3- and 7-sidechains in order to test the hypothesis that 

active peptidomimetics could be generated from this ring system. Results of incorporating scaffold 1 in a series of 

novel compounds will be presented in a subsequent report. 
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