

Diastereoselective 1,3-Dipolar Cycloadditions of N,N'-Cyclic Azomethine Imines with Iminooxindoles for Access to Oxindole Spiro-N,N-bicyclic Heterocycles

Hong-Wu Zhao,* Bo Li, Hai-Liang Pang, Ting Tian, Xiao-Qin Chen, Xiu-Qing Song, Wei Meng, Zhao Yang, Yu-Di Zhao, and Yue-Yang Liu

College of Life Science and Bio-engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China

Supporting Information

ABSTRACT: In the presence of CuI, 1,3-dipolar cycloadditions of N_1N' cvclic azomethine imines with iminooxindoles proceeded readily and furnished novel oxindole spiro-N,N-bicyclic heterocycles in moderate to excellent chemical yields with excellent diastereoselectivities.

 $N_{\rm e}N'$ -Cyclic azomethine imines constitute a class of stable and easily accessible 1,3-dipoles and act as versatile and robust building blocks in numerous 1,3-dipolar cycloadditions (1,3-DCs) for the construction of structurally diverse N,N-bicyclic heterocycles with potential biological activities.¹ As reported in the literature, these kinds of 1,3-dipoles have been widely applied in 1,3-DCs with diverse and highly functionalized alkynes,² allenes,³ and alkenes.⁴ For example, in 2011, Mizuno and co-authors established the Cu(OH),/Al₂O₃-catalyzed 1,3-DC of N,N'-cyclic azomethine imines with terminal alkynes, furnishing N,N-bicyclic pyrazolidinones (Scheme 1a).⁵ Later,

Scheme 1. N,N'-Cyclic Azomethine Imines Involved in 1,3-**Dipolar** Cycloadditions

Wu and co-workers developed the gold-catalyzed 1,3-DC of N,N'-cyclic azomethine imines with N-allenyl amides, delivering pyrazolyl-based bicyclic heterocycles (Scheme 1b).6 In 2014, Guo and co-workers discovered the phosphine-catalyzed 1,3-DC of N,N'-cyclic azomethine imines with electron-deficient alkenes, yielding N,N-bicyclic heterocycles (Scheme 1c).⁷ Moreover, in this context, some enantioselective variants have been built for the construction of enantioenriched N,N-bicyclic heterocycles under the catalysis of chiral Lewis acids and organocatalysts.⁸ Therefore,

excellent advances have been achieved with N.N'-cyclic azomethine imines in 1.3-DCs in recent years. However, exploration of 1,3-DCs of N,N'-cyclic azomethine imines with synthetically important and useful iminooxindoles,⁹ which can produce oxindole spiro-N,N-bicyclic heterocycles with spirooxindole derivatives with potential bioactivities,¹⁰ has not been reported in the literature to date.

On the basis of the above-mentioned findings and developments in the chemistry of N,N'-cyclic azomethine imines, we designed unknown 1,3-DCs using N,N'-cyclic azomethine imines as dipoles and iminooxindoles as dipolarophiles.¹¹ Our studies demonstrated that 1,3-DCs between N,N'-cyclic azomethine imines and iminooxindoles proceed readily, thus furnishing the desired novel oxindole spiro-N,N-bicyclic heterocycles bearing potential bioactivities in moderate to excellent chemical yields with excellent diastereoselectivities. To the best of our knowledge, such a work has not been reported in the literature so far.

First, we screened the effect of a wide range of catalysts on the 1,3-DC between N_iN' -cyclic azomethine imine 1a and iminooxindole 2a at room temperature, as shown in Table 1. These catalysts could promote the 1,3-DC through the different activation modes, for example, metal chelation,¹² hydrogen bonding,¹³ conjugated nucleophilic addition,^{7,14} etc. Remarkably, the used catalysts affected the chemical yield significantly and the diastereoselectivity slightly. In the case of most catalysts, they gave product 3aa in excellent diastereoselectivity (Table 1, entries 1, 3, 5-13, 19, and 20). Even without catalyst, the distereoselectivity of 1,3-DC still reached >99:1 dr (Table 1, entry 21). Consequently, we deduced that the diastereoselectivity of 1,3-DC has no close relation to the

Received: January 15, 2016

Table 1. Screening of Catalysts^a

	→ N N H Ph 1a	Boc, N N N N Me 2a	cat. (10 mol %) ← ← ← CH ₂ Cl ₂ temp a	Me N N-Boc N-Hot N-Boc	
entry	cat.	temp	time (h)	yield ^b (%)	dr ^c
1	CuI	rt	40	42	>99:1
2	$Cu(OAc)_2$	rt	40	38	>80:20
3	CuBF ₄	rt	40	40	>99:1
4	Yb(OTf) ₃	rt	40	trace	
5	$Zn(OTf)_2$	rt	40	32	>99:1
6	SnCl ₂	rt	40	37	>99:1
7	CuCl	rt	40	23	>99:1
8	CuBr	rt	40	32	>99:1
9	Na ₂ CO ₃	rt	40	28	>99:1
10	K ₂ CO ₃	rt	40	23	>99:1
11	NaOAc	rt	40	25	>99:1
12	Et ₃ N	rt	40	14	>99:1
13	quinine	rt	40	11	>99:1
14	DABCO	rt	40	nr ^d	
15	TFA	rt	40	nr ^d	
16	p-TSA	rt	40	nr ^d	
17	stearic acid	rt	40	nr ^d	
18	HOAc	rt	40	nr^d	
19	CuI	40 °C	20	47	>99:1
20	CuI	60 °C	20	51	>99:1
21		rt	40	16	>99:1

^{*a*}Reactions were carried out with 0.12 mmol of 1a and 0.1 mmol of 2a in the presence of 10 mol % of catalyst in 1.0 mL of CH₂Cl₂ at specified temperature. ^{*b*}Isolated yield. ^{*c*}Determined by ¹H NMR spectroscopy. ^{*d*}No reaction.

organocatalysts used. By comparison, the chemical yield of **3aa** highly depended on the structural nature of the catalysts examined. Using DABCO, TFA, *p*-TSA, stearic acid, and HOAc as catalysts did not produce product **3aa** in 40 h (Table 1, entries 14–18). Catalyzed by Yb(OTf)₃, the 1,3-DC yielded **3aa** in a trace amount in 40 h (Table 1, entry 4). For other catalysts, the chemical yield of **3aa** ranged from 11 to 42% (Table 1, entries 1–3 and 5–13). Moreover, it was noted that increasing the reaction temperature could increase the chemical yield of **3aa** in the different degrees (Table 1, entries 1 vs 19 and 20).

In the presence of 10 mol % of CuI at 60 °C, we explored the effect of various organic solvents on the 1,3-DC between $N_{1}N'$ -cyclic azomethine imine 1a and iminooxindole 2a as presented in entries 1-7 of Table 2. Noticeably, the used solvents influenced the chemical yield of 3aa largely and did not change the diastereoselectivity of 3aa at all. In all the solvents checked, the 1,3-DC reaction went smoothly, thus furnishing 3aa in excellent diastereoselectivity (Table 2, entries 1-7). Regarding the chemical yield of 3aa, it was significantly affected by the solvent used. For example, use of EtOH gave 3aa in a trace amount after 20 h (Table 2, entry 2). In the case of THF and 1,4-dioxane, 3aa was obtained in similar chemical yields (Table 2, entries 4 and 6). With respect to other solvents, the chemical yield of 3aa changed from 41 to 77% (Table 2, entries 1, 3, 5, and 7). Simultaneously, the catalytic loading of CuI was screened in the range from 10 to 50 mol %, and 3aa was obtained in the highest yield when CuI was loaded in 20 mol % (Table 2, entries 1 and 8-10). Moreover, the increase in the reaction

Table 2. Screening of Solvents^a

e

	$H = \frac{1}{1a}$	+ Boc N P 2a Me	O Cul (x mo Solv temp	ol %) anti-3aa Ph	-Boc	
ntry	solv.	temp (°C)	time (h)	CuI $(x \mod \%)$	yield ^b (%)	dr ^c
1	toluene	60	20	10	77	>99:1
2	EtOH	60	20	10	trace	
3	1,2-DCE	60	20	10	60	>99:1
4	THF	60	20	10	29	>99:1
5	CHCl ₃	60	20	10	68	>99:1
6	1,4-dioxane	60	20	10	28	>99:1
7	CH ₃ CN	60	20	10	41	>99:1
8	toluene	60	20	20	88	>99:1
9	toluene	60	20	30	80	>99:1
10	toluene	60	20	50	77	>99:1
11	toluene	80	10	20	50	>99:1
12	toluene	100	6	20	10	>99:1

^{*a*}Reactions were carried out with 0.12 mmol of **1a** and 0.1 mmol of **2a** in the presence of *x* mol % of CuI in 1.0 mL of solvent at specified temperature. ^{*b*}Isolated yield. ^{*c*}Determined by ¹H NMR spectroscopy.

temperature dramatically decreased the chemical yield of 3aa (Table 2, entries 8 vs 11 and 12). Therefore, at the current stage, we determined the optimal reaction conditions: 1a/2a/CuI = 1.2:1:0.2, toluene, 60 °C.

Next, under the optimal reaction conditions, we extended the reaction scope of 1,3-DC between N_iN' -cyclic azomethine imines 1 and iminooxindoles 2, as outlined in Table 3. In most cases, the 1,3-DCs gave rise to products 3 in excellent diastereoselectivities (Table 3, entries 1-26). In comparison, the chemical yield of the 1,3-DCs was clearly affected by substrates 1 and 2. Reaction of 1p with 2a did not take place at all in 40 h (Table 3, entry 27). The same negative result was observed with the reaction between 1q and 2a (Table 3, entry 28). The 1,3-DCs of 1h with 2a and 1l with 2a generated products 3ha and 3la in similar chemical yields (Table 3, entries 19 vs 23). In the case of the rest of the 1,3-DCs examined, the chemical yield of 3 ranged from 80 to 95% (Table 3, entries 1-18, 20-22, and 24-26). Simultaneously, the relative configuration of 3aa was determined by single-crystal X-ray analysis, as depicted in Figure 1. On the basis of the relative stereochemistry of 3aa, we similarly assigned the relative configurations of other 3 products as shown in Table 3.¹⁵ Moreover, we carried out 1,3-DC of 1i and 2a on a gram scale, and 3ia was obtained in 97% yield (see details in Supporting Information, SI). Meanwhile, the asymmetric catalytic 1,3-DC of 1a and 2a was attempted using chiral Lewis acids and organocatalysts; however, 3aa was isolated as a racemate in all cases (see details in SI).

Conformational analysis of **3aa** indicated that its N_i , N_i -bicyclic moiety adopts a concave conformation. By virtue of the nonplanar structure of the N_i , N_i -bicyclic subunit, the two protons of the NCH₂ group in the pyrazolidinone ring become chemically nonequivalent: one proton resides in the deshielding area of the monosubstituted benzene ring of 1,2,4-triazolidine; the other one positions at the shielding area of the same benzene ring. As a consequence, the two protons should exhibit quite different behaviors in ¹H NMR. Actually, this assumption was in full agreement with the obtained ¹H

	R	$ \begin{array}{c} 0 \\ N \\ N \\ N \\ 1 \\ 1 \\ 2 \end{array} \begin{array}{c} Boc \\ N \\ R_2 \\ H_3 \\ R_3 \\ R_3$	$ \begin{array}{c} \begin{array}{c} u \\ 0 \\ 0 \\ were \\ {}^{\circ}C \end{array} \end{array} \xrightarrow{\begin{subarray}{c} R_3 \\ 0 \\ N \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_3 \\ N \\ N \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_3 \\ N \\ N \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_3 \\ N \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \end{array} \xrightarrow{\begin{subarray}{c} R_4 \\ R_4 \end{array} \xrightarrow{\begin{subarray}{c} $	R ₂ nc anti-3		
entry	$1 (R_1, R_4)$	2 (R ₂ , R ₃)	time (h)	3	yield ^b (%)	dr ^c
1	1a (C ₆ H ₅ , H)	2a (H, Me)	20	3aa	88	>99:1
2	1a (C ₆ H ₅ , H)	2b (5-F, Me)	20	3ab	92	>99:1
3	1a (C ₆ H ₅ , H)	2c (5-Cl, Me)	12	3ac	90	>99:1
4	1a (C ₆ H ₅ , H)	2d (5-OMe, Me)	20	3ad	87	>99:1
5	la (C ₆ H ₅ , H)	2e (5-Me, Me)	20	3ae	94	>99:1
6	1a (C ₆ H ₅ , H)	2f (5-Br, Me)	12	3af	91	>99:1
7	1a (C ₆ H ₅ , H)	2g (5-NO ₂ , Me)	20	3ag	90	>99:1
8	1a (C ₆ H ₅ , H)	2h (6-Cl, Me)	20	3ah	83	>99:1
9	1a (C ₆ H ₅ , H)	2i (6-Br, Me)	12	3ai	85	>99:1
10	la (C ₆ H ₅ , H)	2j (H, Bn)	20	3aj	87	>99:1
11	la (C ₆ H ₅ , H)	2k (H, allyl)	20	3ak	83	>99:1
12	1a (C ₆ H ₅ , H)	2l (H, MOM)	20	3al	88	>99:1
13	1b (4-F-C ₆ H ₄ , H)	2a (H, Me)	20	3ba	83	>99:1
14	$1c (3-F-C_6H_4, H)$	2a (H, Me)	40	3ca	94	>99:1
15	1d (2-F-C ₆ H ₄ , H)	2a (H, Me)	40	3da	85	>99:1
16	$1e (4-Cl-C_6H_4, H)$	2a (H, Me)	20	3ea	80	>99:1
17	1f (2-Cl-C ₆ H ₄ , H)	2a (H, Me)	40	3fa	86	>99:1
18	$1g (3-Cl-C_6H_{4}, H)$	2a (H, Me)	20	3ga	91	>99:1
19	1h (4-Br-C ₆ H ₄ , H)	2a (H, Me)	12	3ha	78	>99:1
20	1i (2-Br-C ₆ H ₄ , H)	2a (H, Me)	12	3ia	95	>99:1
21	1j (4-Me-C ₆ H ₄ , H)	2a (H, Me)	40	3ja	88	>99:1
22	1k (3-Me-C ₆ H ₄ , H)	2a (H, Me)	40	3ka	81	>99:1
23	11 (4-MeO-C ₆ H ₄ ,H)	2a (H, Me)	40	3la	77	>99:1
24	1m (3-MeO-C ₆ H ₄ , H)	2a (H, Me)	40	3ma	82	>99:1
25	1n (3,4-di-MeO-C ₆ H ₃ , H)	2a (H, Me)	40	3na	80	>99:1
26	10 (4-pyridine, H)	2a (H, Me)	20	30a	86	>99:1
27	1p (2-thiophene, H)	2a (H, Me)	40	3pa	nr ^d	
28	1q (Me, Me)	2a (H, Me)	40	3qa	nr ^d	

^{*a*}Reactions were carried out with 0.12 mmol of 1 and 0.1 mmol of 2 in the presence of 20 mol % of CuI in 1.0 mL of toluene at 60 °C. ^{*b*}Isolated yield. ^{*c*}Determined by ¹H NMR spectroscopy. ^{*d*}No reaction.

Figure 1. X-ray single-crystal structure of 3aa (with thermal ellipsoils shown at the 50% probability level).

NMR experimental results (see details in SI): one proton resonates at 3.17 ppm, and the other one signals at 3.43 ppm. Moreover, we shed light on the diastereoselective formation of *anti*-**3aa** on the basis of the proposed reaction mechanism as described in Scheme 2. First, the chelation interaction of **2a** to CuI affords **4a**. Then, **4a** will attack **1a** by the two different orientations, as shown in transition states **TS1** and **TS2**, which lead to the formation of *anti*-**3aa** and *syn*-**3aa**, respectively. With the aid of the molecular model, we found strong steric repulsion between the benzene ring and Boc group in **TS2**. Compared to **TS2**, the same destabilizing effect does not exist at all in **TS1**. As a consequence, transition state **TS1** should be more stable than **TS2** and mainly accounts for the formation of *anti*-**3aa**. According to literature,¹⁶ it is Scheme 2. Proposed Mechanism for the Formation of 3aa

assumed that 1,3-DC of 1a and 2a follows a concerted process. Moreover, DFT calculations have located the concerted transition states TS1 and TS2 and disclosed that the formation of *anti-3aa* is kinetically and thermodynamically favored (see details in SI).

In conclusion, in the presence of 20 mol % of CuI, the 1,3dipolar cycloadditions of N,N'-cyclic azomethine imines 1 with iminooxindoles 2 proceeded efficiently and provided easy access to the oxindole spiro-N,N-bicyclic heterocycles in moderate to excellent chemical yields with excellent diastereoselectivities. Furthermore, exploration of new cyclo-additions of N,N'-cyclic azomethine imines with various structurally diverse and complex dipolarophiles is ongoing in our organic lab and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.6b00139.

Experimental details and NMR spectra for the obtained compounds 3 (PDF) X-ray data for 3aa (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: hwzhao@bjut.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Beijing Municipal Commission of Education (No. JC015001200902), Beijing Municipal Natural Science Foundation (Nos. 7102010, 2122008), Basic Research Foundation of Beijing University of Technology (X4015001201101), Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (No. PHR201008025), and Doctoral Scientific Research Start-up Foundation of Beijing University of Technology (No. 52015001200701) for financial support.

REFERENCES

(1) Nájera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596.

(2) (a) Chen, X.; Jia, C.; Cao, L.; Zhang, D.; Liu, S.; Zhang, Q. Chem. Res. Chin. Univ. 2015, 31, 543. (b) Keller, M.; Sido, A. S. S.; Pale, P.; Sommer, J. Chem. - Eur. J. 2009, 15, 2810. (c) Liu, Y.; Zhen, W.; Dai, W.; Wang, F.; Li, X. Org. Lett. 2013, 15, 874. (d) Mizuno, N.; Kamata, K.; Nakagawa, Y.; Oishi, T.; Yamaguchi, K. Catal. Today 2010, 157, 359.

(3) (a) Li, F.; Chen, J.; Hou, Y.; Li, Y.; Wu, X.-Y.; Tong, X. Org. Lett. **2015**, *17*, 5376. (b) Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E. J. Am. Chem. Soc. **2011**, *133*, 13337.

(4) (a) Novak, A.; Bezenšek, J.; Pezdirc, L.; Grošelj, U.; Kasunič, M.; Podlipnik, Č.; Stanovnik, B.; Šimůnek, P.; Svete, J. *Tetrahedron* **2011**, 67, 9729. (b) Pezdirc, L.; Jovanovski, V.; Bevk, D.; Jakše, R.; Pirc, S.; Meden, A.; Stanovnik, B.; Svete, J. *Tetrahedron* **2005**, 61, 3977. (c) Wang, D.; Deng, H. P.; Wei, Y.; Xu, Q.; Shi, M. *Eur. J.* Org. Chem. **2013**, 2013, 401. (d) Xu, X.; Qian, Y.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. **2013**, 135, 1244. (e) Foroughifar, N.; Mobinikhaledi, A. Asian J. Chem. **2002**, 14, 1441.

(5) Yoshimura, K.; Oishi, T.; Yamaguchi, K.; Mizuno, N. Chem. -Eur. J. 2011, 17, 3827.

(6) Zhou, W.; Li, X.-X.; Li, G.-H.; Wu, Y.; Chen, Z. Chem. Commun. 2013, 49, 3552.

(7) Li, Z.; Yu, H.; Liu, H.; Zhang, L.; Jiang, H.; Wang, B.; Guo, H. Chem. - Eur. J. **2014**, 20, 1731.

(8) (a) Arai, T.; Ogino, Y.; Sato, T. Chem. Commun. 2013, 49, 7776.
(b) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
(c) Hashimoto, T.; Takiguchi, Y.; Maruoka, K. J. Am. Chem. Soc.

2013, 135, 11473. (d) Imaizumi, T.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. **2012**, 134, 20049.

(9) (a) Arai, T.; Tsuchiya, K.; Matsumura, E. Org. Lett. 2015, 17, 2416. (b) Fang, B.; Liu, X.; Zhao, J.; Tang, Y.; Lin, L.; Feng, X. J. Org. Chem. 2015, 80, 3332. (c) Feng, J.; Yan, W.; Wang, D.; Li, P.; Sun, Q.; Wang, R. Chem. Commun. 2012, 48, 8003. (d) Holmquist, M.; Blay, G.; Pedro, J. R. Chem. Commun. 2014, 50, 9309. (e) Liu, T.; Liu, W.; Li, X.; Peng, F.; Shao, Z. J. Org. Chem. 2015, 80, 4950. (f) Liu, Y.-L.; Zhou, J. Chem. Commun. 2013, 49, 4421. (g) MacDonald, J. P.; Shupe, B. H.; Schreiber, J. D.; Franz, A. K. Chem. Commun. 2014, 50, 5242. (h) Nakamura, S.; Takahashi, S. Org. Lett. 2015, 17, 2590.

(10) (a) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C. F., III ACS Catal. 2014, 4, 743. (b) Santos, M. M. Tetrahedron 2014, 70, 9735.
(11) (a) Arai, T.; Matsumura, E.; Masu, H. Org. Lett. 2014, 16, 2768. (b) Chen, X.; Chen, H.; Ji, X.; Jiang, H.; Yao, Z.-J.; Liu, H. Org. Lett. 2013, 15, 1846. (c) Li, T.-Z.; Wang, X.-B.; Sha, F.; Wu, X.-Y. J. Org. Chem. 2014, 79, 4332. (d) Lv, H.; Tiwari, B.; Mo, J.; Xing, C.; Chi, Y. R. Org. Lett. 2012, 14, 5412.

(12) (a) Beckmann, H. S.; Wittmann, V. Org. Lett. 2007, 9, 1.
(b) Li, J.; Lian, X.; Liu, X.; Lin, L.; Feng, X. Chem. - Eur. J. 2013, 19, 5134. (c) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778.
(13) (a) Chen, W.; Yuan, X.-H.; Li, R.; Du, W.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Adv. Synth. Catal. 2006, 348, 1818. (b) Chen, W.; Du, W.; Duan, Y. Z.; Wu, Y.; Yang, S. Y.; Chen, Y. C. Angew. Chem. 2007, 119, 7811. (c) Hong, L.; Kai, M.; Wu, C.; Sun, W.; Zhu, G.; Li, G.; Yao, X.; Wang, R. Chem. Commun. 2013, 49, 6713.

(14) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.

(15) CCDC 1446365 contains the supplementary crystallographic data for compound **3aa**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center at www.ccdc.cam. ac.uk/data request/cif.

(16) Pleshchev, M. I.; Gupta, N. V. D.; Struchkova, M. I.; Goloveshkin, A. S.; Bushmarinov, I. S.; Khakimov, D. V.; Makhova, N. N. Mendeleev Commun. 2015, 25, 188.