Preparation of O-Protected Cyanohydrins by Aerobic Oxidation of α -Substituted Malononitriles in the Presence of Diarylphosphine

Dapeng Zhang,[†] Mingming Lian,^{*,†®} Jia Liu,[†] Shukun Tang,[†] Guangzhi Liu,[‡] Cunfei Ma,[§] Qingwei Meng,^{§®} Haisheng Peng,^{*,†} and Daling Zhu[†]

[†]Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China

[‡]Irradiation Technology Application Factory of Changshu, Changshu 215557, China

[§]State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology Department, Dalian University of Technology, Dalian 116024, China

Scite This: Org. Lett. XXXX, XXX, XXX–XXX

Supporting Information

Oxides

ABSTRACT: A mild, reagent-cyanide-free, and efficient synthesis of O-phosphinoyl-protected cyanohydrins from readily available α substituted malononitriles was realized using diarylphosphine oxides in the presence of O2. Mechanistic studies indicated that in addition to the initial aerobic oxidation of the malononitrile derivative notable features of this process include the formation of a tetrahedral intermediate and a subsequent intramolecular rearrangement. The phosphinoyl-protecting group can be removed by alcoholysis or by reduction with DIBAL-H.

Organic

Letters

yanohydrins or O-protected cyanohydrins are important → synthons because nitrile- and alcohol-containing molecules can be easily converted into a diverse range of 1,2difunctional compounds, such as α -hydroxy aldehydes, α hydroxy acids, and β -hydroxy amines.¹ Recently, it has been reported that highly functionalized compounds can be prepared from cyanohydrins,² and O-acetyl cyanohydrins can also act as a derivatizable directing group for Pd-catalyzed regioselective olefination reactions.³ Cyanohydrins are also present in a number of natural products,⁴ and these compounds show high insecticidal,⁵ antiviral,⁶ and anticancer activities.⁷ Numerous strategies for accessing cyanohydrins or the more stable O-protected derivatives generally rely on highly toxic cyanide sources such as HCN, metal cyanides, and TMSCN.^{1a,d,4e,8} Until recently, only Ruijter and Orru had documented a Brønsted-acid-catalyzed cyanide-free method, and they utilized trityl isocyanide as a pseudocyanide source to prepare O-trityl cyanohydrin (Scheme 1).⁹

Based on our previous work on environmentally benign methods for the α -hydroxylation of β -ketoesters,¹⁰ we hypothesized that O_2 could be used to generate a C-O bond at the α -position of a nitrile group. Based on this assumption, malononitrile derivatives, which contain two nitrile groups, attracted our attention.¹¹ Although α -position derivatization reactions of malononitriles have become common,¹² a method for α -C–O bond formation via the oxidation of malononitrile, yielding the corresponding cyanohydrin or its derivative, has not been reported. In 2016, the Hayashi group reported an oxidative amidation of α substituted malononitriles with amines, but both nitrile groups

Letter

pubs.acs.org/OrgLett

Scheme 1. Synthetic Strategies toward Cyanohydrins or Their O-Protected Derivatives

Nucleophilic addition of cyanide to carbonyl compounds - Previous work

$$\begin{array}{c} O \\ R_1 \\ R_2 \end{array} \xrightarrow{N \equiv C - X} \begin{array}{c} O \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ CN \end{array}$$

X = -H, -SiMe₃, -PO(OEt)₂, -COOEt, -COEt, etc.

Cvanotritvlation of aldehvdes by tritvl isocvanide - Previous work

Aerobic Oxidation of α -Substituted Malononitriles - This work

$$\begin{array}{c} CN \\ R \\ \hline CN \\ R \\ \hline CN \\ R \\ \hline CN \\ Ar' \\ H \\ Ar' \\ H \\ Ar \\ \hline P \\ Ar \\ H \\ Ar \\ \hline P \\ Ar \\ \hline rt \sim 50 \ ^{\circ}C \\ R \\ \hline CN \\ \hline C$$

were lost in the reaction.¹³ During the aerobic process, the oxidation state of the carbon atom in the α -position of malononitrile was increased from -1 to +2; however, the required oxidation state of the α -carbon in cyanohydrin is 0.¹⁴ We speculate that reducing agents, especially those containing nonmetallic elements at lower oxidation states, may reduce the

Received: February 13, 2019

F

oxidation state of acyl cyanide from +2 to 0, facilitating the formation of cyanohydrin or its O-protected derivative.

Based on this hypothesis, we explored some commercially available organophosphorus reagents as reductants in the proposed aerobic preparation of cyanohydrin derivatives from α -benzyl malononitrile (1a, Table 1). To our delight, the

Table 1. Optimization of Organophosphorus and Reaction Conditions a^{a}

		mercially	O ₂ , rt		→ ^O _{Pg}
	CN Organo	phosphorus	Base Solvent		ČN 3
		- 3aa	C) Ph Ph	•
entry	organophosphorus	base	solvent	time (h)	yield (%) ^b
1	$P(Ph)_3$	K ₂ CO ₃	THF	24	
2	$(EtO)_2 P(O)H$	K_2CO_3	THF	24	
3	$P(OEt)_3$	K_2CO_3	THF	24	C
4	$Ph_2P(O)H$ 2a	K_2CO_3	THF	12	3aa, 54%
5	2a	DIEA	THF	24	3aa, 56%
6	2a	DMAP	THF	24	3aa, 49%
7	2a	LiOH	THF	4	C
8	2a	Cs ₂ CO ₃	THF	8	3aa , 19%
9	2a	K_2CO_3	MeCN	6	3aa , 67%
10	2a	K_2CO_3	DMF	20	3aa, 59%
11	2a	K ₂ CO ₃	MeOH	7	
12	2a	K_2CO_3	DCM	24	3aa, 44%
13	2a	K_2CO_3	toluene	24	NR ^d
14 ^e	2a	K_2CO_3	MeCN	3	3aa, 50%
15 ^f	2a	K_2CO_3	MeCN	24	NR ^g
16 ^h	2a	K ₂ CO ₃	MeCN	24	3aa, 54%

^{*a*}Reaction conditions: **1a** (1.25 mmol), organophosphorus (2.0 equiv), and base (2.0 equiv) in solvent (5 mL) were stirred under a constant flow (bubbling) of O_2 at room temperature. NR = No reaction. ^{*b*}Isolated yield based on **1a**. ^{*c*}Complex reaction mixture with **1a** consumed. ^{*d*}55% of **1a** was recovered. ^{*c*}Reaction was performed at 50 °C. ^{*f*}Reaction was performed at -10 °C. ^{*g*}72% of **1a** was recovered. ^{*h*}0.5 equiv of K₂CO₃ was used. DIEA = *N*₁*N*-diisopropylethylamine, DMAP = dimethylaminopyridine.

treatment of 1a and diphenylphosphine oxide (2a) with O_2 in the presence of K_2CO_3 gave *O*-phosphinoyl-protected cyanohydrin 3aa in 54% yield. Encouraged by this result, we further optimized the reaction conditions. Screening inorganic and organic bases in different solvents at room temperature demonstrated that the mixture of MeCN and K_2CO_3 gave the highest reaction yield (Table 1, entry 9). A diminished yield was obtained when the reaction was carried out at a lower temperature (Table 1, entry 15), while a modestly reduced yield was achieved at a higher temperature (Table 1, entry 14).

With the optimized reaction conditions in hand (Conditions A), we turned our attention to the scope of the reaction with respect to the α -substituted malononitrile substrates. As shown in Table 2, the scope of substrates with different substituents on the benzyl ring (1b-1k, 1v) was investigated first. Electron-donating or electron-withdrawing groups at the *ortho, meta,* or *para* positions slightly affected the reactivity, giving desired products **3ba-3ka** in moderate to good yields. Sterically hindered substrates, such as mesityl- or naphthalene-containing compounds 1v or 1u, afforded *O*-diphenylphosphinoyl cyanohydrins **3va** and **3ua** in 85% and 75% yields, respectively.

Table 2.	Oxidation	of α -Substitu	ited Ma	lononitril	es in	the
Presence	of Dipher	ylphosphine	Oxide 2	la ^{<i>a,b</i>}		

	1 /1	1	0			
	0	K ₂ CO ₃ or DIEA	O-P-Ph			
	Ph ^P Ph	O₂. rt or 50 °C				
1b-z, 1a'	2a	2,	3ba-3za, 3a'a			
<i>a</i> -benzvl malon	onitriles					
	3b	a: A: R ₁ = 2-Cl, (6 h, 51	%)			
	3c	a: A: R ₁ = 2-Me, (6 h, 43	3%)			
	3d	$a: A: R_1 = 3-Cl, (20 h, 40)$	0%)			
	Dh 3e	a : A: $R_1 = 3$ -Br, (6 h, 509)	%)			
0-	P_{P-Ph} 3fa	$A: A: R_1 = 3-OMe_{,} (15 h_{,})$, 44%)			
	0 3g	$a: A: R_1 = 3$ -Me, (6 h, 67)	7%)			
	3h	$a: A: R_1 = 3-CF_3$, (12 h,	32%)			
	3ia	$A: A: R_1 = 4-Me, (5 h, 61)$	%)			
	3ja	$A: A: R_1 = 4 - t Bu, (15 h, 7)$	/3%)			
	3k	a : A: $R_1 = 4$ -Cl, (12 h, 5-	4%)			
	3v	a : A: R ₁ = 2,4,6-tri-Me, ((5.5 h, 85%)			
a-phenyl malor	nonitriles					
	31a	$a: B: R_2 = H, (6 h, 54\%)$				
	3n	na : B: $R_2 = 2$ -Me, (5 h, 9	5%)			
	3n	a : B: $R_2 = 2$ -F, (50 h, NI	R)			
	Ph 30	$a: B: R_2 = 2-OMe$, (8 h,	77%)			
0-	-P⊢Ph 3p	a : B: R ₂ = 3-OMe, (8 h,	50%)			
	i 3q	a : B: R ₂ = 4-F, (8 h, 59%	6)			
	3r	a : B: R ₂ = 4-Me, (6 h, 54	4%)			
	3s	a : B: $R_2 = 4$ -OMe, (6 h, -	41%)			
	3ta: B: $R_2 = 4$ -Cl, (6 h, 50%)					
other <i>a</i> -substituted malononitriles						
	Ph	Ph				
	Ο−Ρ−Ρn ⟨ ö	, – (– – – – – – – – – – – – – – – – –				
	ĊŇ	<u> </u>	Met P			
		\square	CN O [®] ^{Ph}			
3ua : A	A:	3wa : A:	3xa : A:			
(15 h, 7	2%)	(6 h, 81%)	(6 h, 64%)			
	Dh	Ph	Ph Ph			
		O-P-Ph	O-P-Ph			
	< ő	S-CN				
< <u> </u>	CN	$\langle \rangle$	3a'a: B:			
3ya : A: (15)	h, 62%)	3za : A: (6 h, 81%)	(6 h, 75%)			

^{*a*}Reaction conditions: 1a–z, 1a' (1.25 mmol), and Ph₂P(O)H (2.0 equiv) in MeCN (5 mL) were stirred under a constant flow (bubbling) of O₂. Conditions A: K_2CO_3 (2.0 equiv), room temperature. Conditions B: DIEA (2.0 equiv), 50 °C. ^{*b*}Isolated yield.

Next, our intent was to apply this oxidative process to more challenging α -phenyl malononitriles 2l-2t, as the previous conditions were not effective for the synthesis of these cyanohydrins. The choice of the appropriate base was crucial, and 3la was formed in 54% yield once the base was switched from K_2CO_3 to DIEA (Conditions B). The following examinations showed that substrates 2m and 2o, bearing electron-donating substituents at the ortho position, were well tolerated, while 2n, with electron-withdrawing substituents, was not suitable for the reaction. However, aromatic malononitriles with substituents with different electronic demands at the meta or para positions showed similar reactivities and gave corresponding products 3pa-3ta in 41% to 59% yields. To our delight, α -naphthol substrate 2a' with greater steric hindrance afforded corresponding cyanohydrin derivative 3a'a in 76% yield. In addition, the

incorporation of heteroarene and alkane moieties is tolerated, and **2w–2z** underwent the transformation to produce **3wa–3za** in up to 81% yield.

Having established the scope of α -substituted malononitriles 1, we next screened the scope of diarylphosphine oxides 2b-2m and other organophosphorus compounds 2n-2p (Scheme 2). Only diarylphosphine oxides with an electron-withdrawing

Scheme 2. Oxidation of α -Benzyl Malononitrile 1a in the Presence of Diarylphosphine Oxide $2^{a,b}$

^{*a*}Reaction conditions: 1a (1.25 mmol), 2b-p (2.0 equiv), and K₂CO₃ (2.0 equiv) in MeCN (5 mL) were stirred under a constant flow (bubbling) of O₂ at room temperature. ^{*b*}Isolated yield based on 1a.

group at the *para* position (2c, 2d, 2f) or limited group at the *meta* position (2g, 2i) were tolerated in the reaction and gave moderate to good yields. Similarly, compared with unreactive di- α -naphthylphosphine oxide (2m), β -naphthyl derivative 2l gave the desired product in high yield. Unfortunately, 2n-2p were not suitable for the reaction, probably due to inhibition of the $p-\pi$ conjugation between the phosphorus atom and the benzene ring, which may be critical for the nucleophilicity of the organophosphorus reagent (see Supporting Information for details).

Based on literature reports and our previous work on the α -hydroxylation of β -keto esters, a plausible mechanism for the process is proposed as shown in Scheme 3.^{10a-c,13a} Initially, radical insertion of O₂ into an α -C–H bond of malononitrile 1 under basic conditions affords α -hydroperoxide 4, which can be reduced by another equivalent of 1 to form two equivalents of α -hydroxy malononitrile 5. Consequently, acyl cyanide intermediate 6 is produced by the elimination of HCN from 5 in the presence of base. For diarylphosphine oxide 2 to tautomerize to the P–OH form (2'), the in situ formation of a quaternary carbon center must be accomplished through the nucleophilic addition of phosphinous acid 2' to acyl cyanide 6. Finally, an intramolecular exchange through a four-centered

P-C-O-H system results in the formation of the *O*-phosphinoyl cyanohydrin.

Experiments were then carried out to clarify and evaluate the proposed reaction mechanism. First, commercially available benzoyl cyanide 8 was subjected to the standard conditions, and corresponding product 3la was obtained in 98% yield after 30 min (Scheme 4A). Strikingly, when the amount of benzoyl

Scheme 4. Mechanism Studies

cyanide 8 was increased to 2.5 equiv, benzoyl-protected compound 9 was isolated in 80% yield, and this compound could be readily converted to 3la under basic conditions in the presence of stoichiometric water. Second, two peaks with a mass-to-charge ratio (m/z) of 348.11 were detected in the LC/MS spectrum (see the Supporting Information). One of the peaks was presumed to be the intermediate 7 (R = Bn). Although the intermediates were not isolated, the proposed mechanism can suitably explain the experimental results. Finally, a series of control experiments were also designed to probe the oxidation process, and the decreased yield of 3aa in the presence of radical scavenger implied that a radical species might be involved (Scheme 4B).

A multigram-scale reaction of 1a with 2a afforded product 3aa (6.9 g, 20 mmol) in 70% yield, highlighting the good reliability of the bubbling process. To demonstrate the synthetic utility of this transformation, we further elaborated

product 3aa (Scheme 5A). The nitrile group could be selectively hydrolyzed in the presence of hydrochloric acid or

Scheme 5. Elaboration of Product 3aa and Deprotection of the O-Phosphinoyl Cyanohydrins

1) con.HCl/dioxane = 1/2, 60 °C, 24 h; 2) 85% H₂SO₄, rt, overnight; 3) HCl (dry), HOCH₂CH₂OMe, 0 °C ~ rt, overnight; 4) HCl (dry), EtSH, 0 °C ~ rt, overnight; 5) *t*BuOH, H₂SO₄/AcOH, rt, overnight; 6) LiAlH₄, Et₂O, 0 °C, 30 min.

Bn OPOPh ₂ B CN 3aa	LiOH·H ₂ O (1.0 equiv) rt, 1 h THF/MeOH = 4/1 (0.1 M)	► Ph-P-F - OMe 16 95%	Ph + e no	Bn OH CN 17 Dt observed
C Bn COOH Ph ₂ OPO 4	Bn,,, COOtBu CI NH ₃ 18 (1.1 equiv) HATU (1.5 equiv) DIEA (3 equiv) THF (0.1 M), rt, 4h) Bn Ph ₂ OPO 1§	O ₿n N - C H - C 9 (96%)	COOtBu
Bn H Ph ₂ OPO 19	DtBu	equiv) n = 4/1	Bn OH 20 (6	₿n
D Bn OP CN 3aa	OPh ₂ DIBAL-H (3.0 THF (0.1 M),	equiv) → -78 °C	BnO⊢ CN 17 (95%)	l
Ph OF CN 3la	DIBAL-H (3.0 THF (0.1 M),	equiv) -78 °C	Ph OH CN 21 (71%)	

sulfuric acid, producing carboxylic acid 10 or amide 11 in excellent yields. Pinner reactions between 3aa and an alcohol or a thiol to yield ester 12 or thioether 13 were successfully conducted. In addition, 3aa reacted well with a tertiary alcohol in a Ritter reaction, resulting in the formation of *N*-tert-alkylamide 14 in 56% yield. In addition, 3aa was readily reduced to afford primary amine 15 in 56% yield upon exposure to LiAlH₄, and the phosphinoyl group was not affected by this reaction.

Finally, we focused on developing an efficient method to cleave the diphenylphosphinoyl group. The base-catalyzed alcoholysis of **3aa** in THF/methanol afforded methyl diphenylphosphinate **16** in high yield, but the expected cyanohydrin **17** was not detected (Scheme 5B). We speculated that base-accelerated elimination of HCN led to the failure of the alcoholysis. With respect to the alcoholysis strategy, carboxyl-protected amino acid **18** was initially coupled with nitrile derivatization product **10**, and deprotection of the diphenylphosphinoyl group was performed with LiOH in a THF/MeOH solution to give compound **20** in a total yield of 64% from **3aa** (Scheme 5C).¹⁵ To our delight, we also established a straightforward method of accessing the free hydroxyl group by breaking the P–O bond. The partial reduction of a nitrile group with diisobutylaluminum hydride (DIBAL-H) at a low temperature (~40 °C) affords an aldehyde. However, the treatment of **3aa** or **3la** with excess DIBAL-H at -78 °C resulted in the formation of cyanohydrins **17** and **21** in high yields with the nitrile functionality intact (Scheme 5D).

In conclusion, we have developed an aerobic redox strategy for the synthesis of *O*-phosphinoyl cyanohydrins under mild reaction conditions using α -substituted malononitriles as the nitrile source and diarylphosphine oxides as the reducing agents. Importantly, this approach is different from conventional cyanohydrin syntheses. Mechanistic studies supported that the mild process involves a radical oxidation, the generation of a quaternary carbon center, and an intramolecular rearrangement. Finally, the phosphinoyl substituent is demonstrated to be a convenient protecting group. Given the utility of O-protected cyanohydrins, we anticipate that this approach will facilitate the construction of this important and challenging moiety in synthetic applications. Further studies on an asymmetric catalyst system are underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.9b00569.

Experimental details, analytical data, and ¹H, ¹³C, and ³¹P NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: lotuseeds@gmail.com. *E-mail: fisher1688@163.com.

ORCID ®

Mingming Lian: 0000-0001-7737-5036 Qingwei Meng: 0000-0002-1743-2518

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21506044, 81671814), the China Postdoctoral Science Foundation (No. 2014M561369), the Natural Science Foundation of Heilongiang Province (No. QC2015016), and Seed Fund of Harbin Medical University (Daqing) (No. DQ2013-04, DQXN201703, and DQXN201705).

REFERENCES

(1) For representative reviews, see: (a) Chen, F. X.; Feng, X. M. Synlett 2005, 2005, 892–899. (b) Effenberger, F. Angew. Chem., Int. Ed. Engl. 1994, 33, 1555–1564. (c) Brunel, J. M.; Holmes, I. P. Angew. Chem., Int. Ed. 2004, 43, 2752–2778. (d) North, M.; Usanov, D. L.; Young, C. Chem. Rev. 2008, 108, 5146–5226. (e) Bracco, P.;

Organic Letters

Busch, H.; von Langermann, J.; Hanefeld, U. Org. Biomol. Chem. 2016, 14, 6375-6389.

(2) (a) Rad, N.; Makosza, M. Eur. J. Org. Chem. 2018, 2018, 376–380.
(b) Yoneyama, H.; Numata, M.; Uemura, K.; Usami, Y.; Harusawa, S. J. Org. Chem. 2017, 82, 5538–5556.
(c) Yoneda, N.; Fujii, Y.; Matsumoto, A.; Asano, K.; Matsubara, S. Nat. Commun. 2017, DOI: 10.1038/s41467-017-01099-x.
(d) Du, S. T.; Sun, Z.; Liu, W.; Liao, W. W. Org. Lett. 2017, 19, 6598–6601.
(e) Turnbull, B. W. H.; Oliver, S.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 15374–15377.

(3) Liang, Q.-J.; Jiang, B.; Xu, Y.-H.; Loh, T.-P. J. Org. Chem. 2018, 83, 8265–8271.

(4) (a) Chang, H. K.; Shin, M. S.; Yang, H. Y.; Lee, J. W.; Kim, Y. S.; Lee, M. H.; Kim, J.; Kim, K. H.; Kim, C. J. *Biol. Pharm. Bull.* **2006**, *29*, 1597–1602. (b) Cioni, J. P.; Doroghazi, J. R.; Ju, K. S.; Yu, X. M.; Evans, B. S.; Lee, J.; Metcalf, W. W. J. Nat. Prod. **2014**, *77*, 243–249. (c) Mitchell, B. L.; Bhandari, R. K.; Bebarta, V. S.; Rockwood, G. A.; Boss, G. R.; Logue, B. A. Toxicol. Lett. **2013**, *222*, 83–89. (d) Fleming, F. F. Nat. Prod. Rep. **1999**, *16*, 597–606. (e) Gregory, R. J. H. Chem. Rev. **1999**, *99*, 3649–3682.

(5) (a) Peterson, C. J.; Tsao, R.; Coats, J. R. *Pest Manage. Sci.* 2000, *56*, 615–617. (b) Park, D. S.; Coats, J. R. *J. Pestic. Sci.* 2005, *30*, 99–102.

(6) Zhai, Y. Y.; Zhao, X. S.; Cui, Z. J.; Wang, M.; Wang, Y. X.; Li, L. F.; Sun, Q.; Yang, X.; Zeng, D. B.; Liu, Y.; Sun, Y. N.; Lou, Z. Y.; Shang, L. Q.; Yin, Z. J. Med. Chem. **2015**, 58, 9414–9420.

(7) (a) Chang, J.; Zhang, Y. Process Biochem. 2012, 47, 195-200.
(b) Ramalho, R. T.; Aydos, R. D.; Schettert, I.; de Assis, P. V.; Cassino, P. C. Acta. Cir. Bras. 2013, 28, 728-732.

(8) Kurono, N.; Ohkuma, T. ACS Catal. 2016, 6, 989-1023.

(9) Cioc, R. C.; Schuckman, P.; Preschel, H. D.; Vlaar, T.; Ruijter, E.; Orru, R. V. A. Org. Lett. **2016**, *18*, 3562–3565.

(10) (a) Wang, Y. K.; Zheng, Z. H.; Lian, M. M.; Yin, H.; Zhao, J. N.; Meng, Q. W.; Gao, Z. X. Green Chem. 2016, 18, 5493-5499.
(b) Lian, M. M.; Li, Z.; Cai, Y. C.; Meng, Q. W.; Gao, Z. X. Chem. - Asian J. 2012, 7, 2019-2023. (c) Wang, Y. K.; Yin, H.; Tang, X. F.; Wu, Y. F.; Meng, Q. W.; Gao, Z. X. J. Org. Chem. 2016, 81, 7042-7050. (d) Bryliakov, K. P. Chem. Rev. 2017, 117, 11406-11459.

(11) α -Substituted malononitriles are readily prepared from obtainable malononitrile or by dehydration of malonodiamide derivatives, without using toxic HCN or metal cyanides. For representative reviews and preparations on malononitriles, see: (a) Freeman, F. Chem. Rev. 1969, 69, 591–624. (b) Fatiadi, A. J. Synthesis 1978, 1978, 165–204. (c) Freeman, F. Synthesis 1981, 1981, 925–954. (d) Suzuki, H.; Kobayashi, T.; Osuka, A. Chem. Lett. 1983, 12, 589–590. (e) Uno, M.; Seto, K.; Takahashi, S. J. Chem. Soc., Chem. Commun. 1984, 932–933. (f) Uno, M.; Seto, K.; Masuda, M.; Ueda, W.; Takahashi, S. Tetrahedron Lett. 1985, 26, 1553–1556.

(12) For selected examples, see: (a) Adamson, N. J.; Wilbur, K. C. E.; Malcolmson, S. J. J. Am. Chem. Soc. 2018, 140, 2761-2764. (b) Jang, D. O.; Kim, D. D.; Pyun, D. K.; Beak, P. Org. Lett. 2003, 5, 4155-4157. (c) Ohwada, T.; Kojima, D.; Kiwada, T.; Futaki, S.; Sugiura, Y.; Yamaguchi, K.; Nishi, Y.; Kobayashili, Y. Chem. - Eur. J. 2004, 10, 617-626. (d) Kitson, P. J.; Parenty, A. D. C.; Richmond, C. J.; Long, D. L.; Cronin, L. Chem. Commun. 2009, 4067-4069. (e) Dickmeiss, G.; Jensen, K. L.; Worgull, D.; Franke, P. T.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 1580-1583. (f) Muresan, N. M.; Willkomm, J.; Mersch, D.; Vaynzof, Y.; Reisner, E. Angew. Chem., Int. Ed. 2012, 51, 12749-12753. (g) Turner, T. C.; Shibayama, K.; Boger, D. L. Org. Lett. 2013, 15, 1100-1103. (h) Chang, S.; Hur, S.; Britton, R. Chem. - Eur. J. 2015, 21, 16646-16653. (i) Huang, X.; Wu, S. Z.; Wu, W. T.; Li, P. B.; Fu, C. L.; Ma, S. M. Nat. Commun. 2016, DOI: 10.1038/ncomms12382. (j) Chen, X. Y.; Li, S.; Liu, Q.; Kumar, M.; Peuronen, A.; Rissanen, K.; Enders, D. Chem. - Eur. J. 2018, 24, 9735-9738.

(13) (a) Li, J.; Lear, M. J.; Hayashi, Y. Angew. Chem., Int. Ed. 2016, 55, 9060–9064. (b) Forster, S.; Tverskoy, O.; Helmchen, G. Synlett 2008, 2008, 2803–2806.

(14) The oxidation state (OS) of an atom is the charge of this atom after ionic approximation of its heteronuclear bonds. See IUPAC. *Compendium of Chemical Terminology*, 2nd ed. (the "Gold Book"); Blackwell Scientific Publications: Oxford, 1997. http://goldbook.iupac.org. DOI: 10.1351/goldbook.O04365.

(15) Compound **20** has the structural feature of the Aeruginosin family. For review, see: Ersmark, K.; Del Valle, J. R.; Hanessian, S. *Angew. Chem., Int. Ed.* **2008**, 47, 1202–1223.