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ZrP2O7 nanoparticles as an efficient catalyst have been used for the preparation of benzopyrano[2,3-
b]pyridines from the four-component condensation reaction of salicylalde-hydes, thiols, and 2 equiv. of
malononitrile under reflux conditions in ethanol in excellent yields and short reaction times.
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1. Introduction

Benzopyranopyridines are fused heterocyclic compounds that exhibit anti-bacterial,[1,2] anti-
proliferative,[3] anti-myopic,[4] anti-rheumatic,[5] anti-asthmatic,[6] and cancer chemopreven-
tive [7] activities. Several compounds derived from libraries were identified as inhibitors of
mitogen-activated protein kinase-activated protein kinase 2 and attenuated the production of proin-
flammatory TNFα,[8] and histamine-stimulated gastric acid secretion in animals.[9] Some other
examples of benzopyranopyridine derivatives such as amlexanox and pranoprofen have been
reported as anti-allergic and potent NSAIDs, respectively. Therefore, the development of sim-
ple methods for the synthesis of benzopyranopyridines is of major interest to modern synthetic
organic chemists. In recent years, multicomponent reactions have been extensively utilized to
produce heterocyclic compounds with biological activity. Multicomponent reactions are highly
flexible, convergent, fruitful and atom-efficient processes of high exploratory power that mini-
mize solvent consumption and maximize atom efficiency.[10–17] Multicomponent reactions are
usually designed for the development of environmentally benign synthetic methods. Hence, they
are useful from a green chemistry viewpoint.[18,19] A few catalysts such as K2CO3,[20] Et3N
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[21] and chitosan [22] have been used for the synthesis of benzopyranopyridine derivatives,
but all these methods require a long duration and high temperature. Heterogeneous catalysts have
emerged as economically viable due to their unique catalytic properties [23–25] and nanoparticles
(NPs) as heterogeneous catalysts have received considerable attention in green chemistry. Metal
pyrophosphates are heavily studied materials due to their utility in a variety of applications.[26,27]
For example, zirconium pyrophosphate (ZrP2O7) NPs were used as an excellent catalyst in many
organic reactions.A simple separation and purification process in organic reactions is an advantage
of heterogeneous catalytic systems. Due to their high surface-to-volume ratio, which can carry a
high payload of catalytically active species, NPs show very high catalytic activity and chemical
selectivity under mild conditions.[28–36] Neat processes utilizing eco-friendly and green cat-
alysts that can be simply recycled at the end of reactions has received remarkable attention in
recent years. We report herein a simple and facile procedure for the synthesis of benzopyrano[2,3-
b]pyridines through one-pot three-component reaction of salicylaldehydes, thiols and 2 equiv. of
malononitrile catalyzed by ZrP2O7 NPs under reflux conditions in ethanol (Scheme 1).
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Scheme 1. Synthesis of benzopyranopyridines via ZrP2O7 NPs catalyzed multicomponent
reactions of salicylaldehydes with malononitrile and thiols.

2. Results and discussion

The morphology and particle size of ZrP2O7 NPs was investigated by scanning electron
microscopy (SEM) as shown in Figure 1. The SEM image shows particles with diameters in
the range of nanometers. The X-ray diffraction (XRD) pattern of the ZrP2O7 NPs is shown in

Figure 1. SEM images of ZrP2O7 NPs.
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Figure 2. The XRD pattern of ZrP2O7 NPs.

Figure 3. TEM image of ZrP2O7 NPs.

Figure 2. The average NP size was estimated from the full-width half-maximum of the peaks
with use of the Debye–Sherrer equation. The results show that ZrP2O7 NPs were obtained with
an average diameter of 11 nm as confirmed by the XRD analysis.

Characterization of nano ZrP2O7 showed the same particle size by transmission electron
microscopy (TEM) (Figure 3).

In order to achieve optimum conditions, we initially investigated the reaction of salicylaldehy-
des, thiols and 2 equiv. of malononitrile in the presence of different catalysts such as DBU, ZnCl2,
FeCl3, morpholine and ZrP2O7 NPs under different conditions (Table 1). Next, we optimized the
required amount of ZrP2O7 NPs; the optimum amount was found to be 5 mol%.

The reaction works well for salicylaldehyde and 5-bromo-2-hydroxybenzaldehyde and different
thiols. All the reactions reached completion within 40–55 min to afford good yields of products.
These products precipitate from refluxing ethanolic solutions and are isolated by easy filtration.
The yields of recrystallized benzopyranopyridines are given in Table 2.

2.1. Proposed mechanism

A plausible mechanism for the preparation of benzopyranopyridines using ZrP2O7 NPs is shown
in Scheme 2.
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Table 1. Optimization of reaction condition using different catalystsa.

Entry Catalyst Mol (%) Time (min) Yield (%)b

1 DBU 30 200 40
2 ZnCl2 10 100 18
3 FeCl3 10 100 30
4 Morpholine 10 90 55
5 ZrP2O7 NPs 2 50 80
6 ZrP2O7 NPs 5 50 90
7 ZrP2O7 NPs 8 50 90

aReaction conditions: salicyladehyde (1.5 mmol), malononitrile (3 mmol) and benzenethiol (1.5 mmol).
bIsolated yields.

Table 2. Synthesis of benzopyranopyridine derivatives using ZrP2O7 NPsa.

Entry R1 R2 Product Time (min) Yieldb m.p. (◦C) Lit. m.p. (◦C)

1 H Ar 1a 42 90 221–223 (220–222)[19]
2 H 4-Me-Ar 2a 47 87 222–224 (223–225)[19]
3 H Ar-CH2 3a 55 82 210–212 –
4 H 2-furyl-methyl 4a 48 85 230–234 –
5 Br Ar 1b 40 91 215–217 –
6 Br 4-Me-Ar 2b 46 88 213–215 –
7 Br Ar-CH2 3b 57 83 206–208 –
8 Br 2-furyl-methyl 4b 46 87 225–227 –

aAll the reactions were carried out under reflux conditions in ethanol.
bIsolated yields.
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Scheme 2. Proposed reaction pathway for the synthesis of benzopyranopyridines by ZrP2O7

NPs.

3. Conclusions

In this research, ZrP2O7 NPs were used for mild preparation of benzopyranopyridine derivatives
under reflux conditions in ethanol for the first time. The advantages offered by this method are
satisfactory yields of products using a green and recyclable nanocatalyst, easy workup, short
reaction time and mild reaction conditions.
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4. Experimental

All organic materials were purchased commercially from Sigma-Aldrich and Merck and were
used without further purification. All melting points are uncorrected and were determined in a
capillary tube on a Boetius melting point microscope. FT-IR spectra were recorded with KBr
pellets using a Magna-IR, spectrometer 550 Nicolet. NMR spectra were recorded on a Bruker
400 MHz spectrometer with DMSO as solvent and TMS as an internal standard. Powder XRD
was carried out on a Philips diffractometer of X’pert Company. Microscopic morphology of the
products was visualized by SEM (LEO 1455VP). TEM images were obtained on a Philips EM208
TEM with an accelerating voltage of 100 kV.

4.1. Preparation of ZrP2O7 NPs

The catalyst was prepared via a sonochemical method (worked at 20 kHz frequency and 80 W
powers) using ZrOCl2 as the zirconium source. The stoichiometric amount of ZrOCl2/8H2O
was first added to 20 mL of distilled water and dissolved with the aid of sonication. Then, H3PO4

(85%) was added dropwise in 20 min and the mixture was sonicated until the precipitation of solids
was finished. When the reaction was completed, a dispersed white precipitate was obtained. The
solid was filtered and washed with distilled water and ethanol several times. Subsequently, the
catalyst was dried at 100◦C for 8 h and calcined at 500◦C for 1 h to obtain pure nano zirconium
pyrophosphate.

4.2. General procedure for the preparation of benzopyranopyridines

To a mixture of a selected salicylaldehyde (1.5 mmol), malononitrile (3 mmol) and a desired thiol
(1.5 mmol) in 5 mL of anhydrous ethanol was added ZrP2O7 NPs (5 mol%) in 2 mL ethanol at
room temperature. The resulting mixture was refluxed for 40–50 min and then allowed to cool to
room temperature. The formed precipitate was isolated by filtration. The product was dissolved
in DMF (3 mL) and the catalyst was filtered. Then, 4 mL water was added to the filtrate which
resulted in the crystallization of the product. The resulting crystalline structure was filtered and
dried with a vacuum pump. The structures of the products were fully established on the basis of
their 1H NMR, 13C NMR and FT-IR spectra.

4.3. 2,4-Diamino-5-phenylsulfanyl-5H-chromeno[2,3-b]pyridine-3-carbonitrile (1a)

Yellow solid, IR (KBr) (vmax/cm−1): 3355, 3429, 2203, 1400–1623; 1H NMR (400 MHz, DMSO-
d6): δ = 5.73(s, 1H), 6.50 (2H, s), 6.74–6.78(3H, m), 6.94 (s, 2H), 7.05–7.11(3H, m), 7.15–
7.30 (m, 3H); 13C NMR (100 MHz, DMSO-d6): δ = 160.9, 159.7, 156.4, 150.9, 137.7, 134.2,
129.7,129.5, 129.2, 128.64, 128.60, 123.9, 121.5, 116.5, 116.01, 86.90, 70.8, 43.12. Anal. calcd
for C19H14N4OS: C 65.88, H 4.074, N 16.17. Found C 65. 82, H 4.09, N 16.07.MS (EI) (m/z):
346 (M+).

4.4. 2,4-Diamino-5-(4-methylphenylsulfanyl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile
(2a)

Yellow solid, IR (KBr) (vmax/cm−1): 3457, 3349, 2198, 1400–1623. 1H NMR (400 MHz, DMSO-
d6): δ = 2.19 (s, 3H), 5.66 (s, 1H), 6.46 (br s, 2H), 6.61 (d, J = 7.9 Hz, 2H), 6.79 (d, J = 7.9 Hz,
1H), 6.90 (m, 4H), 7.11; (d, J = 6.8 Hz, 1H), 7.19 (d, J = 7.3 Hz, 2H).13C NMR (100 MHz,
DMSO-d6): δ = 160.25, 160.08, 156.3, 151.33, 138.3, 136.9, 129.8, 128.6, 128.2, 127.0, 123.6,
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121.8, 116.4, 115.7, 86.3, 70.8, 43.11, 21.2. Anal. calcd for C20H16N4OS: C 66.64, H 4.47, N
15.54. Found C 66. 59, H 4.51, N 15.48.MS (EI) (m/z): 360 (M+).

4.5. 2,4-Diamino-5(benzylthio)-5H-chromeno[2,3-b]pyridine-3-carbonitrile(3a)

Yellow solid, IR (KBr) (vmax/cm−1): 3377, 3439, 2200, 1400, 1605; 1H NMR (400 MHz, DMSO-
d6): δ = 3.49 (ABq, 2H, J = 12 Hz), 5.48 (1H), 6.55 (bs, 2H), 6.83 (bs, 2H), 7.03–7.21 (m, 7H),
7.33 (m, 2H); 13C NMR (100 MHz, DMSO-d6): δ = 160.2, 159.9, 152.9, 143.7, 136.6, 133.3,
133.2, 129.6, 129.4, 124.3, 124.2,122.8, 119.3, 118.3, 117.6, 87.01, 70.90, 44.01, 37.02. Anal.
calcd for C20H16N4OS: C 66.64, H 4.47, N 15.54. Found C 66. 48, H 4.58, N 15.39.MS (EI)
(m/z): 360 (M+).

4.6. 5-((Furan-2-yl) methylthio)-2,4-diamino-5H-chromeno[2,3-b]pyridine-3-carbonitrile
(4a)

Yellow solid, IR (KBr) (vmax/cm−1): 3386, 3440, 2203, 1397, 1612;1H NMR (400 MHz, DMSO-
d6): δ = 3.51 (ABq, 2H, J = 12 Hz), 5.46(1H), 5.99 (1H), 6.23 (s, 1H), 6.55 (bs, 2H), 6.79 (bs,
2H), 7.10(d, 1H, J = 8 Hz), 7.17 (t, 1H, J = 8 Hz), 7.24(s, 1H), 7.31(t, 2H, J = 8 Hz); 13C NMR
(100 MHz, DMSO-d6): δ = 160.10, 160.3, 157.1, 151.2, 149.4, 142.7, 133.8, 129.7, 129.0, 116.9,
116.5, 111.0, 107.8, 87.9, 71.0, 35.03, 25.9. Anal. calcd for C18H14N4O2S: C 61.70, H 4.03, N
15.99. Found C 61.62, H 4.10, N 15.91. MS (EI) (m/z): 350(M+).

4.7. 2,4-Diamino-5-(benzylthio)-7-bromo-5H-chromeno[2,3-b]pyridine-3-carbonitrile (3b)

Yellow solid, IR (KBr) (vmax/cm−1): 3315, 3441, 2189, 1403, 1653; 1H NMR (400 MHz, DMSO-
d6) δ = 4.06–4.45 (ABq, 2H, J = 12 Hz), 4.67 (1H), 6.48 (s, 1H), 6.88–6.90 (m, 5H), 7.37 (m,6H);
13C NMR (100 MHz, DMSO-d6) δ = 160.80, 160.44, 152.75, 148.22, 137.96, 137.53, 131.05,
129.79, 128.60, 124.41,121.60, 120.90, 118.79, 116.46, 87.22, 35.78, 35.4, 33.34. Anal. calcd
for C20H15N4OSBr: C 54.68, H 3.44, N 12.75. Found C 54.55, H 3.52, N 12.61. MS (EI) (m/z):
439(M+).

4.8. 5-((Furan-2-yl)methylthio)-2,4-diamino-7-bromo-5H-chromeno[2,3-b]pyridine-3-
carbonitrile (4b)

Yellow solid, IR (KBr) (vmax/cm−1):3311, 3442, 2194, 1404, 1655;1H NMR (400 MHz, DMSO-
d6) δ = 4.14–4.56 (ABq, 2H, J = 12 Hz), 4.89 (1H), 6.34 (s, 1H), 6.46 (d, J = 8.3 Hz,1H),
6.78–6.95 (m, 6H), 7.39 (d, 1H, J = 9 Hz), 7.62 (d, 1H);13C NMR (100 MHz, DMSO-d6) δ =
160.5, 155.24, 150.72, 148.21, 143.26, 131.89, 131.12, 125.50, 124.14, 119.41, 118.87, 116.50,
111.49, 108.77, 84.86, 54.27, 36.31, 28.64. Anal. calcd for C18H13N4O2SBr: C 50.39, H 3.05, N
13.06. Found C 50.35, H 2.97, N 13.01.MS (EI) (m/z): 429 (M+).

4.9. Catalyst recovery

In the recycling procedure of ZrP2O7 NPs, DMF was added to dilute the reaction mixture after
terminating the reaction. The catalyst was insoluble in the solvent and was separated by simple
filtration. The recovered ZrP2O7 NPs was washed with ethanol and dried at 70◦C for 2 h. The
separated catalyst was used several times with a slightly decreased activity as given in Table 3.
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Table 3. Recycling of ZrP2O7 NPs as catalyst.

Recycle 1 2 3 4 5

Yield (%) 94 92 90 88 85
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