

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 4212-4216

Cyclic sulfamide γ -secretase inhibitors

Tim Sparey,^{a,*} Dirk Beher,^b Jonathan Best,^c Mirlinda Biba,^d José L. Castro,^a Earl Clarke,^b Joanne Hannam,^a Timothy Harrison,^a Huw Lewis,^b Andrew Madin,^a Mark Shearman,^b Bindi Sohal,^a Nancy Tsou,^e Christopher Welch^d and Jonathan Wrigley^b

^aDepartment of Medicinal Chemistry, Merck Sharp and Dohme Research Laboratories, The Neuroscience Research Centre,

Terlings Park, Harlow, Essex CM20 2QR, UK

^bDepartment of Cellular and Molecular Neuroscience, Merck Sharp and Dohme Research Laboratories,

The Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK

^cDepartment of In Vivo Neuroscience; Merck Sharp and Dohme Research Laboratories, The Neuroscience Research Centre,

Terlings Park, Harlow, Essex CM20 2QR, UK

^dDepartment of Process Research, Merck Research Laboratories, Rahway, NJ 07065, USA ^eDepartment of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA

> Received 14 February 2005; revised 23 June 2005; accepted 27 June 2005 Available online 27 July 2005

Abstract—A novel series of *N*-alkyl-substituted cyclic sulfamides were developed from a screening hit. Chemistries were developed which allowed surveys of *N*-alkyl groups and amines resulting in the identification of *N*-trifluoroethyl-substituted cyclic sulfamides with good in vitro and in vivo γ -secretase activity. One compound with subnanomolar activity elicited a reduction in brain Aβ40 after oral dosing in APP-YAC mice.

© 2005 Elsevier Ltd. All rights reserved.

Alzheimer's disease (AD), the main form of dementia found in the elderly population, is the fourth leading cause of death and is predicted to affect 20 million people worldwide within 20 years.¹ Current therapies are palliative, and include the acetylcholinesterase inhibitors Aricept, Reminyl, and Exelon. One approach to identify a therapy capable of preventing the progression of AD is the inhibition of β -amyloid (A β) production, specifically A β 42.² This peptide constitutes the major component of extracellular plaques and is a metabolite of β -amyloid precursor protein (β -APP), formed through sequential cleavage by β -secretase and then γ -secretase.

Recently, we described sulfonamide derivatives of substituted bicyclo [4.2.1]nonanes such as 1, which are potent γ -secretase inhibitors.³ Compound 1 was identified by optimization of screening hit 2a. In parallel with the optimization of the sulfonamide substituent in 1, alternative motifs to the sulfonamide were investigated. Here, we describe the evolution of a series of novel sulfamides with potent γ -secretase inhibitory activity and present data illustrating the in vivo efficacy of this new class of compounds. As previously reported, the first iteration from screening hit **2a** produced a number of potent compounds, including 5-chlorothiophene sulfonamide **2b** and *n*-butyl sulfonamide **2c**.³ Initially, we investigated the incorporation of heteroatoms into the alkyl side chain of **2c**, in particular the replacement of a methylene with a nitrogen atom. Thus, reacting amine **3** with the appropriate sulfamoyl chloride **4** gave acyclic sulfamides **6** in one step (Scheme 1). Alternatively, to explore a wider range of amines more quickly, reaction with intermediate catechol sulfamate **5** produced sulfamides **6** in good yield. The endo stereochemistry of the NH₂ group in **3** was already established⁴ but was confirmed through the observation of NOEs between the endo NH and pseudo axial protons on the benzylic carbons of **6b**.

Keywords: Alzheimer's disease; γ -Secretase inhibitor; Cyclic sulfamide. * Corresponding author. Tel.: 44 1279 440298; fax: 44 1279 440187;

e-mail: tim_sparey@merck.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.06.084

Scheme 1. Reagents and conditions: (a) RNHSO₂Cl 4, Et₃N, MeCN, reflux, 35–81%; (b) catechol sulfate, THF, 0 °C to rt, 81%; (c) amine, dioxane, 80 °C, 66–80%.

To restrict the freedom of rotation of the sulfamide group, conformationally constrained cyclic sulfamides 10 were synthesized. This was accomplished through a Strecker reaction and LAH reduction sequence on ketone 7, followed by cyclization of diamine 8 with sulfamide in pyridine (Scheme 2). Subsequent alkylation of unsubstituted cyclic sulfamide 9, using sodium hydride in DMF as base and the appropriate alkyl halide, furnished substituted cyclic sulfamides 10a-d. Good regioselectivity was observed during the reaction, with no monoalkylation observed on the endo nitrogen. However, alkylation on both nitrogens gave rise to a small quantity of 11 (with *n*-propyl bromide as electrophile). The regiochemistry and stereochemistry of 10b were confirmed by the observation of NOEs between the N–H and the pseudo axial protons on the 7-membered ring.

In an attempt to improve the potency of these compounds, substituents appended to the benzene ring were introduced following precedent from the sulfonamide series.³ This was achieved regioselectively using the known lead tetraacetate-mediated oxidation of ketone 7 (Scheme 3), and the phenol converted to benzyl ether

Scheme 2. Reagents and conditions: (a) NaCN, NH₄OH, ammonia, NH₄Cl MeOH, 0 °C, 70%; (b) LAH, THF, rt, 77%; (c) sulfamide, pyridine, reflux, 24 h, 85%; (d) NaH, alkyl halide, DMF, rt, 24 h, 10-71%.

12 in good overall yield.⁴ Utilizing the same Strecker/ LAH sequence as described previously, diamine 13 was prepared. A byproduct was observed during the reduction with LAH, identified as amine 14 (presumably derived from loss of cyanide and reduction of the imine). Amine 14 was removed by chromatography on silica. Diamine 13 was then cyclized to cyclic sulfamide 15 using sulfamide and then functionalized by alkylation with n-propyl bromide with high regioselectivity (>95% by crude NMR). Benzyl ether 16 was deprotected and converted to triflate 17, which was carbonylated, reduced and oxidized to give aldehyde 18. A Horner-Emmons reaction followed by reduction gave allylic alcohol 19, which was activated with PBr3 and reacted with an appropriate amine. Subsequently, a shorter synthetic sequence was developed, whereby triflate 17 was reacted with vinyl boronate 21^5 and the resultant silvl ether deprotected with TBAF.

In the synthesis of cyclic sulfamides 10, the direct alkylation route to the N-trifluoroethyl analogue 10d was low yielding (10%). An improved route was required to facilitate the evaluation of more functionalized compounds. This was achieved by installation of the trifluorethyl group prior to cyclic sulfamide formation. Thus, trifluoroacetylation of diamine 13 using trifluoroacetic anhydride followed by reduction with borane gave trifluoroethyl amine 22 (Scheme 4). The observed regioselectivity was attributed to preferential reactivity of the less-hindered primary amine. Cyclization gave sulfamide 23 in good yield. Side chains containing allylic amines could be introduced from triflate 24 as described above, allowing a range of amines to be incorporated efficiently. In a further evolution of this route, boronate 25a was synthesized⁶ and reacted with 4-(trifluoromethyl)piperidine to provide boronate 25b, which was then coupled with triflate **24** to furnish **26f** in improved yield.

Some interesting structure-activity relationships were observed for the compounds described above. We found that the replacement of a methylene in compound 2c $(IC_{50} 610 \text{ nM})^7$ with NH gave the more potent acyclic sulfamide 6b (IC₅₀ 106 nM; Table 1). However, shortening (6a) or increasing (6c) the length of the sulfamide alkyl group was detrimental to potency, whereas replacing the propyl group with a trifluoroethyl group resulted in an equipotent compound (6d). A different trend was observed for cyclic sulfamides, notably for the *n*-propyl (10b) and n-butyl (10c) analogues which were equipotent, but more interestingly 10d that displayed an order of magnitude increase in potency. This may be attributable to the conformational restriction imposed by the cyclic sulfamide ring better orientating the lipophilic trifluoroethyl group for binding (6d vs 10d). Compounds 9 and 11 were both found to be inactive (IC₅₀s > 10,000 nM).

Compound **2b** was found to have poor systemic exposure in rat after oral dosing (Table 2). In comparison, **6b** and **10b** showed improved exposure. Given the pharmacokinetic advantage of **10b** over **6b**, presumably due to the removal of one sulfamide N–H, further efforts focused on optimizing the cyclic sulfamide series.

Scheme 3. Reagents and conditions: (a) Pb(OAc)₄, TFA, 75%; (b) BnBr, NaH, DMF, rt, 48 h, 83%; (c) NaCN, NH₄OH, ammonia, NH₄Cl, MeOH, 0 °C, 74%; (d) LAH, THF, 53%; (e) sulfamide, pyridine, reflux, 24 h, 89%; (f) NaH, *n*-propyl bromide, DMF, rt, 24 h, 59%; (g) 10% Pd on C, H₂, EtOAc, MeOH, 4 h, 99%; (h) Tf₂O, pyridine, 0 °C to rt, 30 min, 89%; (i) CO, Pd(OAc)₂, dppb, Et₃N, MeOH, DMF, 56%; (j) DIBAL, THF, 95%; (k) PDC, DCM, 89%; (l) methyl diethylphosphono acetate, LiOH·H₂O, THF, 79%; (m) **21**, Pd(OAc)₂, dppp, K₂CO₃, DMF, 80 °C, 14 h, 51%; (*n*) TBAF, THF, rt, 79%; (o) PBr₃, DCM, -5 °C, 1 h; (p) amine, DCM, rt, 63%.

To assess these improvements in more functionalized sulfamides, **20a** was synthesized and resolved⁸ for direct comparison with **1**. While the inhibitory activity was reduced 7-fold, an order of magnitude increase in exposure was observed after oral dosing (Table 3).

N-Trifluoroethyl cyclic sulfamides containing allylic amine side chains were synthesized to improve potency. A 6-fold improvement in potency was observed by replacing the *n*-propyl (**20a**) with a trifluoroethyl group (**26a**; Table 4). To assess the effects on potency of replacing the morpholine with amines of different basicity and functionality, a range of amines was incorporated. The data suggested that a substituent in the 4-position of the piperidine improved activity (**26b** vs **26c**).

Good potency was observed for compounds with heteroatoms and/or substituents at the 4-position of the nitrogen heterocycle contributing to a pK_a value within the 6–7 range (**26a**, e, f, and **20b**).

From this study, the optimum amine was identified as 4-trifluoromethylpiperidine, which, when combined with an N-trifluoroethyl cyclic sulfamide, produced a compound with subnanomolar potency (**26f**). Further variations to the allylic side chain portion of these compounds will be reported shortly.

To assess the efficacy of **26f**, the racemate was resolved⁸ and the (–)-enantiomer¹⁰ (IC₅₀ 0.24 nM (n = 3), 99% ee⁸; (+)-enantiomer IC₅₀ 111 nM, 99% ee⁸) dosed orally to APP-YAC mice¹¹ (Chart 1). In a dose–response experiment, (–)-**26f** demonstrated a significantly improved efficacy profile compared to **1** with an ID₅₀ of 17 mg/kg p.o.

Summary

A novel series of cyclic sulfamides has been developed from screening hit 2a. An improved pharmacokinetic profile was demonstrated for simple sulfamides 6b and

Scheme 4. Reagents and conditions: (a) Trifluoroacetic anhydride, THF, -78 °C to rt, 24 h, 90%; (b) borane, THF, reflux, 2 h, 60-82%; (c) sulfamide, pyridine, reflux, 24 h, 91%; (d) H₂, Pd on C, EtOAc/MeOH, 6 h, 93%; (e) Tf₂O, pyridine, 0 °C to rt, 1 h, 88%; (f) 21, Pd(OAc)₂, dppp, K₂CO₃, DMF, 80 °C, 14 h, 50%; (g) TBAF, THF, rt, 3 h, 79%; (h) i-PBr₃, DCM, -5 °C, 1 h, ii-amine, DCM, rt, 4 h, 45-83%; (i)

Table 1. Inhibitory activities of sulfamides 6 and 10							
RHN-SO ₂ HN		0 ₂ S-NH R-N 10					
Compound	IC ₅₀ , nM (<i>n</i>)	R	Compound	IC ₅₀ , nM (<i>n</i>)			
6a 6b 6c 6d	394(2) 132(3) 766(2) 134(3)	Ethyl n-Propyl n-Butyl Trifluorethyl	10a 10b 10c 10d	429(2) 138(2) 122(2) 17(5)			

4-(triflouromethyl)piperidine, K₂CO₃, MeCN, rt, 95%; (j) **25b**, Pd(OAc)₂, dppp, K₂CO₃, DMF, 80 °C, 70%.

10b compared with sulfonamide 2b. Functionalization of these sulfamides by appendage of allylic amines to the aromatic ring produced more potent inhibitors (20 and 26) in which improved pharmacokinetic properties were maintained. In a dose-response experiment, (-)-26f showed a significantly improved efficacy profile in

Compound		Dose (mpk)	AUC (systemic) (µM h)
2b		30	0.01
6b	n-Pr HN-SO ₂ HN-	30	0.6
10b	O ₂ S-NH	1	0.1

Table 2. Rat systemic exposures for 2b, 6b, and 10b

APP-YAC mice compared with sulfonamide 1 and elicited a dose-dependent reduction in brain A β 40 with an ID₅₀ of 17 mg/kg p.o.

Compound		IC ₅₀ , nM (<i>n</i>)	Dose (mpk)	AUC (systemic) (µM h)		
1 ^a		1(4)	4	0.38		
20 a ^a	O2S-NH O	7(2)	1	1.19		

^a Data shown for single enantiomers (absolute stereochemistry is unknown).

Table 4. Inhibitory activities of cyclic sulfamides 20 and 26

^a For comparison purposes, data shown for racemates.

Chart 1. In vivo efficacy of 1 and (-)-26f in YAC mice.

Acknowledgments

The authors thank Steve Thomas and John Atack for their help and support.

References and notes

- 1. Jacobsen, J. S. Curr. Top. Med. Chem. 2002, 2, 343.
- 2. Esler, W. P.; Wolfe, M. S. Science 2001, 293, 1449.
- Lewis, S. J.; Smith, A. L.; Neduvelil, J. G.; Stevenson, G. I.; Lindon, M. L.; Jones, A. B.; Shearman, M. S.; Beher, D.; Clarke, E.; Best, J. D.; Peachey, J. P.; Harrison, T.; Castro, J. L. *Biorg. Med. Chem. Lett.* 2005, *15*(2), 373.
- Belanger, P. C.; Young, R. N.; Scheigetz, J.; Dufresne, C.; Springer, J. P. J. Org. Chem. 1982, 47, 4329.
- 5. Hoffmann, R. W.; Dresely, S. Synthesis 1988, 2, 103.
- 6. Kamabuchi, A.; Moriya, T.; Miyaura, N.; Suzuki, A. Synth. Commun. 1993, 23, 2851.
- Compounds were screened using a whole cell γ-secretase inhibition assay in SHSY5Y cells: Clarke, E.; Shearman, M. S. J. Neurosci. Methods 2000, 102, 61.
- Compounds were resolved using supercritical fluid chromatography: OD column eluting with 30–50% MeOH containing 25 mM *i*-BuNH₂ at 50 ml/min.
- 9. Determined by titration using a Sirius GLpKa autotitrator.
- 10. Crystallographic data (excluding structure factors) for (-)-**26f** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 263202. The absolute stereochemistry is as drawn in Table 4.
- Lamb, B. T.; Sisodia, S. S.; Lawler, A. M.; Slunt, H. H.; Kitt, C. A.; Kearns, W. G.; Pearson, P. L.; Price, D. L.; Gearhart, J. D. *Nat. Genet.* **1993**, *5*, 22.