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Abstract

A novel and efficient metal- and solvent-free regioselective para C-H cyanation of hydroxy-, 

alkoxy- and benzyloxyarene derivatives have been introduced with using non-toxic potassium 

thiocyanate as a cyanating reagent in the presence of silica sulfuric acid (SSA). The desired 

products are obtained in good to high yields without any toxic byproducts.

Keywords: Cyanation, C-H functionalization, Silica sulfuric acid(SSA), Potassium thiocyanate 

(KSCN), Metal-free.
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Introduction

Benzonitriles (cyanoarenes) constitute key components of various commercial compounds such as 

versatile building blocks in the synthesis of natural products,1 polymers,2 pharmaceuticals,3 

herbicides,4 pesticides5 and dyes.6 These nitrile-containing bioactive molecules have been shown 

to treat a broad spectrum of ailments, such as depression, breast cancer, anti-HIV, and Parkinson’s 

disease.7 For instance, etravirine, periciazine, fadrozole, letrozole and citalopram are well-known 

drugs containing an aromatic nitrile scaffold.6b, 7 They have also served as the intermediates for 

many synthetic targets and can be easily transformed into a various important functionalized 

products, such as alcohols, amines, amides, imines, aldehydes, ketones, benzoic acid derivatives, 

esters and heterocyclic compounds (tetrazoles, triazoles, oxazoles, thiazoles, etc).8 As a result, 

much effort has been devoted to the development of various effective methods for the introduction 

of a cyanide functionality into aromatic compounds.1-9

Classical methods of introducing a cyano group into aromatic rings require pre-functionalized 

arenes as precursors (Scheme 1), such as diazonium salts (Sandmeyer reaction),10 aryl halides 

(Rosenmund-von Braun reaction),11 aldehydes (Schmidt reaction),12 toluenes (by 

ammoxidations),13 and many others.14

These methods suffer some important disadvantages such as consuming uses an excessive amount 

of hazardous cyanating reagents, limited substrate scope, elevated temperatures, high-pressure 

conditions, multistep organic transformations and production of large amounts of heavy metal 

waste.10-14
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Sandmeyer reaction
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Scheme 1. Traditional methods for the synthesis of benzonitriles.

In the past decade, significant progress has been made in the development of methods to access 

aryl nitriles directly by the transition-metal-catalyzed cross-coupling (Pd,15 Cu,16 Ni,17 Co,18 Ru,19 

Rh,20 Zn 21 and Ir 22) of aryl-X compounds [X = I, Br, Cl, CH₃SO₃-, -CON(R)2, -OCONMe2, -

OCOt-Bu, -COOH, B(OH)2 and H].15-23 Although these reactions are reliable for the synthesis of 

aryl nitriles by many cyanating agents, which are metal cyanides, such as CuCN,20c KCN,16d 

NaCN,16c Zn(CN)2,15b, 15e, 17a K4[Fe(CN)6],15a and trimethylsilyl cyanide (TMSCN),15d aryl(cyano)-

iodonium Triflates.[24] but the generation of hazardous hydrogen cyanide gas and stoichiometric 

amounts of metal-containing waste are serious limiting factors in their applications. Although 

several practical methods for the synthesis of aryl nitriles with nonmetallic cyanating agents [N-

cyano-N-phenyl-ptoluene sulfonamide (NCTS),16a, 18, 19a, 20, 21 aminoacetonitriles,17b acetonitrile,16b 

acetone cyanohydrin,15c tert-butyl isocyanide,20d N,N-dimethylformamide,15d, 16e 

DMSO/NH4HCO3 15e and hexamethylenetetramine15d have been developed but cyanation reactions 

that are employing organic cyanating agents remain in their infancy in synthetic chemistry.25 

Nonetheless, general problems in these reactions are using expensive aryl halides, high catalyst 

loading due to the cyanide poisoning, need to excess amounts of additives (generally metal salts), 

and lack of generality and versatility.
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Therefore, the development of new, safe and more environmentally friendly cyanation methods 

(metal-free methods) with less toxic cyanide sources on a broad substrate scope remains an 

extremely attractive but challenging task for organic chemists. In 2011, Jianbo Wang has 

demonstrated the successful direct cyanation of indoles and pyrroles with NCTS as the non-metal 

cyanation reagent in the presence of BF3-OEt2 as Lewis acid (Scheme 2, reaction 1) 26 and also, in 

2017 Nicewicz introduced a new method for the direct C-H cyanation of arenes via organic 

photoredox catalysis reaction and TMSCN as a cyanide source (Scheme 2, reaction 2).27 Moreover, 

as a safe cyanide source, potassium thiocyanate was applied for the oxidative α-cyanation of 

tertiary amines (Scheme 2, reaction 3) 28 and also cyanation of aryl halides in the presence of Pd 

and Cu as catalyst (Scheme 2, reaction 4).29

OR
OR

CNR= H, Alkyl, Benzyl

a) Previous work

b) This work

KSCN, SSA
solvent-free, 100 oC, 12h

KSCN. tBuOOH
H2O, 20-80 oC, 3 h

X= I,Br,BX2

PdCl2(dppe), CuI, KSCN
H, HCOONa, DMSO/H2O

100 oC, 48 h

1)

3)

4)

5)

N

H

R1

R2
N

CN

R1

R2

BF3.OEt2
NCTS, 80 oC, 12 h

R3 R3

2) R ROrganic Photoredox Catalysis
TMSCN, 455 nm LEDs, O2, 24 h

CN

R
CN

R
X

N CH
R1

R2 CN

R3

N CH2

R1

R2

R3

Scheme 2. Different approaches to the synthesis of cyano-arene Derivatives.

After the successful efforts in the employs thiocyanate salts as the green and affordable cyanide 

sources in recent years,28-30 herein, we wish to report a novel and efficient regioselective para C-

H cyanation of hydroxy-, alkoxy- and benzyloxy of arene derivatives with potassium thiocyanate, 

as nontoxic cyanide source, and silica sulfuric acid (SSA) as a novel cyanating agent under a metal-

free condition (Scheme 2, reaction 5).
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Results and discussion
Initially, for finding of the optimized parameters of cyanation reaction, the reaction of m-cresol 

with potassium thiocyanate in the presence of silica sulfuric acid was chosen as a model reaction 

and then the effect of solvent, temperature, and molar ratio SSA: m-cresol: KSCN were studied, 

which their results are summarized in Table 1. According to these data, using 2:1:2 molar ratios 

of SSA, m-cresol and potassium thiocyanate under a solvent-free condition at 100 oC gives the 

highest yield of 4-hydroxy-2-methylbenzonitrile after 12 h (Table 1, entry 7). Performing the 

reaction in a longer reaction time (Table 1, entry 10), higher temperature (Table 1, entry 9) and 

using the higher amount of potassium thiocyanate and SSA in related to KSCN (Table 1, entry 8) 

does not show any improvement in the efficiency of model reaction. As it is clear from Table 1, 

the reaction is not preceded efficiently in any type of solvents studied (Table 1, entries 15-19).

Table 1. Optimization of the reaction parameters of m-cresol with potassium thiocyanate in the 
presence of SSA.
Entry Molar ratio

SSA:m-Cresol :KSCN
Solvent T

(oC)
t

(h)
Yield
(%)a

1 1:1:1 -- rt 12 0
2 1:1:1 -- 60 12 51
3 1:1:1 -- 100 12 63
4 1.5:1:1.5 -- 100 12 68
5 1:1:1.5 -- 100 12 62
6 1.5:1:1 -- 100 12 61
7 2:1:2 -- 100 12 84
8 3:1:3 -- 100 12 83
9 2:1:2 -- 130 12 77
10 2:1:2 -- 100 24 78
11 2:1:2 CH3CN Reflux 12 40
12 2:1:2 CH3CO2Et Reflux 12 43
13 2:1:2 CHCl3 Reflux 12 38
14 2:1:2 CH2Cl2 Reflux 12 36
15 2:1:2 CH3Cl Reflux 12 37
16 2:1:2 Toluene Reflux 12 0
17 2:1:2 PEG200 Reflux 12 41
18 2:1:2 DMSO Reflux 12 0
19 2:1:2 DMF Reflux 12 0

[a] Isolated yield. 
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A closer look to the model reaction mixture under the optimized conditions by gas chromatography 

(GC) technique appeared also the formation of 2-hydroxy-4-methylbenzonitrile (B) as a by-

product in only 3% yield (Scheme 3). 

OH

CNOH

KS CN
SiO2-OSO3H

+ Solvent-Free,
100 oC, 12h

OH

OH

OH
CN

NC

NC

A(84%) B(3%)

C(0%) D(0%)

Scheme 3. Selective cyanation of m-cresol.

The crystal structure of 4-hydroxy-2-methylbenzonitrile (A) was further determined by  X-ray 

crystallography. This compound is crystallized in the monoclinic crystal system C2/c space group. 

The molecular structure, shown in Figure 1, confirms that the C-N group is located in the para 

position in relation to phenyl O-H group. The intermolecular hydrogen bonding interaction (O···N 

2.849(2) Å) stabilizes the molecular conformation. All the crystallographic data for the molecule, 

hydrogen-bond geometry, containing bond distances, angles and torsion angles are listed in the 

supporting information.

Figure 1. Molecular structure for 4-hydroxy-2-methylbenzonitrile.
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This excellent regioselectivity is in agreement with previous reports 27, 31, 32 where the bromination 

of anisole and the cyanation of multi-substituted benzenes have been reported. Although the origin 

of this regioselectivity is not clear at the moment, it seems the steric effect may be a reason.31b, 33

In the next step, the effect of Brønsted acids such as HCl, H2SO4, CCl3COOH, HClO4, CF3COOH, 

SiO2-HClO4, ClSO3H, p-TSA, polyphosphoric acid (PPA) and 4-dodecylbenzenesulfonic acid 

(DBSA) were also explored on the model reaction. On the basis of the results, which are presented 

in Table 2, the desired product is not produced in the presence of HCl, H2SO4, CCl3COOH, HClO4, 

SiO2-HClO4, p-TSA, PPA and DBSA but the model reaction provides the desired product to some 

extent in the presence of CF3COOH and ClSO3H after 12 hours at 100 oC although not as well as 

SSA. Also, employment of the other thiocyanate salts in the place of potassium thiocyanate dose 

not resulted in higher efficiency of the cyanation reaction (Table 2, entries 12 and 13).

Table 2. Comparison among efficiency of sodium and ammonium thiocyanates with potassium 
thiocyanate and some Brönsted acids with SSA.a

Entry Catalyst Cyanate salt Yield (%)b

1 HCl (37%) KSCN 0
2 H2SO4 (98%) KSCN 0
3 CCl3COOH KSCN 0
4 HClO4 KSCN 0
5 SiO2-HClO4 KSCN 0
6 DBSA KSCN 0
7 p-TSA KSCN 0
8 PPA KSCN 0
9 SiO2 KSCN 0
10 SiO2+CF3COOH KSCN 39
11 SSA KSCN 84
12 SSA NaSCN 74
13 SSA NH4SCN 70

a Reaction condition: m-cresol (1 mmol), MSCN (2 mmol), acid (2 mmol), 100 oC, 12 h.
b Isolated yields
With the optimized results in hand, various phenols and phenyl ether are treated with potassium 

thiocyanate salt in the presence of SSA at 100 oC to determine efficiency, scope, versatility and 
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regioselectivity of the method for one pot and solvent-free synthesis of the related aryl cyanides, 

which their results are shown in Table 3.

Table 3. Cyanation of phenols and alkyl aryl ethers by potassium thiocyanate salt in the presence 
of SSA.a

Solvent-free, 100 oC

R1= H, Alkyl, Benzyl

R2

OR1

+ R2

OR1

CN

SSA
KS CN

1a-z 2a

3a-z

NC

3a, 0% b
NC

3b, 0% b
NC

3c, 0% b

OH

NC

3d, 0% b

OH

NC

3e, 0% b

OH

NC

3f, 84% b

OH

NC

3g, 80% b

OH

NC

3h, 83% b

OH

NC

3i, 77% b

O

NC

3j, 0% b

O

NC

3k, 85% b

O

NC  
3l, 80% b

O

NC  
3m, 77% b

O

NC

3n, 78% b

O
Bn

NC

3o, 80% b

O
Bn

NC  
3p, 78% b

O
Bn

NC

3q, 72% b

OH

CN

3r, 0% b

OH
CN

3s, 86% b

O
CN

3t, 74% b

O
CN

3u, 69% b

O
CN

3v, 67% b

O
Bn

CN

3w, 71% b

OHHO

CN

3x, 76% b

OH
CN

OH

3y, 80% b

OH
CN

OH

3z, 83% b

a Reaction conditions: Phenol or alkyl aryl ethers (1 mmol), KSCN(2 mmol), SSA (2 mmol, 0.8 
g), 100 oC and 12 h. 
b Isolated yields.

Cyanation of benzene (Table 3, entry 3a), toluene (Table 3, entry 3b), m-xylene (Table 3, entry 

3c), phenol (Table 3, entry 3d), o-cresol (Table 3, entry 3e), and anisole (Table 3, entry 3j) are not 
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proceeded under the optimized condition after 24 hours at 100 oC. But, when m-cresol is checked 

against the cyanation reaction in the presence of potassium thiocyanate under the optimized 

condition, the corresponding nitrile derivative is formed in 84% yield after 12 hours (Table 3, entry 

3f).

These results encourage us to check the other m-cresols against the cyanation reaction, the reaction 

with KSCN in the presence of SSA at 100 oC under a solvent-free condition. These experiments 

are conducted to the corresponding nitrile derivatives in 77-84% yields (Table 3, entries 3g-3i). 

Although, anisole does not undergo the cyanation reaction m-methyl anisole and the other m-tolyl 

alkyl ethers carry out this reaction under the optimized reaction conditions and the desired products 

are produced in high yields after 12 hours (Table 3, entries 3k-3o). Conversely, cyanation of para-

methyl substituted phenol and alkyl aryl ethers, such as 1-((3,4-dimethylphenoxy) methyl) 

benzene, 3,4-dimethylphenol and 4-methoxy toluene, are difficult to achieve and do not give the 

desired products. The above-mentioned reactions appear that the presence of alkyl group in meta-

position of hydroxyl and alkoxy group is necessary for performing the cyanation reaction. 

α-Naphthol, the same as phenol does not undergo the cyanation reaction but cyanation of           2-

naphthol is led to the desired nitrile product in 86% yield after 12 hours (Table 3, entries 3r-3s). 

When the corresponding 2-alkoxynaphthalenes are treated with potassium thiocyanate in the 

presence of SSA at 100 oC, it provides the related cyano product in 67-74% yields (Table 3, entries 

3t-3w), which are lower than their alkoxybenzenes that might be because of the considerable steric 

effect in ipso position of 2-alkoxynaphthalene. In addition, benzene-1,3-diol, naphthalene-2,3-diol 

and naphthalene-1,3-diol were also employed and fortunately, the related cyanation reaction 

proceeds as well as 2-naphthol and m-cresol (Table 3, entries 3x-3z).
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The cyanation of thiophenols and their thioether derivatives, such as 3-methylbenzenethiol and 

methyl-m-tolyl sulfide, and also N, N-dimethylaniline, as an aniline derivative, do not occur at all. 

Reactive heterocyclic aromatic compounds like furan, thiophene, N- methylpyrrole and N-

methylindole are also unreactive towards this reaction. 

In the next step, for showing monoselective ability of KSCN/SSA, two experiments are designed. 

In the first experiment, 1 mmol of naphthalene-2,3-diol, which there are two same positions for 

cyanation, are reacted with 4 mmol potassium thiocyanate under the optimized reaction condition 

and only 2,3-dihydroxy-1-naphthonitrile are produced and the related 1,4-dicyano derivative of 

2,3-dihtdroxynaphthalene is not detected in the reaction mixture by TLC monitoring. In the second 

experiment, 1 mmol 2,3-dihydroxy-1-naphthonitrile was treated with 2 mmol potassium 

thiocyanate and SSA under the optimized reaction condition for 12 h but 2,3-

dihydroxynaphthalene-1,4-dicarbonitrile is not detected in the reaction mixture (Scheme 4).

3y (1mmol) 2a (2mmol)

3y, 82%

No Reaction

OH
CN

OH

OH
CN

OH

1y (1mmol) 2a (4mmol)

OH

OH

SSA(4 mmol)

SSA(2 mmol)

Solvent-free, 100 oC

Solvent-free, 100 oCKS CN

KS CN

+

+

Scheme 4. Study of mono selective cyanation of naphthalene-2,3-diol.

To determine recyclability of SSA after completion of the cyanation of 3-methylphenol, SSA is 

removed from the mixture by filtration. Then it is washed with hot toluene for 2 h in a Soxhlet 

apparatus to remove the adsorbed unconsumed starting materials on the surface of SSA and then 

dried in a vacuum oven at 100 oC. The recovered SSA is reused in the next run. According to the 

results summarized in Figure 2, the efficiency of SSA remains over four runs without significant 

loss of activity.
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Figure 2. Study of reusability SSA in cyanation of 3-methylphenol.

According to the color change of SSA from white to yellow after the first run (Figure 3) it was 

decided to do CHNS analysis on the fresh SSA and the used SSA. These results, as shown in Table 

4, reveal the existence of more sulfur content in the recovered catalyst. 

Figure 3. The color of SSA before (A) and after the reaction (B) and after recovery process (C).

Table 4. CHNS analysis of SSA samples.
Type of SSA C(%) H(%) N(%) S(%)
SSA(Fresh) 0.0 2.14 0.0 5.11
SSA(First Used) 0.0 2.25 0.0 7.16

For looking deeply at the cyanation reaction, at the first, KSCN was treated with SSA. After 

completion of the reaction, the product (thiocyanogen) was isolated and purified (Scheme 5, 

reaction 1). Then, m-cresol was mixed with thiocyanogen in the presence of SSA at 100 oC under 
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a solvent-free condition. After 12 h stirring and purification of the mixture, 4-hydroxy-2-

methylbenzonitrile was obtained (Scheme 5, reaction 2). The repetition of this reaction in the 

absence of SSA has not resulted in 4-hydroxy-2-methylbenzonitrile after 12h (Scheme 5, reaction 

3). These findings appear that the presence of simultaneous SSA and thiocyanogen is necessary 

for carrying out the reaction.

Solvent-free
+ SSA

100 oC, 12h
NC S S CN

OH

+ NC S S CN

OH

CN

SSA, 100 oC, 12h
Solvent-free

1)

2)

OH

+ NC S S CN
100 oC, 12h
Solvent-free3) No Reaction

KS CN
2a 4, 93%

4

4
1f

1f

3f, 86%

Scheme 5. Investigation of the reaction pathway.

Although for proposing a precise mechanism there is still more data to get, based on all of the 

reported information in the literature 34 and the above-mentioned results, the following plausible 

mechanism pathway can be suggested for the formation of benzonitriles derivatives (Scheme 6). 

In the first step, isothiocyanic acid (5) will produce by the protonation of potassium thiocyanate 

(2a) with SSA, which is in equilibrium with thiocyanic acid (6). A self-oxidative coupling of 

thiocyanic acid (6) is led to thiocyanogen (4) under atmosphere condition. In the next step, 

thiocyanogen undergoes the protonation reaction in the presence of SSA and forms 7 that is 

converted to the desired products (3a-z) through an electrophilic aromatic substitution.
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Scheme 6. The suggested mechanism for the regioselective para-cyanation of hydroxy and 
alkoxy arenes with potassium thiocyanate in the presence of silica sulfuric acid.

In summary, we have developed a novel and efficient metal-free regioselective para C-H 

cyanation of electron-rich phenyl rings with employment of potassium thiocyanate and SSA as the 

cyanating reagent. The use of inexpensive chemicals, less toxic cyanide source, mild reaction 

conditions, high regioselectivity and good to high yield of products make this approach one of the 

most attractive and practical methods for cyanation of hydroxy and alkoxyarenes.

Experimental:

General:

Chemicals were obtained from Sigma-Aldrich and Merck. Column chromatography was 

performed using silica gel from Macherey-Nagel (60 M, 0.04–0.063 mm). The products were 

characterized by comparison of their spectral and physical data such as NMR, FT-IR, MS, CHNS 

and melting point with available literature data. 1H and 13C NMR data were recorded in DMSO on 

a 250 MHz Bruker avance DPX 250MHz instrument with Me4Si or solvent resonance as the 

internal standard, spectrometer at r.t. Chemical shifts are reported relative to residual DMSO (δ = 

3.35 ppm 1H, δ =39.42 ppm for 13C). Fourier transforms infrared (FTIR) spectra were obtained 

using a Shimadzu FT-IR 8300 spectrophotometer. The C, H, N and S elemental analyses were 

Page 13 of 28

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 | P a g e

carried out by the using a Thermofinigan Flash EA-1112 CHNSO rapid elemental analyzer. The 

mass spectra were recorded on a Shimadzu GC-MS QP 1000 EX instrument. Melting points were 

recorded by Electrothermal 9100. Crystallographic data (excluding structure factors) for the 

structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication nos. 

General procedure for preparation of silica sulfuric acid (SSA):35

At the first step for drying the silica gel (60-120 mesh), it was placed in the oven at 400 oC for 6 

hours. Then, dry Silica gel (60.0 g) was taken in two necked round bottom flask. Chloro sulfonic 

acid (23.3 g, 0.2 mol) was added dropwise and gradually during 60 minutes. Rapidly generated 

HCl gas was neutralized by NaOH solution. Once the addition was over, the reaction mixture was 

shaken for another 30 minutes to provide silica sulfuric acid (76.0 g) as a white solid. The amount 

of chlorosulfonic loaded on silica gel was determined by acid-base titration method. For this 

purpose, 0.1 g of silica sulfuric acid was added to 10mL of deionized water and stirred for 30 min 

at room temperature. Then, this mixture was titrated by 25.0 mL of NaOH (0.01 M). Therefore, 

the amount of chlorosulfonic acid loaded in 0.1g of silica sulfuric acid is equal to 2.5mmol (or 

25mmol in 1g of SSA). 

General procedure for regioselective para-cyanation of hydroxy-, alkoxy- and benzyloxy 

arenes (3f-3z):

To a mixture of potassium thiocyanate (1.0 mmol) and a hydroxy-or alkoxy arene (1.0 mmol) was 

added SiO2-OSO3H (0.8 g, 20 mmol). Then, the mixture was heated and stirred at 100 oC in oil 

bath under solvent-free solid-state conditions for 12 h. The reaction was monitored by TLC. After 

completion of reaction, ethyl acetate (3 × 10 mL) was added and the mixture was filtered. The 

solvent (EtOAc) was removed under reduced pressure and the product was purified by column 
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chromatography on silica gel (petroleum ether and ethyl acetate, 8:2) and characterized. The 

isolated pure products were obtained in excellent to moderate yields.

4-Hydroxy-2-methylbenzonitrile (3f): Brown crystals (0.1119 gr, 84% yield), mp = 139-140 oC. 

IR (KBr), ῦ(cm-1): 3305, 3194, 2914, 2226, 1624, 1304, 1233, 881. 1H NMR (250 MHz, 298K, 

DMSO-d6),  (ppm): 2.34, (s, 3H), 6.67-6.75 (m, 2H), 7.51 (d, J = 7.5 Hz, 1H), 10.45 (s, 1H. OH). 

13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 19.9 (CH3), 101.6 (C), 113.8 (CH), 117.0 

(CH), 118.6 (C), 134.3 (CH), 143.6 (C), 161.3 (C). Anal. Calcd for C8H7NO: C, 72.16; H, 5.30; 

N, 10.52%. Found: C, 72.12; H, 5.31; N, 10.57%.

2-Ethyl-4-hydroxybenzonitrile (3g): Brown crystals (0.1176 gr, 80% yield), mp = 74-75 oC. IR 

(KBr), ῦ(cm-1): 3260, 3191, 2926, 2230, 1599, 1591, 1293, 888, 823, 654. 1H NMR (250 MHz, 

298K, DMSO-d6),  (ppm): 1.15 (t, J = 7.5 Hz, 3H), 2.65 (q, J = 7.5 Hz, 2H), 6.69-6.78 (m, 2H), 

7.53 (d, J = 7.5 Hz, 1H), 10.53 (s, 1H. OH). 13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 

14.8 (CH3), 27.0 (CH2), 100.7 (C), 114.0 (CH), 115.6 (CH), 118.5 (C), 134.6 (CH), 149.6 (C), 

161.6 (C). Anal. Calcd for C9H9NO: C, 73.45; H, 6.16; N, 9.52%. Found: C, 73.41; H, 6.11; N, 

9.57%.

4-Hydroxy-2,3-dimethylbenzonitrile (3h): Yellow crystals (0.1220 gr, 83% yield), mp = 132-

134 oC. IR (KBr), ῦ(cm-1): 3274, 3164, 2928, 2230, 1598, 1585, 1291, 824, 789, 653. 1H NMR 

(250 MHz, 298K, DMSO-d6),  (ppm): 2.05, (s, 3H), 2.33, (s, 3H), 6.76 (d, J = 8.25 Hz, 1H), 7.38 

(d, J = 8.25 Hz, 1H), 10.40 (s, 1H. OH). 13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 11.5 

(CH3), 17.9 (CH3), 102.0 (C), 113.1 (CH), 119.4 (C), 124.1 (C), 131.1(CH), 141.4 (C), 159.2 (C). 

Anal. Calcd for C9H9NO: C, 73.45; H, 6.16; N, 9.52%. Found: C, 73.42; H, 6.11; N, 9.57%.

4-Hydroxy-2,6-dimethylbenzonitrile (3i): Yellow crystals (0.1114 gr, 77% yield), mp = 175-177 

oC. IR (KBr), ῦ(cm-1): 3267, 3158, 2929, 2230, 1598, 1584, 1292, 824, 790, 654. 1H NMR (250 
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MHz, 298K, DMSO-d6),  (ppm): 2.05 (s, 6H), 7.39 (s, 2H), 10.47 (s, 1H, OH). 13C{1H} NMR (63 

MHz, 298K, DMSO-d6),  (ppm): 19.6 (CH3), 102.0 (C), 113.1 (CH), 119.4 (C), 141.4 (C), 159.16 

(C). Anal. Calcd for C9H9NO: C, 73.45; H, 6.16; N, 9.52%. Found: C, 73.40; H, 6.12; N, 9.59%.

4-Methoxy-2-methylbenzonitrile (3k): Yellow crystals (0.1250 gr, 85% yield), mp = 51-52 oC. 

IR (KBr), ῦ(cm-1): 3058, 3027, 2918, 2219, 1605, 1250, 852, 821. 1H NMR (250 MHz, 298K, 

DMSO-d6),  (ppm): 2.37, (s, 3H), 3.76, (s, 3H), 6.84 (d, J = 7.50 Hz, 1H), 6.92 (s, 1H), 7.59 (d, J 

= 7.50 Hz, 1H). 13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 19.9 (CH3), 55.4 (CH3), 103.3 

(C), 112.4 (CH), 115.6 (CH), 118.3 (C), 134.19 (CH), 143.6 (C), 162.4 (C). Anal. Calcd for 

C9H9NO: C, 73.45; H, 6.16; N, 9.52%. Found: C, 73.41; H, 6.11; N, 9.57%.

4-Butoxy-2-methylbenzonitrile (3l): Yellow liquid (0.1512 gr, 80% yield), mp = 137-138 oC. IR 

(KBr), ῦ(cm-1): 3090, 3077, 2961, 2221, 1605, 1251, 1113, 869, 821. 1H NMR (250 MHz, 298K, 

DMSO-d6),  (ppm): 0.86 (t, J = 7.5 Hz, 3H), 1.28 (m, 2H), 1.47 (m, 2H), 2.20 (s, 3H), 3.87 (t, J 

= 5.0 Hz, 2H), 6.84 (d, J = 7.50 Hz, 1H), 7.00 (s, 1H), 7.59 (d, J = 7.50 Hz, 1H). 13C{1H} NMR (63 

MHz, 298K, DMSO-d6),  (ppm): 13.5 (CH3), 18.5 (CH3), 26.4 (CH2), 30.7 (CH2), 62.9 (CH2), 

103.2 (C), 112.2 (CH), 115.8 (CH), 118.3 (C), 134.0 (CH), 143.6 (C), 162.6 (C). Anal. Calcd for 

C12H15NO: C, 76.16; H, 7.99; N, 7.40%. Found: C, 76.11; H, 7.96; N, 7.44%.

4-sec-Butoxy-2-methylbenzonitrile (3m): White crystals (0.1455 gr, 77% yield), mp = 137-138 

oC. IR (KBr), ῦ(cm-1):3253, 3185, 2968, 2219, 1604, 1498, 1251, 869. 1H NMR (250 MHz, 298K, 

DMSO-d6),  (ppm): 0.56 (t, J = 7.5 Hz, 3H), 0.82 (d, J = 6.3 Hz, 3H), 1.10-1.28 (m, 2H), 2.09, (s, 

3H), 4.24, (sex, J = 6.3 Hz, 1H), 6.59 (d, J = 7.50 Hz, 1H), 6.65 (s, 1H), 7.41 (d, J = 7.50 Hz, 1H). 

13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 9.5 (CH3), 19.6 (CH3), 25.9 (CH2), 28.5 

(CH3), 70.5 (CH), 100.9 (C), 114.2 (CH), 115.8 (CH), 118.8 (C), 134.8 (CH), 149.9 (C), 161.8 

(C). Anal. Calcd for C12H15NO: C, 76.16; H, 7.99; N, 7.40%. Found: C, 76.10; H, 7.94; N, 7.47%.
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4-iso-Propoxy-2-methylbenzonitrile (3n): White crystals (0.1365 gr, 78% yield), mp = 137-138 

oC. IR (KBr), ῦ(cm-1): 3059, 3029, 2926, 2222, 1605, 1497, 1475, 1250, 869.  1H NMR (250 MHz, 

298K, DMSO-d6),  (ppm): 1.24 (d, J = 6.3 Hz, 6H), 2.06 (s, 3H), 3.79 (hep, J = 7.50 Hz, 1H), 

6.90 (d, J = 7.50 Hz, 1H), 7.00 (s, 1H), 7.65 (d, J = 7.50 Hz, 1H). 13C{1H} NMR (63 MHz, 298K, 

DMSO-d6),  (ppm): 10.9 (CH3), 20.5 (CH3), 61.0 (CH), 103.8 (C), 113.0 (CH), 116.1 (CH), 118.8 

(C), 134.6 (CH), 144.2 (C), 163.0 (C). Anal. Calcd for C11H13NO: C, 75.40; H, 7.48; N, 7.99%. 

Found: C, 75.35; H, 7.72; N, 8.07%.

4-(Benzyloxy)-2-methylbenzonitrile (3o): White crystals (0.1784 gr, 80% yield), mp = 137-138 

oC. IR (KBr), ῦ(cm-1): 3026, 2917, 2228, 1602, 1589, 1494, , 1277, 728, 698. 1H NMR (250 MHz, 

298K, DMSO-d6),  (ppm): 2.34 (s, 3H), 5.15 (s, 2H), 6.68 (d, J = 7.50 Hz, 1H), 6.75 (s, 1H), 7.22 

(m, 5H), 7.51 (d, J = 7.50 Hz, 1H). 13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 20.4 (CH3), 

68.4 (CH2), 102.1 (C), 114.3 (CH), 117.5 (CH), 119.2 (C), 127.4 (CH), 128.1 (CH), 128.6 (CH), 

134.8 (CH), 135.3 (C), 144.1 (C), 161.6 (C). Anal. Calcd for C15H13NO: C, 80.69; H, 5.87; N, 

6.27%. Found: C, 80.64; H, 5.85; N, 6.32%.

4-(Benzyloxy)-2,3-dimethylbenzonitrile (3p): White crystals (0.1849 gr, 78% yield), mp = 137-

138 oC. IR (KBr), ῦ(cm-1): 3167, 2957, 2231, 1598, 1584, 1291, 824, 790. 1H NMR (250 MHz, 

298K, DMSO-d6),  (ppm): 2.05, (s, 3H), 2.33, (s, 3H), 5.29, (s, 2H), 6.76, (d, J = 7. 5 Hz, 1H), 

7.09, (m, 5H), 7.37 (d, J = 7.5 Hz, 1H). 13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 11.5 

(CH3), 17.9 (CH3), 71.0 (CH2), 102.0 (C), 113.10 (CH), 120.6 (C), 124.1 (CH), 125.6 (CH), 126.9 

(CH), 129.2 (C), 131.1 (CH), 137.7 (C), 142.4 (C), 159.2 (C). Anal. Calcd for C16H15NO: C, 80.98; 

H, 6.37; N, 5.90%. Found: C, 80.95; H, 6.34; N, 5.94%.

4-(Benzyloxy)-2,6-dimethylbenzonitrile (3q): White crystals (0.1706 gr, 72% yield), mp = 137-

138 oC. IR (KBr), ῦ(cm-1): 3060, 3026, 2917, 2228, 1599, 1581, 1291, 821, 792.  1H NMR (250 
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MHz, 298K, DMSO-d6),  (ppm): 2.05, (s, 6H), 5.30, (s, 2H), 6.79, (s, 2H), 7.36, (m, 5H). 13C{1H} 

NMR (63 MHz, 298K, DMSO-d6),  (ppm): 20.1 (CH3), 67.3 (CH2), 102.5 (C), 113.7 (CH), 119.9 

(C), 127.5 (CH), 128.4 (CH), 129.8 (CH), 138.2 (C), 142.0 (C), 159.7 (C). Anal. Calcd for 

C16H15NO: C, 80.98; H, 6.37; N, 5.90%. Found: C, 80.94; H, 6.35; N, 5.93%.

2-Hydroxynaphthalene-1-carbonitrile (3s): Brown crystals (0.1453 gr, 86% yield), mp = 156-

158 oC. IR (KBr), ῦ(cm-1): 3188, 2227, 1627, 1578, 1516, 1505, 1440, 1287, 968, 822, 776. 1H 

NMR (250 MHz, 298K, DMSO-d6),  (ppm): 6.96, (d, J = 7. 5 Hz, 1H), 7.61, (m, 1H), 7.74, (m, 

1H), 7.97, (m, 2H), 8.25 (d, J = 8.00 Hz, 1H), 11.48 (s, 1H. OH). 13C{1H} NMR (63 MHz, 298K, 

DMSO-d6),  (ppm): 91.0 (C), 116.0 (C), 117.6 (CH), 122.6 (CH), 124.6 (CH), 126.9 (C), 128.8 

(CH), 129.0 (CH), 132.9 (C), 135.1 (CH), 161.2 (C). Anal. Calcd for C11H7NO: C, 78.09; H, 4.17; 

N, 8.28%. Found: C, 78.03; H, 4.12; N, 8.32%.

2-Butoxynaphthalene-1-carbonitrile (3t): White crystals (0.1665 gr, 74% yield), mp = 137-138 

oC. IR (KBr), ῦ(cm-1):3163, 2943, 2147, 1617, 1595, 1504, 1460, 1440, 1334, 1271, 1234, 1060 

1020, 826, 808, 773. 1H NMR (250 MHz, 298K, DMSO-d6),  (ppm): 0.63 (t, J = 7. 5 Hz, 3H), 

1.06 (m, 2H), 1.35 (m, 2H), 4.01 (t, J = 7. 5 Hz, 2H), 6.97 (d, J = 8.00 Hz, 1H), 7.62 (m, 1H), 7.74 

(m, 1H), 7.97 (t, J = 8.00 Hz, 2H), 8.25 (d, J = 8.00 Hz, 1H). 13C{1H} NMR (63 MHz, 298K, 

DMSO-d6),  (ppm): 13.5 (CH3), 18.5 (CH2), 30.2 (CH2), 65.2 (CH2), 102.4 (C), 116.0 (CH), 117.6 

(C), 122.6 (CH), 124.3 (CH), 126.9 (C), 128.8 (CH), 129.2 (CH), 132.9 (C), 135.1 (CH), 161.2 

(C). Anal. Calcd for C15H15NO: C, 79.97; H, 6.71; N, 6.22%. Found: C, 79.92; H, 6.67; N, 6.26%.

2-sec-Butoxynaphthalene-1-carbonitrile (3u): White crystals (0.1552 gr, 69% yield), mp = 137-

138 oC. IR (KBr), ῦ(cm-1): 3066, 2958, 2920, 2146, 1621, 1594, 1505, 1460, 1273, 1238, 1059, 

825, 808, 462. 1H NMR (250 MHz, 298K, DMSO-d6),  (ppm): 0.56 (t, J = 7. 5 Hz, 3H), 0.76 (d, 

J = 7. 5 Hz, 3H), 1.06 (qun, J = 7. 5 Hz, 2H), 3.23 (sex, J = 7. 5 Hz, 1H), 6.95 (d, J = 7. 5 Hz, 1H), 
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7.62 (m, 1H), 7.76 (m, 1H), 7.99 (m, 2H), 8.25 (d, J = 8.00 Hz, 1H). 13C{1H} NMR (63 MHz, 298K, 

DMSO-d6),  (ppm): 9.7 (CH3), 19.0 (CH2), 28.2 (CH3), 70.6 (CH), 100.4(C), 115.2 (CH), 116.8 

(CH), 121.8 (CH), 123.5 (C), 126.1 (C), 127.9 (CH), 128.2 (CH), 132.0 (C), 134.2 (CH), 160.4 

(C). Anal. Calcd for C15H15NO: C, 79.97; H, 6.71; N, 6.22%. Found: C, 79.91; H, 6.66; N, 6.27%.

2-iso-Propoxynaphthalene-1-carbonitrile (3v): White crystals (0.1414 gr, 67% yield), mp = 

137-138 oC. IR (KBr), ῦ(cm-1): 3064, 2968, 2957, 2146, 1621, 1594, 1505, 1459, 1269, 1249, 

1059, 826, 808, 465. 1H NMR (250 MHz, 298K, DMSO-d6),  (ppm): 1.20 (d, J = 7. 5 Hz, 6H), 

3.30 (hep, J = 7. 5 Hz, 1H), 6.96 (d, J = 7. 5 Hz, 1H), 7.54 (m, 1H), 7.84 (m, 1H), 7.97 (m, 2H), 

8.30 (d, J = 8.00 Hz, 1H). 13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 21.7 (CH3), 72.8 

(CH), 101.4 (C), 116.0 (C), 117.6 (CH), 122.6 (CH), 124.3 (CH), 126.9 (C), 128.8 (CH), 129.0 

(CH), 132.9 (C), 135.1 (CH), 161.2 (C). Anal. Calcd for C14H13NO: C, 79.59; H, 6.20; N, 6.63%. 

Found: C, 79.53; H, 6.15; N, 6.69%.

2-(Benzyloxy) naphthalene-1-carbonitrile (3w): White crystals (0.1839 gr, 71% yield), mp = 

154-156 oC. IR (KBr), ῦ(cm-1): 3029, 2930, 2350, 1627, 1599, 1452, 1258, 1218, 1018, 839, 696. 

1H NMR (250 MHz, 298K, DMSO-d6),  (ppm): 4.27, (s, 2H), 6.95, (d, J = 7. 5 Hz, 1H), 7.37, (m, 

5H), 7.63, (m, 1H), 7.77, (m, 1H), 7.96, (m, 2H), 8.24 (d, J = 8.00 Hz, 1H). 13C{1H} NMR (63 

MHz, 298K, DMSO-d6),  (ppm): 57.0 (CH2), 93.1 (C), 116.0 (C), 117.6 (CH), 118.8 (CH), 118.9 

(CH), 121.6 (CH), 122.6 (CH), 124.3 (CH), 126.9 (C), 128.8 (CH), 129.0 (CH), 132.9 (C), 135.1 

(CH), 144.0 (C), 161.2 (C). Anal. Calcd for C18H13NO: C, 83.37; H, 5.05; N, 5.40%. Found: C, 

83.32; H, 5.01; N, 5.44%.

2,4-Dihydroxybenzonitrile (3x): White crystals (0.1026 gr, 76% yield), mp = 178-180 oC. 

IR (KBr), ῦ(cm-1): 3029, 2930, 2350, 1627, 1599, 1452, 1258, 1218, 1018, 839, 819, 696. 1H NMR 

(250 MHz, 298K, DMSO-d6),  (ppm): 6.78 (s, 1H), 6.84 (d, J = 7. 5 Hz, 1H), 7.54 (d, J = 7. 5 Hz, 
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1H), 10.06 (s, 1H, OH), 10.40 (s, 1H, OH). 13C{1H} NMR (63 MHz, 298K, DMSO-d6),  (ppm): 

92.4 (C), 101.6 (C), 109.7 (CH), 116.5 (CH), 129.5 (C), 135.4 (CH), 160.3 (C), 162.4 (C). Anal. 

Calcd for C7H5NO2: C, 62.22; H, 3.73; N, 10.37%. Found: C, 62.20; H, 3.74; N, 10.42%.

2,3-Dihydroxy-1-naphthonitrile (3y): Brown crystals (0.1480 gr, 80% yield), mp = 164-165 oC. 

IR (KBr), ῦ(cm-1): 3059, 3029, 2930, 2350, 1627, 1599, 1452, 1258, 1218, 1018, 839, 819, 696. 

1H NMR (250 MHz, 298K, DMSO-d6),  (ppm): 6.52 (s, 1H), 7.80 (m, 1H), 7.96 (m, 1H), 8.20 

(d, J = 8.00 Hz, 1H), 8.62 (d, J = 8.00 Hz, 1H), 10.08 (s, 1H, OH), 10.41 (s, 1H, OH). 13C{1H} 

NMR (63 MHz, 298K, DMSO-d6),  (ppm): 90.9 (C), 95.6 (C), 115.9 (CH), 117.8 (CH), 123.2 

(CH), 124.4 (C), 128.6 (CH), 129.3 (CH), 142.9 (C), 160.3 (C), 162.2 (C). Anal. Calcd for 

C11H7NO2: C, 71.35; H, 3.81; N, 7.56%. Found: C, 71.32; H, 3.78; N, 7.59%.

2,4-Dihydroxy-1-naphthonitrile (3z): Brown crystals (0.1536 gr, 83% yield), mp = 183-185 oC. 

IR (KBr), ῦ(cm-1): 3059, 3029, 2930, 2350, 1627, 1599, 1452, 1258, 1218, 1018, 839, 725. 1H 

NMR (250 MHz, 298K, DMSO-d6),  (ppm): 6.83 (s, 1H), 7.70 (m, 1H), 7.85 (m, 1H), 8.10 (d, J 

= 8.00 Hz, 1H), 8.52 (d, J = 8.00 Hz, 1H), 10.05 (s, 1H, OH), 10.64 (s, 1H, OH). 13C{1H} NMR 

(63 MHz, 298K, DMSO-d6),  (ppm): 90.4 (C), 99.7 (C), 108.5 (CH), 112.3 (CH), 119.2 (CH), 

120.0 (CH), 127.2 (C), 133.1 (CH), 140.2 (C), 160.0 (C), 161.7 (C). Anal. Calcd for C11H7NO2: 

C, 71.35; H, 3.81; N, 7.56%. Found: C, 71.30; H, 3.80; N, 7.60%.

Thiocyanogen: Yellow crystals, mp = 171-173 oC. IR (KBr), ῦ(cm-1): 2050, 1021, 748, 485. 

13C{1H} NMR (63 MHz, 298K, DMSO-d6), ppm; 129.6 (C). MS: Calcd m/z 116, Found 116. 

Anal. Calcd for C2N2S2: C, 20.68; N, 24.12; S, 55.20%. Found: C, 20.67; N, 24.27; S, 55.06%.
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