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The first synthesis of PEG–carotenoid conjugates
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Carotenoid–PEG esters and diesters were synthesized from several carotenols with polyethyleneglycols
of different chain length to enhance the water solubility and bioavailability of these hydrophobic carote-
noids. The water solubility of the products was compared and found, as expected, to be proportional with
the PEG content of the conjugates.
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Figure 1. Structures of the carotenoid starting materials: R = b, Q = a: b-Crypto-
xanthin; R = b, Q = d: Lutein; R = Q = b: Zeaxanthin; R = c, Q = e: 40-Hydroxy-
echinenone; R = a, Q = CH2OH: 80-b-Apocarotenol.
Carotenoids, being naturally occurring antioxidants and having
various biological effects including anti-cancer and cardioprotec-
tive, have recently been the focus of food biochemists.1 Being sub-
stantially hydrophobic, and in order to enhance their solubility in
water, several succinate, phosphate and amino acid derivatives
have been synthesized in the form of di- or tetravalent salts.2,3 En-
hanced water solubility can facilitate their administration as oral
antioxidants and is also required for use in some food additives
and colorants.

Polyethyleneglycol (PEG) conjugates of a wide range of biomol-
ecules are known (especially peptides).4,5 These conjugates usually
have better pharmacokinetic behavior, and water solubility and, in
general, are more efficient in drug targeting. To date, no covalently-
bound PEG–carotenoid conjugates have been synthesized,
although there are examples of carotenoid–PEG dispersions in
the literature which enhance the bioavailability of carotenoids.6

The advantage of a PEG conjugate over salts is that it changes the
osmotic homeostasis much less than ionic compounds. Further-
more, the water solubility of PEG conjugates is independent of
pH. If the PEG moiety is connected to the carotenoid through a rel-
atively labile bond, which can be cleaved under physiological con-
ditions, the PEG unit will serve solely as an indifferent, polar carrier
for carotenoids (Fig. 1). This property makes such compounds pos-
sible nutritional supplements since the esters can be hydrolyzed in
the presence of pancreatic secretions to regenerate the parent hy-
droxy-carotenoids.

We wanted to elaborate the synthesis of the PEG esters of
carotenoids to enhance their dispersibility in water, and also to
ll rights reserved.
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compare the water solubility of products with different carote-
noids and PEG chain lengths.

Previously we synthesized a large pool of carotenoid succi-
nates7 which served as starting materials for carotenoids in reac-
tions with the monofunctional [PEG-550 monomethyl ether
(PEG-550-OMe)] and bifunctional [tetraethylene glycol (TEG) and
octaethylene glycol (OEG)] derivatives. The carotenoid succinates
were coupled with polyethyleneglycols via the Steglich-method8

using dicyclohexyl carbodiimide (DCC) and 4-(dimethylamino)pyr-
idine (DMAP) in dichloromethane (Scheme 1).

The reactions with the crystalline carotenoid succinates pro-
ceeded smoothly overnight, although in most cases larger amounts
of DCC and DMAP were required for the reactions (Schemes 1 and
2). The yields were acceptable especially considering that the prod-
ucts are carotenoid derivatives. Higher polyethyleneglycols are
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available only as a mixture of polymers of different polymerization
grade which makes characterization of the products more compli-
cated than those containing TEG or OEG. The readily available
monofunctional PEG-550-OMe was chosen for the initial experi-
ments with carotenoid succinates and disuccinates, and the corre-
sponding mono- and diesters were obtained in acceptable yields
(Scheme 1).
Using bifunctional PEGs, the reaction was directed to the forma-
tion of monoesters with the addition of TEG or OEG in excess
(Scheme 2). The yields were again acceptable and the products
7–12 contained free hydroxy functionalities which made further
derivatization or coupling possible. On the other hand, when the
carotenoid succinates were present in excess the main products
obtained were the carotenoid homodimers 13–16 (Scheme 3)
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Table 1
Comparision of water solubility of some
conjugates

Compound mg/ml (96% EtOH)

2 37.5
4 3.34
6 66
7 2.7

10 2.67
13 0.38
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which can be considered as PEG analogs of previously prepared
carotenoid dimers.7

Previously we synthesized carotenoid triesters with aromatic
cores.9 As conjugates 7–12 bear free hydroxy groups, in theory
they could be coupled to aromatic triacids to give PEG analogs of
carotenoid trimers (Scheme 4). Direct esterification of 7 and 8 with
aromatic triacids or triacyl chlorides did not deliver the trimers. In-
stead, the TEG (or OEG) moiety was first coupled to a triacyl chlo-
ride to give the core molecule 17 which was then esterified with
retinol or 80-b-apocarotenol succinate to give trimers 18 and 19.
All the products were characterized by NMR, UV, HPLC and MAL-
DI-TOF.10

To compare water dispersibility, the products were taken up in
a minimum amount of 96% ethanol and diluted with water as they
were not soluble in water directly. In Table 1 the possible maxi-
mum concentrations of the alcoholic solutions are given. These
solutions can be diluted with water in any ratio without precipita-
tion of the conjugate. This means that the highest concentration of
the aqueous solution (always with some EtOH depending on the
extent of dilution) is obtained from 6 which has two long PEG
chains. On the other hand, the dimers (such as 13) with a short
TEG/OEG spacer have much lower solubility. These data show that
water solubility is proportional to the PEG content of the
molecules.
Preliminary test results with liver cell lines showed good anti-
oxidant activity for the new compounds, compared with the corre-
sponding carotenoids, in H2O2-induced oxidative stress assays.
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