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Abstract A one-pot, tandem anionic cyclization/alkylation reaction of
N-Boc-O-benzylated-2-aminophenols to give 2-aryl-1,4-benzoxazin-3-
ones is described. The Boc protecting group plays a crucial role in the
process, as the tert-butoxide liberated in the cyclisation step facilitates
the benzylic deprotonation necessary for the subsequent alkylation.
The reaction gives expedient access to a range of substitution patterns
in 1,4-benzoxazin-3-ones of potential biological relevance.
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Many natural and synthetic 1,4-benzoxazin-3-ones per-
form useful ecological roles and exhibit interesting bioac-
tivities.! For example, 2,4-dihydroxy-1,4-benzoxazin-3-one
(DIBOA) and several related compounds which were first
isolated from Zea mays L.,> exhibit phytotoxic and antifun-
gal activity.? As a result of agrochemical and pharmaceuti-
cal research based on these natural products, the 1,4-benz-
oxazin-3-one core has served as a template for the develop-
ment of an array of interesting crop-protection and
therapeutic agents displaying useful antifungal, antibacte-
rial,> antithrombotic (Factor Xa inhibitory®) and antihyper-
tensive (Renin inhibitory?”) activity (Figure 1).

Various approaches to the synthesis of the 1,4-benzox-
azin-3-one core have been developed.® The most widely
used methods involve the ring-annulation of 2-aminophe-
nols (or 2-nitrophenols, incorporating reduction) with 2-
haloacetate derivatives,®3° various multicomponent vari-
ants of these reactions,'” the ring-closure of N-acetyl-2-
haloaniline derivatives via intramolecular Buchwald-
Hartwig O-arylation,'’ and the ring-annulation of 2-halo-
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Figure 1 Examples of bioactive compounds based on the 1,4-benzox-
azin-3-one scaffold

phenols with 2-haloacetamides via intramolecular Ullmann
N-arylation.'? Although the yields are often good, limited
access to appropriately functionalized substrates and/or
limited compatibility of required functional groups with
the reaction conditions means there is a demand for new
approaches to the synthesis of this important ring system.

In the course of some research directed towards the
synthesis of 2,6-disubstituted aniline derivatives as compo-
nents of a-helix mimetics,'> we had occasion to attempt the
directed ortho lithiaiton'# of N-Boc-O-benzyl-2-aminophe-
nol (1a). The plan was to form the dianion, by deprotona-
tion of the NHBoc function and the ortho ring position us-
ing t-Buli (2.2. equiv), and then react this with 3-bromo-2-
methylpropene to obtain the C-allylated product. In the
event we were surprised to discover that the exclusive
product of this reaction was 1,4-benzoxazin-3-one 2a in
80% yield (Scheme 1).
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Table 1 Scope of 1,4-Benzoxazin-3-one Formation with Respect to Al-
kylating Agent RX
NHBoc 1) t-BuLi (2.2 equiv) HN

o8B THF,-78t0-20 °C, 2 h o Ph '
n 9 i NeT o
2 .
Br (2 equiv) NHBoc 1) t-BuLi (2.2 equiv) HN | N)Y\CN
Ph

oy THF,-7810-20°C,2h Ph !
1a —20°C,2h 2a ° x°
2) R-X (2 equiv) ' |
NOT: 220°C, 2h ; P
3

NHBoc 1a 2b-k |
0Bn '
Entry? Electrophile (R-X) Product Yield (%)
1 CH,=CHCH,-Br 2b 68
Scheme 1 Serendipitous tandem 1,4-benoxazin-3-one formation/al- 2 i-Bu-Brb 2c 77
kylation reaction
3 H-OMe 2d 95
4 HC=CCH,CH,-Br® 2e 72
The use of just 2.2 equivalents of t-BulLi in this tandem 5 Br-Br® of 63
cyclization/alkylation process implicates the tert-butoxide
generaFed upon cycli;atipn as mediating the subsequent 6 D/\Br 2g 39
benzylic alkylation (vide infra, Scheme 2). The ‘waste’ tert- b
butoxide generated in the first step is thereby internally re- N
cycled to facilitate the next step in an environmentally be- 7 b@VBr 2h 85
nign fashion,' a concept pioneered by Shibasaki for recy-
cling triphenylphosphine oxide in sequential Wittig alke- 8 N=CCH,-Br 3 53
nylation/asymmetric epoxidation reactions.'® This 1,4- 9 N=CCH,-Br¢ 2i 70
benzoxazin-3-one synthesis is notable for directly generat- 10 Et0,CCH,-Br¢ 2 53
ing a quaternary benzylic stereocentre at C2, as found in 11 Me-t¢ 2k 93
several bioactive derivatives!"'7 (e.g. the renin inhibitor’
- 2 For general procedure see ref. 18.
in Figure 1 ) b Reaction mixture was stirred for 16 h at r.t. after the addition of the elec-

To explore the scope of this transformation we first in- tr:phile. cul e added was 1
. . . < t 1 i iv.
vestlgateq the use of dlfferent electrophiles (Table 1). 4 Amount of Mel added was 0.9 ‘é"gjw-eq“"’
Pleasingly, both activated and non-activated electro-
philes participated in the reaction. Thus, allyl bromide, ben-
zyl bromide and 3-(bromomethyl)pyridine afforded the ex-

pected 1,4-benzoxazinones in good yields under the origi- Table 2 Scope of 1,4-Benzoxazin-3-one Formation with Respect to
nal conditions (Table 1, entries 1, 5 and 7). Protonation Aryl Substituents

could also be achieved using MeOH (Table 1, entry 3).

Isobutyl bromide, 4-butynyl bromide and cyclopropyl- NHBoc

methyl bromide afforded excellent yields, provided longer 0o 1) +BuLi (2.2 equiv) R?
reaction times and higher temperatures were employed THF, 77810-207C

(Table 1, entries 2, 4 and 6). By contrast, bromoacetonitrile, R! Z Ao 2)

ethyl bromoacetate and methyl iodide reacted so rapidly X Br (2 equ)

that e.g. when two equivalents of bromoacetonitrile were 1o —20 °° tort 2o
added the C,0-dialkylated derivatiye 3 was the gnly isolated Entry  Substrate R _2 Product  Yield (%)
product (Table 1, entry 8). Use of just one equivalent how-

ever allowed the formation of the expected product 2h ex- 1 1b H 4-Me 2l 85
clusively (Table 1, entry 9). The same applied when using 2 1c H 4l 2m 75
ethyl bromoacetate (Table 1, entry 10). Methyl iodide was 3 1d H 3.l 2n 37
even more reactive and use of 0.9 equivalent was required 4 le H >-Me ~ 0

to obtain exclusively 2j in excellent yield (Table 1, entry 11).

Next we briefly examined the possibility of introducing > R H 4NO, h 0
substituents in the aromatic rings, using 3-bromo-2-meth- 6 19 H 3.5-(CR), - 0
ylpropene as the default alkylating agent (Table 2). 7 1h 4-Me H 20 76

8 1i 4-Cl H - 0
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The substrates 1b-i were readily synthesized from the
appropriate 2-aminophenols and benzylic bromides in two
steps (see Supporting Information). For the benzylic ring, 4-
Me, 4-Cl and 3-Cl groups were tolerated (Table 2, entries 1-
3), but 2-Me, 4-NO, and 3,5-(CF;), groups were not, even
when deploying LDA, NaH or LiHMDS in place of ¢-BulLi; all
conditions led to decomposition of the staring material (Ta-
ble 2, entries 4-6). For the aminophenol ring, just two de-
rivatives were explored: a 4-Me group was tolerated (Table
2, entry 7) but a 4-Cl group led to complex mixtures, appar-
ently due to competing halogen-lithium exchange upon
treatment with t-BulLi (Table 2, entry 8).

A proposed reaction mechanism for this 1,4-benzoxaz-
in-3-one formation-alkylation reaction is shown below
(Scheme 2).
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Scheme 2 Proposed reaction mechanism
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Compound 1a reacts with t-BuLi to give dilithiated in-
termediate A. Loss of t-BuOLi then gives isocyanate B which
undergoes 6-endo-trig ring closure to give intermediate C.
Benzylic deprotonation by the t-BuOLi then generates
dilithiated intermediate D which undergoes alkylation (—
E) and protonation to give the product 2a.

To confirm the feasibility of our proposed mechanism,
compound 2d was dissolved in THF at -20 °C and either one
equivalent or two equivalents of t-BuOLi was added fol-
lowed after two hours by 3-bromo-2-methylpropene
(Scheme 3).

When one equivalent of t-BuOLi was added, a white sus-
pension was formed; after addition of the electrophile no
reaction was observed after two hours at -20 °C, but after
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Scheme 3 Confirmation that t-BuOLi can effect mono- and didepro-
tonation of 2d

16 hours at room temperature complete conversion to O-al-
kylated product 2p was achieved. When two equivalents of
t-BuOLi were added, an orange suspension was formed; af-
ter addition of the electrophile total conversion into C-al-
kylated product 2a was achieved after two hours at -20 °C.
Clearly, t-BuOLi is strong enough as a base to deprotonate
intermediate C in our proposed mechanism (Scheme 2).

In conclusion, we have reported an expedient method
for the synthesis of 2-aryl-1,4-benzoxazin-3-ones via an
unusual tandem anionic cyclisation/alkylation reaction of
N-Boc-0-benzyl-2-aminophenols. The substrates for this
one-pot transformation are readily prepared in two
straightforward steps from commercially available 2-amino-
phenols and benzylic bromides. The convenience of the
procedure allied with the known biological significance of
the product class will hopefully make this a useful addition
to existing methods for the synthesis of 1,4-benzoxazin-3-
ones.
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2a: mp 110-111 °C. 'H NMR (400 MHz, CDCl;): & = 8.88 (br s, 1
H), 7.54 (d, ] = 8.3 Hz, 2 H), 7.20-7.35 (m, 3 H), 7.09-7.18 (m, 1
H), 7.00 (td, J = 7.8, 1.5 Hz, 1 H), 6.90 (td, J = 7.7, 1.3 Hz, 1 H),
6.73 (dg,J=7.9, 1.4 Hz, 1 H), 4.65-5.13 (m, 2 H), 3.21(d, ] = 14.7
Hz, 1 H), 2.84 (d, J = 14.7 Hz, 1 H), 1.81 (s, 3 H). '3C NMR (101
MHz, CDCl;): § = 167.3, 142.9, 140.5, 139.0, 128.3, 128.0, 126.1,
125.6, 124.1, 122.4, 120.7, 117.5, 115.5, 115.4, 84.7, 46.8, 28.7,
28.3, 24.5. HRMS (ES): m/z [M + H*] calcd for C;gH;gNO,:
280.13318; found: 280.1335. IR: 1680, 1502, 1448, 1370, 1155,
1057 cm™.

2g: mp 150-155 °C. 'H NMR (400 MHz, CDCl5): § = 9.56 (s, 1 H),
7.56 (d, ] = 6.8 Hz, 2 H), 7.22-7.36 (m, 3 H), 7.17 (d, ] = 7.9 Hz, 1
H), 7.02 (td, J = 7.8, 1.4 Hz, 1 H), 6.91 (td, J = 7.8, 1.4 Hz, 1 H),
6.81(dd,J=7.8,1.4Hz,1H),2.38(dd,] = 14.5,6.8 Hz, 1 H), 2.12
(dd,J = 14.5,6.8 Hz, 1 H), 0.98-1.08 (m, 1 H), 0.35-0.57 (m, 2 H),
0.19-0.33 (m, 1 H), 0.00-0.08 (m, 1 H). 13C NMR (101 MHz,
CDCl;): § =168.2, 143.3,139.3,128.3, 127.9, 126.3, 125.7, 124.4,
122.2, 117.3, 115.6, 84.9, 44.6, 6.0, 4.6, 4.4. HRMS (ES): m/z
[M + H*] caled for CigH;gNO,: 280.1338; found: 280.1345, IR:
1688, 1502, 1428, 1368, 1124, 1045 cm™.

2h: mp 123-126 °C. 'H NMR (400 MHz, CDCl,): 8 = 9.35 (s, 1 H),
8.54 (s, 1 H), 8.40-8.50 (m, 1 H), 7.58 (d, J = 12 Hz, 1 H), 7.46 (dd,
J=6.1,1.8 Hz, 2 H), 7.22-7.35 (m, 3 H), 7.06-7.18 (m, 2 H), 6.97
(ddd,Jj=7.9,6.1,1.8 Hz, 1 H),6.88 (ddd, /= 7.9, 6.1, 1.8 Hz, 1 H),
6.72 (dt,] = 7.9, 1.8 Hz, 1 H), 3.72 (dd, J = 14.1, 1.6 Hz, 1 H), 3.40
(dd,J = 14.1, 1.6 Hz, 1 H). '*C NMR (101 MHz, CDCl;): § = 166.6,
152.1, 147.9, 142.7, 138.7, 138.0, 131.3, 128.5, 128.4, 126.1,
125.7, 124.1, 122.8, 122.6, 117.5, 115.5, 84.1, 43.0, 28.2. HRMS
(ES): m/z [M + H*] calcd for C,yH;7N,0,: 317.1290; found:
317.1302.IR: 1682, 1502, 1448, 1372,1128, 1031 cm™".
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