This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.

Total Synthesis of (±)-Spirobenzofuran

Hang Su,^a Ting Zhou,^a Bo Liu^{*a,b}

^a Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610 064, P. R. of China

Fax +86(28)85413712; E-mail: chembliu@scu.edu.cn

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200 032, P. R. of China

Received: 12.01.2013; Accepted after revision: 04.02.2013

Abstract: Spirobenzofuran, embracing a cyclopentane-spirofused benzofuran carbon framework, was efficiently assembled via semipinacol rearrangement with Me₃Al from 2,5-dimethoxy-4-methylacetophenone.

Key words: spirobenzofuran, semipinacol rearrangement, trimethylaluminium, total synthesis, sesquiterpenoid

An interesting sesquiterpenoid, spirobenzofuran, was isolated from the fungi *Acremonium sp. HKI 0230* by Gräfe and co-workers. It displayed moderate antimicrobial activity against Gram-positive bacteria such as Bacilus subtilis ATCC 6623.¹ Structurally, spirobenzofurans were related to lagopodins 2a-c,² cuparene-1,4-quinone 3a,³ helicobasidins 3b,c,⁵ and cuparene-1,4-diol 4 (Figure 1).⁴ These natural products are embedded with a cyclopentane ring containing two contiguous quaternary centers, and thus have become interesting synthetic targets since their isolation and identification.^{6,7}

Figure 1

Among the completed total synthesis, several examples are impressing. In 2003, Mukherjee and co-workers re-

SYNLETT 2013, 24, 0615–0618 Advanced online publication: 20.02.2013 DOI: 10.1055/s-0032-1318310; Art ID: ST-2013-W0039-L © Georg Thieme Verlag Stuttgart · New York ported the total synthesis of **3a** and **4** in 14 and 13 steps, respectively, from the known acetophenone **10**,⁸ in which an intramolecular anionic cyclization strategy was developed to generate the vicinally substituted cyclopentanes (Scheme 2).^{6d} In 2005, Srikrishna and coworkers accomplished the first racemic synthesis of spirobenzofuran **1** in 14 steps from **10**, featuring the key Ireland–Claisen rearrangement and ring-closing metathesis (RCM) reaction (Scheme 3).⁷ Later, the Srikrishna group also accomplished the racemic synthesis of **2a**, **3a**, and **4** following the same synthetic strategy.^{6a} Involved in the total synthesis of natural terpenoids,⁹ we are also allured by the structure and bioactivity of this family of molecules, especially spirobenzofuran **1**. Herein, we would like to present our synthetic efforts on spirobenzofuran **1**.

The retrosynthetic analysis was depicted in Scheme 1. The aldehyde **5**, a key precursor towards our target molecule, could be obtained from compound **6** employing crucial semipinacol rearrangement. Compound **6** should be available from epoxidation of compound **7**, which could be produced from compound **8** through ketalization and simultaneous isomerization of the double bond. Compound **8** could be achieved from the acetophenone **9** through the combination of 1,4-addition and Robinson annulation.

Scheme 1 Retrosynthetic analysis of spirobenzofuran 1

Scheme 2

Initially, compound 9 was first converted into the corresponding TBS enol ether, using Et₃N and TBSOTf in dichloromethane. Without quenching the reaction, the resultant enol ether was mixed with mesityl oxide in dichloromethane at -78 °C to give **10** in 58% yield.¹⁰ It is notable that all trials to the direct Michael addition of compound 9 to mesityl oxide failed, which were catalyzed by different bases, such as KOt-Bu, KHMDS, NaHMDS, and LDA. The steric hindrance of mesityl oxide might account for the low reactivity under basic environment. Then intramolecular aldol condensation afforded 8 smoothly in 95% yield, by treating 10 with PTSA at 100 °C.¹¹ Subsequently, acid-catalyzed dioxolane formation, accompanied by isomerization of the double bond, gave rise to compound 7 in 50% yield (or 80% yield based on the recovery of the starting material 8).¹² In the presence of MCPBA, compound 7 was transformed to the epoxy 6 in 66% yield.13

Then, to achieve the skeleton of spirobenzofuran, we turned our attention to the key semipinacol rearrangement. We envisioned that treating epoxide 6 with BBr₃

might lead to semipinacol rearrangement, demethylation and concomitant acetalation in one pot, resulting in the final natural product directly. However, to our disappointment, most of the epoxide 6^{14} was converted into the enone 11, although trace of rearrangement product 12 was detected. Accordingly, the semipinacol rearrangement was systematically investigated under various conditions. In anhydrous dichloromethane, treating 6 with a variety of Lewis acids, such as BF₃·OEt₂, SnCl₄, AlCl₃, FeCl₃, TBSOTf, TMSOTf, LiClO₄, ZnCl₂, LiI, ZnBr₂, PdCl₂, etc.,¹⁵ led to decomposition of the substrate 6. Moreover, the reaction with different protonic acids, that is, PTSA, CSA, TFA, and oxalic acid,¹⁶ afforded no desired rearrangement product either. To minimize the formation of byproduct 11, the reaction conditions keeping the ketal in 6 stable are obviously necessary. Therefore, the reactions with various acids in the presence of orthoester were attempted,¹⁷ and the desired aldehyde 5 was formed but still in an unsatisfactory yield. Fortunately, when we treated 6 with Me₃Al, a very mild Lewis acid, compound 5^{18} was formed in 88% yield.¹⁹ To the best of our knowledge, such

```
Srikrishna's approach
```


Scheme 3

Synlett 2013, 24, 615-618

Scheme 4 *Reagents and conditions*: (a) TBSOTf (1.2 equiv), Et₃N, CH₂Cl₂; 0 °C to r.t., 6 h; mesityl oxide, -78 °C, 58%; (b) PTSA, toluene, 100 °C, 5 h, 95% (c) PTSA, HOCH₂CH₂OH, benzene, Dean–Stark, reflux, 17.5 h, 80% (brsm); (d) MCPBA, NaHCO₃, CH₂Cl₂, -10 °C, 1.5 h, 66%; (e) BBr₃, CH₂Cl₂, -78 °C, 4 min, 86%; (f) Me₃Al, CH₂Cl₂, 0 °C to r.t., 4 h, 88%; (g) (i) CAN, MeCN, H₂O, -10 °C, 10 min; (ii) Na₂S₂O₄, THF, H₂O; 0 °C, 1.5 h; then HCl (1 N), 5 h, r.t., 84% over two steps.

a Me₃Al-promoted semipinacol rearrangement was seldom.²⁰ The mild nature of this transformation will surely make it potentially utilized in organic synthesis. It is interesting that compound **13**, resulting from Me₃Al addition to aldehyde **5**, was not detected in this step, probably due to the bulky environment adjacent to the aldehyde group.²¹ Finally, after a routine oxidative demethylation– reduction–ketalization sequence,²² we completed the total synthesis of *rac*-spiro-benzofuran **1** (Scheme 4).²³

In summary, we have developed a concise synthesis of spirobenzofuran 1 with 21% overall yield in seven steps. The synthesis features a Me₃Al-promoted semipinacol rearrangement and paves the way towards other structurally related natural product.

Acknowledgment

We appreciate the financial support from NSFC (21021001, 21172154, 21290180, J1103315) and National Basic Research Program of China (973 Program, 2010CB833200).

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

References

- Kleinwachter, P.; Schlegel, B.; Dorfelt, H.; Gräfe, U. J. Antibiot. 2001, 54, 526.
- (2) (a) Thomson, R. H. *Naturally Occurring Quinones* 1971.
 (b) Bu'Lock, J. D.; Darbyshire, J. *Phytochemistry* 1976, *15*, 2004.
 (c) Bottom, C. B.; Siehr, D. J. *Phytochemistry* 1975, *14*, 1433.
- (3) Asakawa, Y.; Kondo, K.; Tori, M. *Phytochemistry* **1991**, *30*, 325.
- (4) Toyota, M.; Koyama, H.; Asakawa, Y. *Phytochemistry* 1997, 46, 145.
- (5) Natori, S.; Inouye, Y.; Nishikawa, H. Chem. Pharm. Bull. 1967, 15, 380.
- (6) (a) Srikrishna, A.; Lakshmi, B. V.; Ravikumar, P. C. *Tetrahedron Lett.* 2006, 47, 1277. (b) Srikrishna, A.; Babu, R. R.; Ravikumar, P. C. *Synlett* 2007, 655. (c) Srikishna, A.; Rao, M. S. *Synlett* 2004, 374. (d) Paul, T.; Pal, A.; Gupta, P. D.; Mukherjee, D. *Tetrahedron Lett.* 2003, 44, 737.
 (e) Asakawa, Y.; Matsuda, R.; Tori, M.; Sono, M. J. Org. *Chem.* 1988, 53, 5453. (f) Srikrishna, A.; Srinivasa, R. M. *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.* 2010, 49, 1363. (g) Srikrishna, A.; Ravikumar, P. C. *Tetrahedron Lett.* 2005, 46, 6105. (h) Pal, A.; Dutta, G. P.; Mukherjee, D. J. Indian Chem. Soc. 2003, 80, 989.
- (7) Srikrishna, A.; Lakshmi, B. V. Tetrahedron Lett. 2005, 46, 7029.
- (8) Fuganti, C.; Serra, S. J. Chem. Soc., Perkin Trans. 1 2000, 3758.
- (9) (a) Chen, Y.-X.; Huang, J.-F.; Liu, B. *Tetrahedron Lett.* 2010, 51, 4655. (b) Huang, C.; Liu, B. *Chem. Commun.*

2010, *46*, 5280. (c) Huang, C.; Zhang, W. H.; Liu, B. *Sci. China: Chem.* **2011**, *54*, 43. (d) Liu, Y.-J.; Huang, C.; Liu, B. *Tetrahedron Lett.* **2011**, *52*, 5802. (e) Yue, G.-Z.; Yang, L.; Yuan, C. C.; Jiang, X.-L.; Liu, B. *Org. Lett.* **2011**, *13*, 5406. (f) Yue, G.-Z.; Yang, L.; Yuan, C. C.; Du, B.; Liu, B. *Tetrahedron* **2012**, *68*, 9624. (g) Huang, X.; Song, L.-Q.; Xu, J.; Zhu, G.-L.; Liu, B. *Angew. Chem. Int. Ed.* **2013**, *52*, 952.

- (10) Lukas, R. J.; Muresan, A. Z.; Damaj, M. I.; Blough, B. E.; Huang, X.-D.; Navarro, H. A.; Mascarella, S. W.; Eaton, J. B.; Marxer-Miller, S. K.; Carroll, F. I. *J. Med. Chem.* 2010, *53*, 4731.
- (11) Danishefsky, S.; Etheredge, S. J. J. Org. Chem. **1982**, 47, 4791.
- (12) Payette, J. N.; Honda, T.; Yoshizawa, H.; Favaloro, F. G. Jr.; Gribble, G. W. J. Org. Chem. 2006, 71, 416.
- (13) Cleve, A.; Fritzemeier, K.-H.; Heinrich, N.; Klar, U.; Müller-Fahrnow, A.; Neef, G.; Ottow, E.; Schwede, W. *Tetrahedron* **1996**, *52*, 1529.
- (14) Analytical Data
 - ¹H NMR (400 MHz, CDCl₃): $\delta = 6.86$ (s, 1 H), 6.67 (s, 1 H), 3.93–3.84 (m, 4 H), 3.79 (s, 3 H), 3.77 (s, 3 H), 2.78 (s, 1 H), 2.37 (d, J = 15.2 Hz, A of AB, 1 H), 2.23 (d, J = 16.0 Hz, B of AB, 1 H), 2.20 (s, 3 H), 1.65 (d, J = 13.6 Hz, A' of A'B', 1 H), 1.42 (d, J = 13.6 Hz, B' of A'B' 1 H), 1.24 (s, 3 H), 1.15 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.6$, 150.1, 128.4, 126.6, 114.1, 109.5, 108.2, 68.2, 64.0, 63.9, 61.1, 56.1, 56.0, 41.2, 39.2, 32.0, 27.9, 26.2, 16.4. IR (thin film): 2955, 1506, 1296, 1093, 823 cm⁻¹.
- (15) (a) Srikrishna, A.; Satyanarayana, G.; Prasad, K. R. *Synth. Commun.* 2007, *37*, 1511. (b) Xia, W.-J.; Li, D.-R.; Shi, L.; Tu, Y.-Q. *Tetrahedron: Asymmetry* 2001, *12*, 1459.
 (c) Yumiko, Y. Masayoshi I. *Org. Biomol. Chem.* 2007, *5*, 3207. (d) Rickborn, B.; Gerkin, R. M. *J. Am. Chem. Soc.* 1968, *90*, 4193.
- (16) (a) Tiberio, C.; Paolo, C.; Maria, F.; Franco, M. J. Chem. Soc., Perkin Trans. 1 1985, 1607. (b) Song, Z.-L.; Fan, C.-A.; Tu, Y.-Q. Chem. Rev. 2011, 111, 7523.
- (17) Kita, Y.; Yoshida, Y.; Mihara, S.; Furukawa, A.; Higuchi,
 K.; Fang, D. F.; Fujioka, H. *Tetrahedron* **1998**, *54*, 14689.

(18) Synthesis of Aldehyde 5

- To a solution of compound 6 (200 mg, 0.59 mmol) in CH_2Cl_2 (10 mL) was added Me₃Al (0.59 mL, 1.18 mol, 2.0 M in toluene) dropwise at -10 °C under argon. The reaction was warmed to r.t. slowly and stirred for 4 h. Then it was quenched with sat. aq NaHCO3 (2 mL) at 0 °C. Sat. aq sodium potassium tartrate (10 mL) was added, and the biphasic mixture was stirred overnight. The aqueous layer was separated and extracted with CH_2Cl_2 (3 × 5 mL). The residue was purified by flash chromatography (silica gel, PE-EtOAc = 10:1) to give compound 5 as a yellow solid (176 mg, 88%).¹H NMR (400 MHz, CDCl₃): $\delta = 9.87$ (s, 1) H), 6.92 (s, 1 H), 6.69 (s, 1 H), 3.93-3.88 (m, 4 H), 3.79 (s, 3 H), 3.67 (s, 3 H), 2.77 (d, J = 15.2 Hz, A of AB, 1 H), 2.31 (d, J = 15.2 Hz, B of AB, 1 H), 2.27 (d, J = 14.0 Hz, A' of)A'B', 1 H), 2.20 (s, 3 H), 1.99 (d, J = 13.6 Hz, B'of A'B', 1 H), 1.27 (s, 3 H), 0.83 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.8, 151.8, 150.7, 127.0, 125.8, 114.8, 114.8, 112.3,$ 64.3, 64.3, 63.3, 56.3, 55.9, 51.9, 44.2, 43.8, 27.0, 23.9, 16.2. IR (thin film): 2959, 1716, 1213, 858 cm⁻¹
- (19) Keiji, M.; Takashi, O.; Hisashi, Y. J. Am. Chem. Soc. 1989, 111, 6431.
- (20) Kingsbury, J. S.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 13813.
- (21) (a) Colucci, J.; Lee, D.; Wilson, M.-C.; Chau, A. Org. Lett. 2002, 4, 4705. (b) Tsuyoshi, I.; Satoru, K.; Makoto, S.; Tamotsu, F. Chem. Lett. 1997, 11, 1149. (c) Spino, C.; Granger, M. C.; Tremblay, M. C. Org. Lett. 2002, 4, 4735.
- (22) Kostikov, A. P.; Popik, V. V. J. Org. Chem. 2007, 72, 9190.
 (23) Analytical Data
- ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.66$ (s, 1 H), 7.14 (d, *J* = 5.6 Hz, 1 H), 6.52 (s, 2 H), 5.79 (d, *J* = 5.6 Hz, 1 H), 2.83 (d, *J* = 18.8 Hz, A of AB, 1 H), 2.44 (d, *J* = 18.8 Hz, B of AB, 1 H), 2.34 (d, *J* = 18.4 Hz, A' of A'B', 1 H), 2.24 (d, *J* = 18.0 Hz, B' of A'B', 1 H), 2.07 (s, 3 H), 0.98 (s, 3 H), 0.85 (s, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 216.2$, 150.3, 148.9, 126.5, 123.8, 111.2, 111.0, 102.1, 59.2, 51.9, 42.7, 41.2, 24.6, 23.0, 16.3. IR (thin film): 3395, 1732, 1412, 1085, 923 cm⁻¹. HRMS (ES⁺): *m/z* calcd for C₁₅H₁₈O₄Na [M + Na]⁺: 285.1103; found: 285.1101.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.