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Abstract: Spirobenzofuran, embracing a cyclopentane-spirofused
benzofuran carbon framework, was efficiently assembled via semi-
pinacol rearrangement with Me3Al from 2,5-dimethoxy-4-methyl-
acetophenone.
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An interesting sesquiterpenoid, spirobenzofuran, was iso-
lated from the fungi Acremonium sp. HKI 0230 by Gräfe
and co-workers. It displayed moderate antimicrobial ac-
tivity against Gram-positive bacteria such as Bacilus sub-
tilis ATCC 6623.1 Structurally, spirobenzofurans were
related to lagopodins 2a–c,2 cuparene-1,4-quinone 3a,3

helicobasidins 3b,c,5 and cuparene-1,4-diol 4 (Figure 1).4

These natural products are embedded with a cyclopentane
ring containing two contiguous quaternary centers, and
thus have become interesting synthetic targets since their
isolation and identification.6,7

Figure 1

Among the completed total synthesis, several examples
are impressing. In 2003, Mukherjee and co-workers re-

ported the total synthesis of 3a and 4 in 14 and 13 steps,
respectively, from the known acetophenone 10,8 in which
an intramolecular anionic cyclization strategy was devel-
oped to generate the vicinally substituted cyclopentanes
(Scheme 2).6d In 2005, Srikrishna and coworkers accom-
plished the first racemic synthesis of spirobenzofuran 1 in
14 steps from 10, featuring the key Ireland–Claisen rear-
rangement and ring-closing metathesis (RCM) reaction
(Scheme 3).7 Later, the Srikrishna group also accom-
plished the racemic synthesis of 2a, 3a, and 4 following
the same synthetic strategy.6a Involved in the total synthe-
sis of natural terpenoids,9 we are also allured by the struc-
ture and bioactivity of this family of molecules, especially
spirobenzofuran 1. Herein, we would like to present our
synthetic efforts on spirobenzofuran 1.

The retrosynthetic analysis was depicted in Scheme 1.
The aldehyde 5, a key precursor towards our target mole-
cule, could be obtained from compound 6 employing cru-
cial semipinacol rearrangement. Compound 6 should be
available from epoxidation of compound 7, which could
be produced from compound 8 through ketalization and
simultaneous isomerization of the double bond. Com-
pound 8 could be achieved from the acetophenone 9
through the combination of 1,4-addition and Robinson an-
nulation.

Scheme 1  Retrosynthetic analysis of spirobenzofuran 1
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Initially, compound 9 was first converted into the corre-
sponding TBS enol ether, using Et3N and TBSOTf in di-
chloromethane. Without quenching the reaction, the
resultant enol ether was mixed with mesityl oxide in di-
chloromethane at –78 °C to give 10 in 58% yield.10 It is
notable that all trials to the direct Michael addition of
compound 9 to mesityl oxide failed, which were catalyzed
by different bases, such as KOt-Bu, KHMDS, NaHMDS,
and LDA. The steric hindrance of mesityl oxide might ac-
count for the low reactivity under basic environment.
Then intramolecular aldol condensation afforded 8
smoothly in 95% yield, by treating 10 with PTSA at 100 °C.11

Subsequently, acid-catalyzed dioxolane formation, ac-
companied by isomerization of the double bond, gave rise
to compound 7 in 50% yield (or 80% yield based on the
recovery of the starting material 8).12 In the presence of
MCPBA, compound 7 was transformed to the epoxy 6 in
66% yield.13

Then, to achieve the skeleton of spirobenzofuran, we
turned our attention to the key semipinacol rearrange-
ment. We envisioned that treating epoxide 6 with BBr3

might lead to semipinacol rearrangement, demethylation
and concomitant acetalation in one pot, resulting in the fi-
nal natural product directly. However, to our disappoint-
ment, most of the epoxide 614 was converted into the
enone 11, although trace of rearrangement product 12 was
detected. Accordingly, the semipinacol rearrangement
was systematically investigated under various conditions.
In anhydrous dichloromethane, treating 6 with a variety of
Lewis acids, such as BF3·OEt2, SnCl4, AlCl3, FeCl3,
TBSOTf, TMSOTf, LiClO4, ZnCl2, LiI, ZnBr2, PdCl2,
etc.,15 led to decomposition of the substrate 6. Moreover,
the reaction with different protonic acids, that is, PTSA,
CSA, TFA, and oxalic acid,16 afforded no desired rear-
rangement product either. To minimize the formation of
byproduct 11, the reaction conditions keeping the ketal in
6 stable are obviously necessary. Therefore, the reactions
with various acids in the presence of orthoester were at-
tempted,17 and the desired aldehyde 5 was formed but still
in an unsatisfactory yield. Fortunately, when we treated 6
with Me3Al, a very mild Lewis acid, compound 518 was
formed in 88% yield.19 To the best of our knowledge, such

Scheme 2
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a Me3Al-promoted semipinacol rearrangement was sel-
dom.20 The mild nature of this transformation will surely
make it potentially utilized in organic synthesis. It is inter-
esting that compound 13, resulting from Me3Al addition
to aldehyde 5, was not detected in this step, probably due
to the bulky environment adjacent to the aldehyde
group.21 Finally, after a routine oxidative demethylation–
reduction–ketalization sequence,22 we completed the total
synthesis of rac-spiro-benzofuran 1 (Scheme 4).23

In summary, we have developed a concise synthesis of
spirobenzofuran 1 with 21% overall yield in seven steps.
The synthesis features a Me3Al-promoted semipinacol re-
arrangement and paves the way towards other structurally
related natural product.
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