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A sequential oxidative approach was designed to functionalize salicylaldehyde derivatives and provide
corresponding bi-functional amide-carbamate and amide-quinone units. A combination of metal/metal
free conditions and TBHP as the external oxidant provided the products in moderate to excellent yields
(49–91%).
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Cross coupling chemistry is an extremely useful strategy for
making C–C and C-heteroatom bonds. Among them cross dehy-
drogenative couplings (CDC) involving C–H bond activations have
found a wider interest in recent years owing to their synthetic
advantage over the traditional methods, where the involvement
of pre-functionalized substrates makes the synthetic route longer,
less atom-economical and expensive.1 Tremendous progress has
been made in this area and the feasibility of these reactions was
successfully demonstrated for C–C bond formations involving cross
coupling between Csp3-H, Csp2-H and Csp-H bonds in the presence
of various transition metal catalysts.2 In parallel the CDC approach
was also efficiently utilized in the construction of various C-hetero
atom bond processes, notably the formation of C–N, C–O, C–S and
C–P bonds. Majority of these reactions were performed in the pres-
ence of oxidants, which significantly contributes for the thermody-
namic favourability of the reaction.3–6

Phenols are readily available and versatile building blocks in
synthetic organic chemistry. Although it is readily oxidized by
chemical and biological oxidants, its cross coupling chemistry is
particularly challenging because of the problems associated with
self coupling as well as formations of polymeric products. However,
recent investigations by several groups under CDC or oxidative
cross coupling strategies have shown the application of phenols
towards the synthesis of hemiacetals,7 spirolactones,7 dihydroben-
zofurans,8 furanones,9a coumestrol9b and dihydrooxazinones10
under metal and metal-free conditions. Similarly, the cross cou-
pling approach was successfully applied for aromatic aldehydes
for the construction of C–C, C–N and C–O bond formations.11–13

Whereas, a bi-functional moiety such as salicylaldehyde, which is
a highly functionalized aromatic molecule was scarcely been
explored in cross coupling chemistry.14

Our group has been working on oxidative couplings using metal
and non-metal catalysts for the last couple of years.15 During these
investigations it has been shown that direct coupling of aldehydes
with amines and alcohols provides amides and esters.16,17 Sim-
ilarly, synthesis of phenol- and enol-carbamates was demonstrated
via oxidative cross coupling of formamides with phenols and
b-keto esters using copper catalysts.18 Although the latter method
allowed accessing the phenol carbamates, the substrate scope was
limited to 2-carbonyl substituted derivatives. While extending this
work to salicylaldehyde derivatives, surprisingly it has been
observed that the aldehyde functionality was intact. This initial
observation prompted us to look at the possibility of utilizing both
phenolic and aldehyde functionalities under cross dehydrogena-
tion strategies. During the execution of this work with salicylalde-
hydes, Chang and co-workers reported the formation of
carbamates and acetals, where the sensitive aldehyde was
retained.19 A similar observation is also made by Patel and
co-workers in o-arylation of phenol with alkylbenzenes, where
sensitive aldehyde functionality was intact and moreover used as
directing group.20 However, our interest was to activate both the
functional groups either in one-pot or sequential manner to
provide multi-functional chromophores.
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Table 1
Synthesis of N,N0-dialkyl salicylamides from salicylaldehydesa
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Chromophores having both carbamate and amide functional-
ities at ortho-position on aromatic rings have potential usefulness.
For examples, these derivatives show pro-drug activity in inhibit-
ing or modulating the activity of heat shock protein 90 (Hsp90)
(Compound A)21 and also can be used in treatment of illnesses
related to glycine uptake inhibitors (GLYT1) (Compound B).22

Moreover, some of these compounds are used as intermediates in
the synthesis of semivioxanthin and 4-functionalized estrone
derivatives.23 Based on our previous experience with amide and
carbamate work under oxidative cross couplings, we envisaged
that salicylaldehydes having both aldehyde and phenolic function-
alities can be utilized under cross coupling strategy. In this Letter
we report a direct route to access both carbamate and amide
functionalities via sequential oxidative cross coupling of salicylal-
dehyde derivatives with amines and formamides (Scheme 1).
Moreover by application of this procedure one can avoid the usage
of isocyanates, amidoyl chlorides or acid chloride derivatives,
which are generally used in traditional routes. The usefulness
of sequential oxidations is also exploited in the synthesis of
functionalized quinones by making use of one of the amide
intermediates.24

Regarding the amidation of salicylaldehydes, initially it was
thought to investigate with KI/TBHP adopting our previously
reported procedure of oxidative amidation of aldehydes with
amines. However, it has been observed by our group that phenols
undergo electrophilic iodination under KI/TBHP combination and a
similar substitution with salicylaldehydes could hamper the cata-
lytic activity of potassium iodide.25 Among the several reported
procedures in the literature, the best alternative we thought of
for selective amidation of salicylaldehyde derivatives was
oxidative cross coupling under metal-free system reported by Wolf
and Kovi.26 When this procedure was adapted for the reaction
between salicylaldehyde and morpholine, interestingly the reac-
tions work very well and amide product resulted in 72% isolated
yield.27 Subsequently, this metal-free cross coupling strategy was
explored for the amidation with several substituted salicylaldehy-
des and amines. Both electron rich and electron deficient salicylal-
dehydes work very well and provided the respective amidation
products in good to excellent yields. For example, reaction of
morpholine with salicylaldehyde having p-NO2, p-Br, p-OMe and
m-OMe substitutions provided 70–76% of the amide product
(Table 1, 3a–3e). Similarly o-substitution with ethoxy-, methyl-
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Scheme 1.
and tert-butyl groups provided 62–82% of amide product (Table 1,
3f–3h). These results suggest that there is no regular pattern with
respect to electronic and steric influence of substitution on
salicylaldehydes. Further similar observations have been made by
variation of amines with pyrrolidine, piperidine, 4-Me-piperidine
and 4-OH-piperidine (Table 1, 3i–3s). In case of 4-benzylpiperi-
dine, the corresponding amides were formed in excellent yields
(Table 1, 3t–3w) and no oxidation of benzylic carbon was observed.

Formamides have been widely used in cross-coupling reactions
in recent years.28 Our previous work with formamides has shown
the possibility of direct coupling of these groups with substituted
phenols or amines to provide carbamates or ureas, respec-
tively.15f,18 In case of phenols, the reactivity was limited to
2-carbonyl substituted derivatives and corresponding carbamates
were synthesized successfully. Coordinating ability of carbonyl
functionality with copper metal was attributed to the high reactiv-
ity of these derivatives. Moreover, formation of carbamate product
with 2-hydroxy-N-phenylbenzamide provided the scope to extend
for amide functionalities.18 When (2-hydroxyphenyl) (morpho-
lino)methanone (3a) was treated with DMF under the previously
reported conditions, the corresponding carbamate product 5a
formed in high yield.29 Further substrate scope was investigated
with various amide (3a–3w) and formamides and the results are
summarized in Table 2. Irrespective of the substitutions on the aro-
matic ring of the amides the carbamate products (5a–5t) resulted
in good to excellent yields. However, in certain combination of
amides (3) with formamides, we encountered the isolation prob-
lem, because of the closer Rf values of reactants and products. This
could be one of the reasons for the low isolated yield of diethylfor-
mamide products (5r–5t). The product formation was also not
observed with sterically hindered amides 3h, 3r and 3w.

Further investigations were focused on the functional group
transformation of N,N0-dialkyl salicylamides (3). Since we were
engaged in activation of C–H bonds adjacent to nitrogen hetero
atom, we looked at the possibility of intra molecular oxidative



Table 3
Synthesis ortho functionalized benzoquinones from N,N1-dialkyl salicylamidesa
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Table 2
Synthesis of ortho functionalized carbamates from N,N0-dialkyl salicylamidesa
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cross couplings in 3, where phenolic –OH and C–H bond adjacent
to nitrogen couples to generate cyclic product C (Scheme 2).10,30

Surprisingly the reaction with 3a in the presence of copper catalyst
and TBHP as the oxidant resulted in corresponding 1,4-benzoqui-
none derivative (6a) rather than the cyclic product. Although the
oxidation of phenols to 1,4-benzoquinones is well known in the lit-
erature,31 the direct transformation of substituted salicylamide
derivatives to quinones is not reported. Looking at the synthetic
as well as biological importance of para-quinones, the scope of
the reaction was tested with various salicylamide derivatives and
the results are presented in Table 3.

The reaction of 2-hydroxyphenyl-morpholino methanone (3a)
with 10 mol % of Cu(OAc)2 catalyst resulted in 52% of the
1,4-benzoquinone product 6a in acetonitrile solvent and TBHP as
the external oxidant (Table 3).32 Salicylamide derivatives (3) hav-
ing substitutions at ortho- and meta- to the phenolic functionality
works very well and resulted in corresponding 1,4-benzoquinones
in moderate to good yields (Table 3). Among them methoxy substi-
tution at the meta-position provided higher para-quinone products
6b, 6f, 6j and 6o (Table 3). Even the substitution of the bulky
tert-butyl group at ortho- to the phenolic functionality works very
well and resulted in corresponding quinone product (6d and 6l).
No oxidation of benzylic carbon was observed during the synthesis
of 4-benzylpiperidine derivatives (6n–6q). The reaction was not
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Scheme 2.
successful with N,N0-dialkyl salicylamides having substitutions
at para- to phenolic functional groups and moreover no
ortho-quinones products were observed.

In conclusion, we have shown the selective and sequential oxi-
dative cross couplings as one of the novel ways for functional
group transformation involving multifunctional chromophores.
As an example, we have demonstrated the activation of both
aldehyde- and phenolic –OH of salicylaldehyde derivatives and
transform them directly into amide and carbamate groups sequen-
tially under metal/metal-free steps using TBHP as the oxidant. This
method has the advantage over conventional routes by avoiding
the use of hazardous reagents and additional steps. Moreover, we
have also shown the synthesis of functionalized 1,4-benzoquinone
by making use of one of the amide intermediates. The advantages
of sequential oxidative cross coupling for functional group trans-
formation on multifunctional chromophores are presently under
investigation.
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