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present method. In addition, we have also synthesized a-acetoxy ketones in case of absence of

sulfonamide.

Introduction:

a-Amino ketones serve a significant role in organic chemistry as they are found in a large variety
of biologically active natural products. Commercial medicines such as mephedrone! and
bupropion? (Figure 1) contain a-amino ketones as well as the proteasome inhibitor epoxomicin.3
In organic synthesis, this moiety is also very useful for the preparation of 2-amino alcohols* and

nitrogen-containing heterocycles (Figure 2).

Figure 1: Commercial Medicines Containing a-Amino Ketones
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Figure 2: Nitrogen-Containing Heterocycles Synthesized from a-Amino Ketones
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Scheme 1: Different Strategies for the Synthesis of a-Sulfonylamino Ketones
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48 Owing to their importance, synthetic organic chemists have attempted various
50 methodologies based on different modifications (Scheme 1). Some of the methodologies are the

oxidative ring opening of aziridines by DMSO,® NBS combined with CAN,” IBX in the presence

55 of B-cyclodextrin,® or pyridine N-oxide.” Another way to synthesize o-amino ketones is through
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umpolung process using silyl enol ethers, followed by nucleophilic addition of amines.!?
Additionally, a rhodium-catalyzed denitrogenative hydration of N-sulfonyl-1,2,3-triazoles was
reported by Murakami et al.!' Recently, Zhan et al.'> prepared sulfonylamino ketones via
Cs,CO;3 promoted N-N bond cleavage from hydrazones precursor. As oxidants, hypervalent
iodine reagents have recently received much attention due to their low toxicity, mild reactivity,
ready availability, high stability, and easy handling.!®> They are useful oxidants in various
coupling reactions.!* Our group is actively engaged in developing various methodologies!’ in
organic synthesis involving the chemistry of C-N bond forming/cleavage reactions.!'® Herein, we
report a fully different approach from the reported methods using (diacetoxy)iodobenzene
(phenyliodine(IIT) diacetate, (PIDA)'#* to synthesize a-amino ketones under ambient
temperature. We have observed that the reaction of terminal alkynes with benzenesulfonamide
affords a-amino ketones (a-sulfonylamino ketones) in good to excellent yields in presence of

PIDA as oxidant (Scheme 1).

Results and Discussion:

We started our study by mixing phenylacetylene (1la, 0.5 mmol) and 4-
methylbenzenesulfonamide (2a, 0.5 mmol) using PIDA (1 equiv) as oxidant, at room
temperature in acetonitrile solvent. Gratifyingly, benzenesulfonamide (the a-sulfonylamino
ketone, 3a) was obtained in 65% yield along with 12% of a-acetoxyacetophenone (4a) after 10 h
(Table 1, entry 1). Encouraged by this result, we carried out the reaction in different conditions
to optimize the reaction, and the results are summarized in Table 1. At first, we investigated the
loading effect of the oxidant (PIDA) and sulfonamide (TsNH,, 2a) in different ratios. Using 0.5

equiv of PIDA and 1 equiv of TsNH, (2a), the yields of 3a and 4a were 74% and <5%
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respectively (Table 1, entry 2). When the amount of PIDA was decreased to 0.25 equiv. the

desired product (3a) was obtained in 80% yield along with trace amount of 4a (Table 1, entry 3).

oNOYTULT D WN =

Again, with increasing the amount of TsNH, (2a) from 1 to 2 equiv. no enhancement of the yield
10 was noticed (Table 1, entry 4). The yield of the reaction did not improve significantly by
increasing the reaction time, but upon reducing the reaction time, the yield of 3a was lowered
15 considerably (Table 1, entries 6 ). Based on these observations we concluded that using 0.25
17 equiv. of PIDA and 1 equiv. of the TsNH, (2a) in acetonitrile solvent gave the best result after 10

19 h (Table 1, entry 3).

23 Table 1: Optimization of the PIDA Driven Amidation®

o) 0]
Pi—= s ToNH, ———— I _{_+ N _oa
27 1a 2a CH3CN, rt Ph \TS Ph

28 3a 4a

32 Entry PIDA (equiv) TsNH;(equiv) time (h) conversion (%) vyieldof  yield of

34 3a(%)  4a (%)

36 1 1 1 10 77 65 12
39 2 0.5 1 10 78 74 <5
41 3 0.25 1 10 82 80 trace
43 4 0.25 2 10 83 81 trace
46 5 0.25 1 20 84 81 trace

48 6 0.25 1 6 48 45 trace

50 aReaction conditions: All reaction are carried out in 0.5 mmol scales, 1a (0.5 mmol), 2a (as

stated amount) and oxidant (PIDA), at room temperature in MeCN. ?Isolated yield.
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Next, a series of experiments have been carried out to examine the role of solvents which

are summarized in Table 2. Considering the green concept, we have tried the reaction in water

oNOYTULT D WN =

(Table 2, entry 1) and isolated only 4a in a 36% yield with a trace amount of 3a. Whereas in
methanol, the desired product (3a) was obtained in 25% yield along with 20% of 4a (Table 2,
entry 2). Next, nonpolar aprotic solvent like toluene showed moderate conversion (52%) with
22% of 3a and 30% of 4a (Table 2, entry 3), but surprisingly in other aprotic polar solvents like
1,2-DCE and 1,4-dioxane, 3a was obtained in lower amounts, but the yields were 30-32% for 4a
(Table 2, entries 4 & 5). In the case of acetonitrile, we got the best result (80% yield of 3a) and
trace amount of product 4a with 82% conversion (Table 2, entry 6). Thus, the optimized reaction

condition was achieved using 0.25 equiv of PIDA and 1 equiv of the TsNH, (2a) with respect to

phenylacetylene (1a) at room temperature in MeCN for 10 h (Table 2, entry 6).

Table 2: Screening of the Solvent Effects of the Amidation Reactions

L PIDA (0.25 equiv)  Q O
Ph—== + TsNH, - )JVH + )J\/OAC
,,  Solvent(2mL) Ph Ts Ph
la 2 it,10h 3a 4a
1 equiv 1 equiv "~

entry solvent conversion (%)  yield of 3a (%)?  yield of 4a (%)”
1 H,O 39 Trace 36
2 MeOH 45 25 20
3 Toluene 52 22 30
4 1,2-DCE 42 10 32
5 1,4-Dioxane 33 Trace 30
6 CH;CN 82 80 Trace
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« Reaction conditions: All reaction are carried out in 0.5 mmol scale; 1a (0.5 mmol), 2a (1 equiv)
and oxidant (PIDA, 0.25 equiv), at room temperature in different solvents (2 mL) for 10 h. ?

Isolated yield.

After optimizing the reaction conditions, we explored the substrate scope employing
different terminal alkynes to react with 4-methylbenzenesulfonamide, and the results are
summarized in Scheme 2. Phenylacetylene afforded the desired product (3a) in good yield. The
regioselectivity is very important for this reaction, and we found no effect on regioselectivity of
the reaction when phenylacetylene was used substituted with electron-donating or electron
withdrawing groups in the phenyl moiety. The presence of various electron-donating substituents
such as methyl (3b, 3c¢) and fert-butyl (3d) produced the desired products in good to excellent
yields (78-85%). Similarly, a variety of electron withdrawing groups like ketones, halogens (F,
Cl, Br) and nitro at different positions of the phenylacetylene substrate (3e-3k) also reacted
efficiently with good to excellent yields. The heterocyclic moiety, thiophene, afforded the
corresponding product with excellent yield (31). It is worthy to mention that an aliphatic alkyne

also gave the desired product (3m) in excellent yield.

Scheme 2: Substrates Scope of the Amidation Reaction®
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“Reaction conditions: All reaction are carried out in 0.5 mmol scale, 1 (0.5 mmol), 2 (0.5 mmol)

and PIDA (0.25 equiv), at room temperature in MeCN (2 mL) for 10 h. All are isolated yields.
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Next, we have explored our present methodology with another sulfonamide to react with
terminal alkynes under the same reaction condition. 4-Chlorobenzenesulfonamide (2b) reacted
with different terminal alkynes. Phenylacetylene, substituted phenylacetylene with electron
donating substituents like —CHj3, -C(CHj3)s, -OEt, furnished the desired products with good to
excellent yields (3n-3q).Additionally, phenylacetylene substituted with electron-withdrawing
groups like —F, -Br afforded the desired products in good yields (3r & 3s). The thiophene-
containing substrate was found to be equally effective to afford the desired product (3t) with
good yield. Simple benzenesulfonamide (2¢) also successfully reacted with phenylacetylene and
4-tert-butyl phenylacetylene to produce the desired products (3u & 3v) in good yields. However,
the present methodology is not applicable for the propargyl alcohol (1w), 4-ethynylaniline (1x)
and 2-ethynylpyridine (1y). All these reactions were carried out in an open atmosphere and are
not sensitive to air and moisture. The reaction conditions are mild and give no decomposition of
the products or polymerization of the starting materials. All of the known synthesized
compounds have been characterized by NMR and the new compounds by NMR and mass
spectrometry, and the X-ray crystallographic analysis of 4-methyl-N-(2-ox0-2-(thiophen-3-
yl)ethyl)benzenesulfonamide (31) was performed to confirm the structure of the product as

shown in Figure 3.7

Figure 3: Crystal Structure (ORTEP) of 4-Methyl-NV-(2-0x0-2-(thiophen-3-

ylDethyl)benzenesulfonamide (31)
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Furthermore, the potential synthetic applicability of this method was investigated on the
gram scale using the model reaction in our laboratory setup. As shown in Scheme 3, the reaction
could afford 1.08 g of 3a in 75% yield without any significant loss of its efficiency,
demonstrating the potential applications of the present method for a large scale synthesis of a-

sulfonylamino ketone derivatives.

Scheme 3: Gram-Scale Synthesis

I e
0=S=0
PIDA (0.25 equiv) " 9
+ S
CH3CN, 10 h, rt ”
(1a, 5mmol) (2a, 5 mmol) (3a, 75%, 1.08 g)

Finally, we checked the reaction in absence of sulfonamide, and we isolated exclusively
84% of a-acetoxy ketone (4a) when the reaction was performed between phenylacetylene and 1
equiv of PIDA at room temperature.!® Different a-acetoxy ketone derivatives have been
synthesized by varying different phenylacetylenes (Scheme 4). Phenylacetylenes containing
electron-donating substituents such as methyl and fer#-butyl afforded the products in 81% and

86% yields respectively (4b and 4c). Electron-withdrawing groups like -fluoro and -bromo

ACS Paragon Plus Environment
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formed a-acetoxy ketone derivatives in good to excellent yields (4d and 4e). Heterocyclic moiety

like 3-ethynylthiophene reacted well to afford corresponding product 4f in 84% yield.

oNOYTULT D WN =

9 Scheme 4: Substrates Scope of the a-Acetoxy Ketones

PIDA (1 equiv

) O
12 — -
R—
13 RJ\/OAC

21 4a, 84% 4b. 81% 4c, 86%

O O

F. OAc OAc OAc
4

26 Br S

27 4d, 80% 4e, 73% 4f, 84%

O

“Reaction conditions: All reactions are carried out in 0.5 mmol scales, 1 (0.5 mmol) and

33 PIDA (1 equiv), at room temperature in MeCN (2 mL) for 10 h. All are isolated yields.

37 Based on the literature!a¢ and our observation in absence of sulfonamide we propose the
39 reaction pathway shown in Scheme 5. Reaction of alkyne 1 with PhI(OAc), forms the
phenylalkynyl iodanyl acetate intermediate A which on Michael-type addition of AcOH provides
44 intermediate B. On removal of acetate the intermediate carbene C is formed which would then
46 react with an acetoxy nucleophile or acidic acid leading to a diacetoxy alkene intermediate D.
This one would then evolve to an a-acetoxy ketone 4 by reacting with the residual water, which
51 could then lead to the a—sulfonylamino ketone 3 when sulphonamides are present. When ao-
53 acetoxy ketone 4a was subjected to react with sulphonamide 2a, it afforded the desired product

3a which supports our mechanistic path.
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Scheme 5: Proposed Mechanism

.o @ e
PhI(OAC), /_;OH Aco-H oAc AcO '/“ She  AO H
_ r o .
R—= D) R—=—1—Ph - )= — > =Cc —
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. OAc R —Ph R R  OAc
AcOH A B OAc C D
H,0
O H R'SO,NH, o
I
~ A
RJ\/N SO,R! / RJ\/O c

Conclusion:

To conclude, we have successfully developed an efficient and regioselective methodology for the
synthesis of o-sulfonylamino ketones derivatives by the coupling of terminal alkynes with
sulfonamides in presence of PIDA at room temperature under ambient air. An array of a-
sulfonylamino ketones with broad functionalities have been synthesized in high yields. In
addition, we have also observed the formation of a-acetoxy ketones in absence of sulfonamide.
We have also proposed a mechanistic pathway for the formation of both of these compounds.
The notable advantages of the present methodology are clean reaction, easily accessible
reactants, ease of product isolation/purification, and metal-free and environmentally friendly
reaction conditions. We believe that the present methodology opens a new door to synthesize

important building blocks of a-sulfonylamino ketones.

Experimental Section:
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General information: 'H NMR spectra were determined on a 400 MHz spectrometer as
solutions in CDCl;. Chemical shifts are expressed in parts per million (8) and the signals were
reported as s (singlet), d (doublet), t (triplet), m (multiplet) and coupling constants J were given
in Hz. 3C NMR spectra were recorded at 100 MHz in CDCl; solution. Chemical shifts are
expressed in parts per million (0) and are referenced to CDCl; (6 = 77.16) as an internal standard.
TLC was done on silica gel coated glass slide (Silica gel G for TLC). Silica gel (60-120 mesh)
was used for column chromatography. Petroleum ether refers to the fraction boiling in the range
of 60-80 °C unless otherwise mentioned. All solvents were dried and distilled before use.
Commercially available substrates were freshly distilled before the reaction. All reactions
involving moisture sensitive reactants were executed using oven dried glassware. All the starting
materials (such as terminal alkynes 1 and benzenesulfonamide 2) and other reagents were

purchased from commercial suppliers.

General procedure for the synthesis of a-amino ketones (3): A mixture of terminal alkyne (1,
0.5 mmol) and benzenesulfonamide (2, 0.5 mmol) was taken in 2 mL of CH;CN in a sealed tube.
Iodobenzene diacetate (PIDA, 0.25 equiv) was added to the reaction mixture. Next, the reaction
mixture was stirred at room temperature for 10 h. After completion of the reaction (monitored by
TLC), the reaction mixture was diluted with ethylacetate (10 mL) and water (10 mL). Then
organic layer was dried over anhydrous Na,SO,. After evaporation of solvent the crude product
was collected and purified by column chromatography on silica gel using petroleum ether/ethyl

acetate (8% to 10%) as eluent.

Typical procedure for the synthesis of 4-methyl-N-(2-0x0-2-
phenylethyl)benzenesulfonamide (3a) on gram scale: A mixture of phenylacetylene (1a, 5

mmol) and 4-methylbenzenesulfonamide (2a, 5 mmol) was taken in 10 mL of CH3;CN in a 25
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mL of round bottom flask. lodobenzene diacetate (PIDA, 0.25 equiv) was added to the reaction
mixture. Next, the reaction mixture was stirred at room temperature for 10 h. After completion of
the reaction (monitored by TLC), the reaction mixture was diluted with ethylacetate (25 mL) and
water (25 ml). Then organic layer was dried over anhydrous Na,SO,. After evaporation of
solvent the crude product was purified by column chromatography on silica gel using petroleum
ether/ethyl acetate (8% to 10%) as eluent to get the analytically pure product as white solid (3a,

1.08 g, 75%).

General procedure for the synthesis of a-acetoxy ketone (4): A mixture of terminal alkyne (1,
0.5 mmol) and iodobenzene diacetate (PIDA, 0.5 equiv) was taken in 2mL of CH;CN in a sealed
tube. Next, the reaction mixture was stirred at room temperature for 10 h. After completion of
the reaction (monitored by TLC), the reaction mixture was diluted with ethylacetate (10 mL) and
water (10 mL). Then organic layer was dried over anhydrous Na,SO,4. After evaporation of
solvent the crude product was collected and purified by column chromatography on silica gel

using petroleum ether/ethyl acetate (5% to 6%) as eluent.

4-Methyl-N-(2-0xo-2-phenylethyl) benzenesulfonamide (3a):'° White solid (115 mg, 80%), mp:
116-118 °C; 'H NMR (CDCls, 400 MHz): 6 7.86-7.83 (m, 2H), 7.79-7.77 (m, 2H), 7.62-7.59 (m,
1H), 7.48-7.44 (m, 2H), 7.29-7.27 (m, 2H), 5.65 (t, J = 8.0 Hz, 1H), 4.46 (d, J = 4.4 Hz, 2H),
2.39 (s, 3H); BC{'H} NMR (CDCl;, 100 MHz): ¢ 192.7, 143.9, 136.3, 134.5, 134.0, 130.0,

129.1, 128.0, 127.3, 48.8, 21.6.

4-Methyl-N-(2-o0xo0-2-(p-tolyl)ethyl)benzenesulfonamide (3b):''-'°f White solid (118 mg, 78%),

mp: 120-121 °C; 'H NMR (CDCls, 400 MHz): 6 7.71-7.66 (m, 4H), 7.22-7.18 (m, 4H), 5.59 (t, J

ACS Paragon Plus Environment
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= 8.4 Hz, 1H), 4.35 (d, J = 4.8 Hz, 2H), 2.34 (s, 3H), 2.32 (s, 3H); 3C{'H} NMR (CDCl;, 100

MHz): 6 192.1, 145.7, 143.9, 136.2, 131.4, 129.9, 129.8, 128.1, 127.3, 48.6, 21.9, 21.6.

4-Methyl-N-(2-0xo0-2-(m-tolyl)ethyl)benzenesulfonamide (3¢):'"f White solid (127 mg, 84%),
mp: 127-128 °C ; '"H NMR (CDCls, 400 MHz): ¢ 7.79-7.76 (m, 2H), 7.65-7.62 (m, 2H), 7.43-
7.40 (m, 1H), 7.36-7.28 (m, 3H), 5.66 (t, J = 8.4 Hz, 1H), 4.44 (d, J = 4.4 Hz, 2H), 2.39 (s, 6H);
BC{'H} NMR (CDCl;, 100 MHz): ¢ 192.8, 143.9, 139.1, 136.2, 135.4, 133.9, 130.0, 129.0,

128.5,127.3,125.2, 48.8, 21.6, 21.4.

N-(2-(4-(Tert-butyl) phenyl)-2-oxoethyl)-4-methylbenzenesulfonamide (3d):°¢ White solid (146
mg, 85%), mp: 117-119 °C; '"H NMR (CDCl;, 400 MHz): ¢ 7.79-7.76 (m, 4H), 7.48-7.46 (m,
2H), 7.29-7.27 (m, 2H), 5.68 (t, J = 8.8 Hz, 1H), 4.43 (d, J = 4.4 Hz, 2H), 2.39 (s, 3H), 1.32 (s,
9H); BC{'H} NMR (CDCl;, 100 MHz): ¢ 192.2, 158.6, 143.8, 136.2, 131.3, 129.9, 128.0, 127.3,

126.1, 48.7,35.4,31.1, 21.6.

N-(2-(4-Acetylphenyl)-2-oxoethyl)-4-methylbenzenesulfonamide (3e):’* White solid (143 mg,
87%), mp: 116-118 °C; '"H NMR (CDCls, 400 MHz): ¢ 8.03-8.01 (m, 2H), 7.94-7.92 (m, 2H),
7.79-7.77 (m, 2H), 7.31-7.28 (m, 2H), 5.63 (t, J = 8.4 Hz, 1H), 4.49 (d, J = 4.4 Hz, 2H), 2.63 (s,
3H), 2.40 (s, 3H); BC{'H} NMR (CDCl;, 100 MHz): 6 197.2, 192.4, 144.0, 141.3, 137.0, 136.2,

130.0, 128.9, 128.3, 127.3,49.2, 27.0, 21.7.

N-(2-(4-Fluorophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide (3f): Colourless oil (128 mg,
84%); 'H NMR (CDCls, 400 MHz): 6 7.90-7.87 (m, 2H), 7.78-7.76 (m, 2H), 7.29-7.27 (m, 2H),
7.15-7.11 (m, 2H), 5.66 (t, J= 8.4 Hz, 1H), 4.43 (d, J= 4.4 Hz, 2H), 2.39 (s, 3H); *C{'H} NMR

(CDCLs, 100 MHz): § 191.2, 166.5 (d, 'Je.r = 256 Hz), 143.9, 136.2, 130.8 (d, 3Jcr = 10 Hz),
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130.4 (d, “Jor = 3 Hz), 129.9, 127.3, 116.4 (d, 2Jcr = 23 Hz), 48.7, 21.6. Anal. Calcd. For

CisH4FNOsS: C, 58.62; H, 4.59; N, 4.56%; Found: C, 58.68; H, 4.52; N, 4.67%.

N-(2-(3-Fluorophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide (3g): White solid (125 mg,
82%), mp: 157-158 °C; '"H NMR (CDCls, 400 MHz): ¢ 7.78-7.76 (m, 2H), 7.63-7.61 (m, 1H),
7.55-7.52 (m, 1H), 7.48-7.43 (m, 1H), 7.33-7.28 (m, 3H), 5.63 (t, J = 8.4 Hz, 1H), 4.44 (d, J =
4.4 Hz, 2H), 2.39 (s, 3H); BC{'H} NMR (CDCl;, 100 MHz): 6 191.7, 163.0 (d, 'Jc.r = 248 Hz),
144.0, 136.1, 135.8 (d, *Jc.r = 7 Hz), 130.9 (d, 3Jcr = 8 Hz), 130.0, 127.3, 123.7 (d, *Jcr =3
Hz), 121.6 (d, 2Jcr = 21 Hz), 114.8 (d, 2Jcr = 23 Hz), 49.0, 21.6. Anal. Calcd. For

CisH14FNOsS: C, 58.62; H, 4.59; N, 4.56%; Found: C, 58.52; H, 4.51; N, 4.48%.

N-(2-(4-Chlorophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide (3h):'% White solid (131 mg,
77%), mp: 166-167 °C; 'H NMR (CDCls, 400 MHz): ¢ 7.80-7.76 (m, 4H), 7.45-7.42 (m, 2H),
7.30-7.28 (m, 2H), 5.63 (t, J= 8.0 Hz, 1H), 4.42 (d, J= 4.8 Hz, 2H), 2.39 (s, 3H); *C{'H} NMR

(CDCl;, 100 MHz): 6 191.6, 144.0, 141.1, 136.2, 132.2, 130.0, 129.5, 129.4, 127.3, 48.8, 21.6.

N-(2-(2-Chlorophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide (3i):'°° Colourless oil (122
mg, 72%); 'H NMR (CDCl;, 400 MHz): 6 7.77-7.75 (m, 2H), 7.48-7.40 (m, 3H), 7.34-7.28 (m,
3H), 5.56 (t, J = 8.4 Hz, 1H), 4.43 (d, J= 4.0 Hz, 2H), 2.41 (s, 3H); 3C{'H} NMR (CDCl3, 100

MHz): 6 192.1, 145.7, 143.7, 136.2, 131.4, 129.9, 129.8, 128.1, 127.3, 48.6, 21.9, 21.6.

N-(2-(4-Bromophenyl)-2-oxoethyl)-4-methylbenzenesulfonamide (3j):'°° White solid (150 mg,
78%), mp: 120-122 °C; 'H NMR (CDCls, 400 MHz): ¢ 7.78-7.76 (m, 2H), 7.72-7.69 (m, 2H),
7.63-7.59 (m, 2H), 7.30-7.28 (m, 2H), 5.60 (t, J = 8.4 Hz, 1H), 4.42 (d, J = 4.8 Hz, 2H), 2.40 (s,
3H); BC{'H} NMR (CDCl;, 100 MHz): ¢ 191.8, 144.0, 136.2, 132.6, 132.5, 130.0, 129.9, 129.4,

127.3, 48.7, 21.7.
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4-Methyl-N-(2-(3-nitrophenyl)-2-oxoethyl)benzenesulfonamide (3k): Yellow solid (135 mg,
81%), mp: 107-108 °C ; 'TH NMR (CDCls, 400 MHz): 6 8.66-8.65 (m, 1H), 8.47-8.44 (m, 1H),
8.20-8.18 (m, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.71 (t, J = 8 Hz, 1H), 7.30 (d, J = 8 Hz, 2H), 5.66
(t, J=4.4 Hz, 1H), 4.53 (d, J = 4.8 Hz, 2H), 2.40 (s, 3H); *C{'H} NMR (CDCl;, 100 MHz): ¢
191.2, 148.6, 144.2, 136.1, 135.1, 133.5, 130.5, 130.0, 128.6, 127.3, 122.9, 49.2, 21.7. Anal.
Caled. For C;5H14N,05S: C, 53.89; H, 4.22; N, 8.38%; Found: C, 53.81; H, 4.31; N, 8.46%.4-
Methyl-N-(2-0xo0-2-(thiophen-3-yl)ethyl) benzenesulfonamide (31):'' White solid (126 mg,
86%), mp: 130-131 °C; '"H NMR (CDCls, 400 MHz): ¢ 8.07-8.06 (m, 1H), 7.78-7.76 (m, 2H),
7.47-7.45 (m, 1H), 7.35-7.33 (m, 1H), 7.29-7.27 (m, 1H), 5.60 (t, J = 8.4 Hz, 1H), 4.34 (d, J =
4.8 Hz, 2H), 2.39 (s, 3H); 3C{'H} NMR (CDCl;, 100 MHz): 6 186.9, 143.9, 138.6, 136.1, 133.1,

129.9, 127.3(2C), 126.4,49.3, 21.6.

4-Methyl-N-(2-0xo0-4-phenylbutyl) benzenesulfonamide (3m): White solid (137 mg, 87%), mp:
92-93 °C; 'H NMR (CDCls, 400 MHz): 6 7.64-7.62 (m, 2H), 7.22-7.15 (m, 4H), 7.12-7.09 (m,
1H), 7.02-7.00 (m, 2H), 5.27 (t, J = 9.2 Hz, 1H), 3.70 (d, J = 4.8 Hz, 2H), 2.76 (t, J = 14.8 Hz,
2H), 2.59 (t, J = 15.2 Hz, 2H), 2.34 (s, 3H); BC{!H} NMR (CDCl;, 100 MHz): ¢ 203.1, 143.9,
140.0, 136.2, 129.9, 128.7, 128.3, 127.3, 126.5, 51.7, 41.7, 29.5, 217. Anal. Calcd. For

Ci17H19NOsS: C, 64.33; H, 6.03; N, 4.41%; Found: C, 64.42; H, 6.11; N, 4.48%.

4-Chloro-N-(2-0xo-2-phenylethyl) benzenesulfonamide (3n):%¢ White solid (128 mg, 83%), mp:
137-138 °C; 'H NMR (CDCl3, 400 MHz): 6 7.86-7.82 (m, 4H), 7.64-7.60 (m, 1H), 7.49-7.45 (m,
4H ), 5.73 (t, J = 8.4 Hz, 1H), 4.48 (d, J = 4.4 Hz, 2H); BC{'H} NMR (CDCl;, 100 MHz):

192.4,139.6, 137.9, 134.7, 133.8, 129.6, 129.2, 128.7, 128.0, 48.7.
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4-Chloro-N-(2-0xo0-2-(p-tolyl)ethyl) benzenesulfonamide (30): Colourless oil (132 mg, 82%);
'H NMR (CDCl;, 400 MHz): ¢ 7.78-7.74 (m, 2H), 7.68-7.66 (m, 2H), 7.41-7.37 (m, 2H), 7.21-
7.18 (m, 2H), 5.68 (t, J = 8.8 Hz, 1H), 4.37 (d, J = 4.4 Hz, 2H), 2.34 (s, 3H); C{'H} NMR
(CDCl;, 100 MHz): 6 192.0, 145.9, 139.5, 137.9, 131.3, 129.8, 129.6, 128.7, 128.1, 48.6, 21.9.
Anal. Calcd. For C;sH4CINO;S: C, 55.64; H, 4.36; N, 4.33%; Found: C, 55.55; H, 4.28; N,

4.27%.

N-(2-(4-(Tert-butyl)phenyl)-2-oxoethyl)-4-chlorobenzenesulfonamide (3p): White solid (155
mg, 85%), mp: 145-146 °C; '"H NMR (CDCl;, 400 MHz): ¢ 7.84-7.77 (m, 4H), 7.49-7.44 (m,
4H), 5.77 (t, J= 8.8 Hz, 1H), 4.45 (d, J = 4.8 Hz, 2H), 1.32 (s, 9H); *C{'H} NMR (CDCl;, 100
MHz): ¢ 192.0, 158.8, 139.5, 137.9, 131.2, 129.6, 128.7, 128.0, 126.1, 48.6, 35.4, 31.1. Anal.

Calcd. For C;gH,oCINO;S: C, 59.09; H, 5.51; N, 3.83%; Found: C, 59.19; H, 5.60; N, 3.92%.

4-Chloro-N-(2-(4-ethoxyphenyl)-2-oxoethyl)benzenesulfonamide (3q): White solid (137 mg,
78%), mp: 153-154 °C; 'H NMR (CDCls, 400 MHz): ¢ 7.84-7.80 (m, 4H), 7.47-7.45 (m, 2H),
6.93-6.90 (m, 2H), 5.74 (t, /= 8.4 Hz, 1H), 4.40 (d, /= 4.4 Hz, 2H), 4.12-4.07 (m, 2H), 1.44 (t, J
= 13.6 Hz, 3H); BC{'H} NMR (CDCl;, 100 MHz): § 190.6, 164.2, 139.5, 137.9, 130.4, 129.6,
128.7, 126.5, 114.8, 64.1, 48.3, 14.7. Anal. Calcd. For CicHsCINO,S: C, 54.32; H, 4.56; N,

3.96%; Found: C, 54.41; H, 4.65; N, 3.88%.

4-Chloro-N-(2-(4-fluorophenyl)-2-oxoethyl)benzenesulfonamide (3r): White solid (137 mg,
84%), mp: 124-126 °C; '"H NMR (CDCls, 400 MHz): ¢ 7.91-7.87 (m, 2H), 7.84-7.82 (m, 2H),
7.48-7.46 (m, 2H), 7.17-7.13 (m, 2H), 5.74 (t, J = 8.4 Hz, 1H), 4.45 (d, J = 4.4 Hz, 2H); 3C{'H}

NMR (CDCl;, 100 MHz): § 190.9, 166.7 (d, 'Jcr = 256 Hz), 139.6, 137.9, 130.8 (d, *Jcr =9
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Hz), 130.2 (d, “Jcr = 2 Hz), 129.7, 128.7, 116.5 (d, 2Jcr = 22 Hz), 48.6. Anal. Calcd. For

Ci4H [ CIFNO;S: C, 51.30; H, 3.38; N, 4.27%; Found: C, 51.23; H, 3.30; N, 4.18%.

N-(2-(4-Bromophenyl)-2-oxoethyl)-4-chlorobenzenesulfonamide (3s): White solid (159 mg,
82%), mp: 138-139 °C; '"H NMR (CDCls, 400 MHz): ¢ 7.84-7.82 (m, 2H), 7.72-7.70 (m, 2H),
7.63-7.61 (m, 2H), 7.48-7.45 (m, 2H), 5.71 (t, J = 8.4 Hz, 1H), 4.44 (d, J = 4.4 Hz, 2H); 3C{'H}
NMR (CDCls, 100 MHz): J 191.6, 139.7, 137.9, 132.6, 132.5, 130.1, 129.7, 129.4, 128.7, 48.7.
Anal. Calcd. For C4HBrCINOsS: C, 43.27; H, 2.85; N, 3.60%; Found: C, 43.38; H, 2.95; N,

3.67%.

4-Chloro-N-(2-oxo-2-(thiophen-3-yl)ethyl)benzenesulfonamide (3t): White solid (133 mg,
85%), mp: 119-120 °C; '"H NMR (CDCls, 400 MHz): ¢ 8.09-8.08 (m, 1H), 7.84-7.81 (m, 2H),
7.47-7.44 (m, 3H), 7.36-7.34 (m, 1H), 5.74 (t, J = 8.8 Hz, 1H), 4.37 (d, J = 4.4 Hz, 2H); 3C{'H}
NMR (CDCls, 100 MHz): ¢ 186.8, 139.6, 138.5, 137.9, 133.2, 129.6, 128.7, 127.4, 126.4, 49.3.
Anal. Calcd. For C,H(CINO;S,: C, 45.64; H, 3.19; N, 4.44%; Found: C, 45.72; H, 3.28; N,

4.51%.

N-(2-Oxo0-2-phenylethyl) benzenesulfonamide (3u):'> White solid (105 mg, 77%), mp: 40-41
°C; 'TH NMR (CDCls, 400 MHz): 6 7.91-7.89 (m, 2H), 7.86-7.83 (m, 2H), 7.63-7.45 (m, 6H),
5.69 (t, J = 8.4 Hz, 1H), 4.48 (d, J = 4.4 Hz, 2H); BC{'H} NMR (CDCl;, 100 MHz): J 192.6,

139.3, 134.6, 133.9, 133.1, 129.4, 129.1, 128.0, 127.3, 48.8.

N-(2-(4-(Tert-butyl)phenyl)-2-oxoethyl)benzenesulfonamide (3v): Yellow oil (137 mg, 83%);
'"H NMR (CDCl;, 400 MHz): ¢ 7.91-7.88 (m, 2H), 7.79-7.77 (m, 2H), 7.55-7.46 (m, 5H), 5.71 (t,

J = 8.4 Hz, 1H), 4.45 (d, J = 4.4 Hz, 2H), 1.32 (s, 9H); *C{'H} NMR (CDCls, 100 MHz): &
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192.1, 158.7, 139.3, 133.0, 131.3, 129.3, 128.0, 127.2, 126.1, 48.7, 35.4, 31.1. Anal. Calcd. For

CisHyNOsS: C, 65.23; H, 6.39; N, 4.23%; Found: C, 65.33; H, 6.30; N, 4.28%.

2-Ox0-2-phenylethyl acetate (4a):'¥" White Solid (75 mg, 84%), mp: 42-43 °C; 'H NMR
(CDCls, 400 MHz): & 7.91-7.88 (m, 2H), 7.61-7.57 (m, 1H), 7.49-7.45 (m, 2H), 5.32 (s, 2H),
2.21 (s, 3H); BC{'H} NMR (CDCl;, 100 MHz): 6 192.3, 170.5, 134.3, 134.0, 129.0, 127.9, 66.2,

20.7.

2-Ox0-2-(p-tolyl)ethyl acetate (4b):'3" White Solid (78 mg, 81%), mp: 84-85 °C; 'H NMR
(CDCls, 400 MHz): 6 7.80-7.78 (m, 2H), 7.27-7.25 (m, 2H), 5.30 (s, 2H), 2.40 (s, 3H), 2.20 (s,
2H); BC{'H} NMR (CDCls;, 100 MHz): ¢ 191.8, 170.5, 144.9, 131.8, 129.6, 127.9, 66.0, 21.8,

20.6.

2-(4-(Tert-butyl)phenyl)-2-oxoethyl acetate (4c):'3® White Solid (100 mg, 86%); 'H NMR
(CDCls, 400 MHz): 6 7.86-7.84 (m, 2H), 7.50-7.48 (m, 2H), 5.32 (s, 2H), 2.22 (s, 3H), 1.33 (s,
9H); BC{'H} NMR (CDCls, 100 MHz): ¢ 191.9, 170.6, 157.9, 131.7, 127.8, 125.9, 66.1, 35.3,

31.1, 20.7.

2-(3-Fluorophenyl)-2-oxoethyl acetate (4d): Ycllowish oil (81 mg, 80%); 'H NMR (CDCl;, 400
MHz): 6 7.65-7.63 (m, 1H), 7.57-7.53 (m, 1H), 7.45-7.40 (m, 1H), 7.28-7.25 (m, 1H), 5.26 (s,
2H), 2.16 (s, 3H); 3C{'H} NMR (CDCl;, 100 MHz): 6 191.2, 170.3, 162.8 (d, 'Jc.r = 248 Hz),
136.1 (d, *Jc.r = 6 Hz), 130.6 (d, *Jc.r = 8 Hz), 123.5 (d, “Jc.r = 3 Hz), 120.9 (d, 2Jc.r = 22 Hz),
114.5 (d, 2Jcr = 22 Hz), 66.0, 20.4. Anal. Calcd. For C,(HoFO;: C, 61.23; H, 4.62%; Found: C,

61.29; H, 4.72%.

ACS Paragon Plus Environment

Page 20 of 29



Page 21 of 29

oNOYTULT D WN =

The Journal of Organic Chemistry

2-(4-Bromophenyl)-2-oxoethyl acetate (4e):'3" White Solid (94 mg, 73%), mp: 82-83 °C; 'H
NMR (CDCls, 400 MHz): § 7.78-7.76 (m, 2H), 7.64-7.62 (m, 2H), 5.28 (s, 2H), 2.22 (s, 3H);

BC{'H} NMR (CDCl;, 100 MHz): ¢ 191.5, 170.5, 133.1, 132.4, 130.0, 129.4, 65.9, 20.6.

2-0x0-2-(thiophen-3-ylethyl acetate (4f):'%¢ Yellow Solid (77 mg, 84%), mp: 75-76 °C; 'H
NMR (CDCls, 400 MHz): 6 8.10-8.09 (m, 1H), 7.53-7.51 (m, 1H), 7.36-7.34 (m, 1H), 5.19 (s,
2H), 2.20 (s, 3H); *C{!H} NMR (CDCl;, 100 MHz): ¢ 186.8, 170.5, 138.7, 132.3, 126.9, 126.5,

66.3, 20.6.

Supporting information: Scanned copies of 'H and '3C NMR spectra of the synthesized
compounds, CIF file for compound 31 are available as supporting information. This material is

available free of charge via the Internet at http://pubs.acs.org.
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