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ABSTRACT: We report herein a miscellaneous oxindole synthesis
bearing an all-carbon quaternary center, enabled by Pd-catalyzed
intramolecular cyclization followed by multiple intermolecular Heck
reactions of both easily accessible alkene-tethered carbamoyl
chlorides and olefins. This protocol obviates the use of prefunction-
alized olefinic reagents, exhibits excellent functional group tolerance,
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and features fascinating reactive versatility.

he oxindole skeleton, especially a 3,3-disubstituted one, as
a representative nitrogen-containing heterocyclic com-
pound prevails in cores of numerous complex molecules and
exhibits a variety of great bioactivities found in natural products
and pharmaceuticals.' ™ Transition metal-catalyzed dicarbo-
functionalization of N-arylacrylamides is a powerful synthetic
tool for the rapid construction of oxindole skeletons.” * Among
these studies, the reaction with an alkenylative reagent is of
particularly great interest because of its ability to be further
functionalized.® However, most the olefinic coupling partners
are either alkenyl metallic reagents or vinyl bromides, which are
much less available or unstable, thus requiring multiple
synthetic steps or tedious manipulations to facilitate this
cascade reaction (Scheme 1a). The leverage of alkene without
any prefunctionalization enables the domino Heck reaction to
become an appealing approach for the assembly of molecular
complexity from simple feedstocks with high atom econo-
my.” "' Recently, the Glorius group developed a photoinduced
Pd-catalyzed aryl bromide-tethered olefin dicarbofunctionaliza-
tion with reactive styrene and acrylamides as coupling partners,
enabling the expeditious synthesis of heterocyclic compounds.
Because the reaction proceeded via the open-shell intermediate,
the scope of olefins restricts the tri- and tetrasubstituted alkenes
to stabilize the radical intermediate, and only two oxindoles
with an olefinic substituent were accessible (Scheme 1a)."?
Carbamoyl chloride, a stable and easily accessible feedstock
derived from widespread secondary amine, is a good precursor
for the expedient access to oxindole derivatives. Pioneering
work by Grigg13 and Takemoto,"* carbopalladation-initiated
cyclization of alkene-tethered carbamoyl chlorides, has emerged
as an efficient approach to constructing oxindoles bearing all-
carbon quaternary centers. Other elegant works involving
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Scheme 1. Development for Domino Cyclization/Heck
Reaction of Carbamoyl Chloride

a) Aryl-alkenylation of tethered alkene with alkenylative reagents
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b) This work: Pd-catalyzed diverse Heck reaction of carbamoyl chloride
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different termination reactions such as iodlzatlon, 3 boryla- the reaction (entry 7), probably due to the insufficient ratio of

. 16 . . 17a . 18
tion,'® carbene insertion,'” alkynylation,'"”” and acylation

have also been reported by Tong and co-workers, Lautens and
co-workers, Zhu and co-workers, and Wang and co-workers,
respectively. Despite the advances, more useful reaction
patterns still need to be continuously developed. Herein, we
report a Pd-catalyzed two-sequence Heck-type reaction from
carbamoyl chlorides and alkene feedstocks via intramolecular
cyclization followed by intermolecular Heck reaction, allowing
for the rapid assembly of a 3,3-disubstituted oxindole-bearing
quaternary carbon center with broad functional group
tolerance, which could serve as an advancement of the
cyclization of N-(2-halophenyl)acrylamide and circumvent
the use of prefunctionalized alkenyl organometallics or alkenyl
halides (Scheme 1b, i). Moreover, the sequential Heck—1,4-Pd
migration—Heck pattern was successfully applied to provide the
hindered 3-arylated, all-carbon substituted oxindole synthesis
when an aryl group was prefunctionalized on the tethered
alkene moiety (Scheme 1b, ii).”*'? Additionally, the relay Heck
sequence could be selectively incorporated with alkenols as the
coupling component to introduce the aldehyde functionality at
the remote site (Scheme 1b, iii).*’

Initial attempts with our proposed protocol were carried out
with model substrate carbamoyl chloride 1a and ethyl acrylate
2a. As outlined in Table 1, the reaction proceeded smoothly to

Table 1. Optimization of Reaction Condition”

5 mol% Pddba,

Me 9 o OEt
o | B Y
2.0 equiv. DIPEA

N—(I * %\g/ Tol (0.1 M), 110 °C, 20 n N °

Me © Me
1a 2a 3a

entry deviation from above 3a (%)

1 none 84 (79)1)
2 2.0 equiv of K;PO,, without DIPEA 54
3 without K;PO, S3
4 without ligand or K;PO, 31
S TMP instead of DIPEA 63
6 Cy,NMe instead of DIPEA 63
7 PdCl(allyl)IPr 12
8 Ni(cod), instead of Pd(dba), 0

“Standard conditions: 1a (1.0 equiv), 2a (2.0 equiv), Pd(dba), (S
mol %), IPr-HCI (10 mol %), K3PO4 (20 mol %), DIPEA (2.0 equiv),
Tol (0.1 M), 110 °C, 20 h. ®Isolated yield.

afford the desired oxindole product 3a in 84% GC yield with S
mol % Pd(dba), as the catalyst, 10 mol % IPr-HCI as the
supporting ligand, and 2.0 equiv of DIPEA as the organic base,
and an additional 0.2 equiv of inorganic base K;PO, was
necessary to liberate the free carbene ligand to give 3a in 79%
isolated yield (entry 1). The product yield dropped dramatically
to 54% when DIPEA was replaced with K;PO, (entry 2).
Substoichiometric K;PO, was also essential for high catalytic
efficiency; the yield decreased to 53% with the omission of the
K;PO, (entry 3). The reaction could also proceeded under
ligand free conditions, albeit with 31% recovery of 3a and 40%
recovery of la (entry 4), indicating the necessity of the IPr
ligand. The lower efficiency of the reaction could be observed
by using other common organic bases such as TMP and
Cy,NMe (entries S and 6, respectively). Meanwhile, the NHC-
coordinated precatalyst PACl(allyl)IPr, which was expected to
furnish a better result, conversely caused a detrimental effect in

ligand to catalyst. The nickel catalyst possessed no reactivity
(entry 8).21

With the optimal conditions in hands, we sought to
investigate the generality of the domino cyclization/intermo-
lecular Heck reaction. As depicted in Scheme 2, diverse N-

Scheme 2. Substrate Scope of Sequential Cyclization

Intermolecular Heck Reaction”
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“Standard conditions: 1 (1.0 equiv), 2 (2.0 equiv), Pd(dba), (S mol
%), IPr-HCl (10 mol %), K;PO, (20 mol %), DIPEA (2.0 equiv), Tol
(0.1 M), 110 °C, 11-57 h.

protecting groups such as Me, Bn, PMB, and Ph are well
tolerated in this reaction (3a—3d, respectively). Substituents on
the pendant alkene were also examined. Bulky alkylated groups,
including isopropyl and CH,OTBS-substituted olefins, could
also participate in the reaction, affording the corresponding
products in 51-79% isolated yield (3e—3g). Fascinatingly,
halide substituent groups such as Cl and Br groups on the
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aromatic ring were accommodated with para-, meta-, and ortho-
substituted carbamoyl chlorides, which could be utilized for
further derivatization to form more functionalized oxindole
scaffolds (3i—3k, respectively).”> Meanwhile, both electron-
donating and -withdrawing groups on the aromatic ring did not
interfere with the formation of a productive alkene-tethered
oxindole skeleton, generating the corresponding products in
excellent yields (3h, 31, and 3m). Carbamoyl chloride with a
pendant alkylate alkene was also applicable in this trans-
formation, delivering functional y-lactam 3n in a moderate
yield. In addition, the scope of the olefins was also evaluated in
this reaction. Both fert-butyl acrylate and methyl acrylate
proceeded quite smoothly under the standard conditions,
affording the desired product in a good isolated yield (30 and
3p, respectively). Likewise, acrylonitrile (3q; E/Z = 3/1),
acrylamide (3r), and vinyl ketones (3s and 3t) were also
investigated in this reaction, delivering moderate to good yields
of the desired products. Styrene including bromide could also
be tolerated, giving 3u in a 42% isolated yield.

To our delight, when the substitution group on the alkene
moiety of the starting material 1’ was switched to the aromatic
groups, the reaction proceeded in the sequential carbamoyla-
tion—migratory insertion—1,4-Pd migration—Heck reaction

Scheme 3. Substrate Scope of Sequential Cyclization/1,4-Pd
Shift/Heck Reaction”

R O 5 mol% Pddba,
10 mol% IPrHCI

20 mol% KPO,
R2 O cl + ZOR
N~

2.0 equiv. DIPEA
o) (2.0 equiv.)

Tol (0.1 M), 110 °C, 20 h

\
Me
4k, 81%

“Standard conditions: 1’ (1.0 equiv), 2 (2.0 equiv), Pd(dba), (5 mol
%), IPr-HCl (10 mol %), K;PO, (20 mol %), DIPEA (2.0 equiv), Tol
(0.1 M), 110 °C, 12-21 h.

manner, providing the arylated oxindoles 4 in excellent yields
(Scheme 3). We began to explore the reaction of the phenyl-
substituted starting material, with which the desired product 4a
was obtained in 91% isolated yield. Then the substrate scope of
both the electrophiles and the olefins was investigated.
Gratifyingly, carbamoyl chlorides bearing halogens such as F,
Cl, and Br could be subjected to the standard conditions,
delivering moderate to excellent yields of the products (4c—4e,
respectively). Notably, the fluorine group ortho to the double
bond provided the product without interfering with the
insertion efficiency. Meanwhile, effects of the substituents on
alkene were also examined. Both electron-donating and
electron-withdrawing groups on the aromatic rings such as
the phenyl group (4f), the methoxyl group (4g), and the
trifluoromethyl group (4h) were tolerated without restricting
the 1,4-Pd shift proficiency in this reaction. The heterocyclic
thiophene-substituted alkene could also proceed via 1,4-Pd
migration to provide 4i, with a slight decrease in the yield.
Other olefinic partners, including styrene and acrylonitrile,
could be employed in this reaction efliciently to furnish
intermolecular Heck products 4j and 4k in 92% (E/Z = 5/1)
and 81% yields, respectively.

It would be challenging to incorporate the alcohol as the
coupling partner, because the alcoholic functionality could not
only serve as the transmetalation group with the palladium
intermediate but also participate in the transesterification step
with carbamoyl chloride. Attempts to interrogate various
alkenols as the Heck reaction component also succeeded in
providing the aldehyde-substituted oxindole product §
(Scheme 4). The reaction proceeded in a carbamoylation—

Scheme 4. Substrate Scope of Sequential Cyclization/1,4-Pd
Shift/Intermolecular Relay Heck Reaction”

5 mol% Pddbaj,
10 mol% IPreHCI
20 mol% K3PO,
2.0 equiv. DIPEA

Tol/DCE (2/1) (0.1 M)
100 °C, 15-24 h

59, 77% 5h, 42%

“Standard conditions: 1’ (1.0 equiv), 2 (2.0 equiv), Pd(dba), (S mol
%), IPr-HCl (10 mol %), K;PO, (20 mol %), DIPEA (2.0 equiv),
Tol/DCE (2/1, 0.1 M), 110 °C, 15—24 h.
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Scheme S. Plausible Mechanism
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migratory insertion of alkene—1,4-Pd shift—relay Heck manner.
In this transformation, allyl alcohol could proceed smoothly,
providing Sa in 67% isolated yield. In addition, the length of the
chain between the alcohol and alkene minimally affects the
efficiency of the relay Heck reaction. Excellent yields could be
obtained with an increased chain length (Sb and Sc). Next, the
electronic effect on the phenyl group linked to the alkene was
also evaluated. Electron-withdrawing group CF; accelerated the
reaction, while electron-donating substituent OMe provided a
slightly decreased yield of the desired product (5d and Se).
Synthetically versatile substituents on the oxindole backbones
such as F, Cl, and Br groups were examined in this
transformation. All of these groups could be employed to give
the desired products in moderate to good yields (5f—Sh,
respectively); the fluorine group vicinal to the tethered alkene
might affect the first insertion step, while the modest yield of 5f
is likely due to disfavored steric hindrance.

On the basis of the experimental results, we propose the
following reaction pathways (Scheme S). First, oxidative
addition of carbamoyl chloride to Pd(0) formed A, which
subsequently proceeded via the intramolecular migratory
insertion into the tethered alkene to generate alkylpalladium
species B. When the R group on B was an alkyl substituent, the
existence of another olefinic counterpart led to the sequential
intermolecular migratory insertion, followed by the S-H
elimination to provide the oxindole product 3, and the reactive
Pd(0) intermediate was regenerated via the reductive
elimination step (circle I). Moreover, when the R group on
intermediate B was an aromatic ring, the reaction proceeded via
path IL Intramolecular C—H activation of alkylpalladium with a
phenyl group on an alkene resulted in a 1,4-Pd migration to
afford intermediate C, which then could be trapped by alkene
via intermolecular Heck reaction to furnish product 4.
Alternatively, when alkenols were used as the olefin counterpart
to participate in this reaction, intermediate E was originally
formed from species D, which then proceeded via the fast
reinsertion of the Pd—H reactive intermediate to initiate the
final relay Heck process. Aldehyde S was obtained to finish the
whole domino process.

In summary, we have developed an efficient and intriguing
protocol for the construction of various useful oxindole
scaffolds via a Pd-catalyzed cascade intramolecular cyclization
and versatile intermolecular Heck reaction of easily accessible
carbamoyl chlorides with simple alkenes. The reaction can

proceed through different pathways depending on the nature of
the ingredient to afford 3,3-disubstituted oxindoles bearing an
all-carbon quaternary center alkene and aldehyde functional
group. This tranformation is distinguished by its multiple
reactivities and broad functional group tolerance, which might
establish a complementary approach to the synthesis of some
useful pharmaceutical scaffolds.
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