
Catalysis Communications 64 (2015) 110–113

Contents lists available at ScienceDirect

Catalysis Communications

j ourna l homepage: www.e lsev ie r .com/ locate /catcom
Short communication
Preparation of silicalite-1@Pt/alumina core–shell catalyst for
shape-selective hydrogenation of xylene isomers
Yilan Wu a, Yongming Chai a,b,⁎, Jiangchuan Li a, Hailing Guo a, Ling Wen a, Chenguang Liu a,b,⁎
a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China
b Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580, PR China
⁎ Corresponding authors at: State Key Laboratory o
University of Petroleum (East China), Qingdao 266580, PR

E-mail addresses: ymchai@upc.edu.cn (Y. Chai), cgliu@

http://dx.doi.org/10.1016/j.catcom.2015.02.004
1566-7367/© 2015 Published by Elsevier B.V.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 December 2014
Received in revised form 30 January 2015
Accepted 3 February 2015
Available online 7 February 2015

Keywords:
Core–shell
Silicalite-1 membrane
Platinum
Xylene
Hydrogenation
A silicalite-1@Pt/alumina core–shell catalyst that combined molecular sieving and hydrogenation was synthe-
sized by coating silicalite-1 onto the surface of Pt/alumina pellet. While a Pt/alumina catalyst had no selectivity
in the hydrogenation of xylene isomers, the silicalite-1@Pt/alumina core–shell catalyst showed much higher ef-
ficiency for the hydrogenation of p-xylene than for that of m- and o-xylene. The shape-selective hydrogenation
catalyst has great potential for application in xylene separation.

© 2015 Published by Elsevier B.V.
1. Introduction

Zeolites are crystalline microporous aluminosilicates with periodic
arrangements of cages and channels that have been found with exten-
sive industrial applications as catalysts, adsorbents and ion exchangers
[1]. Recent success in the preparation of zeolite membranes with good
thermal, chemical, and structural stabilities has provided new opportu-
nities for applications in gas, vapor and liquid separations [2–4]. One
highly desirable process is the separation of p-xylene (kinetic
diameter ~ 5.8 Å) from its bulkier m- and o-xylene isomers (kinetic
diameter ~ 6.8 Å), which is of significant importance in petrochemical
industry for the high value downstream products from p-xylene such
as terephthalic acid, polyester resin and terylene [5]. The diameter of
the pore opening ofMFI zeolite (5.5× 5.1Å sized elliptical channels run-
ning along the a axis in a sinusoidal manner and 5.6 × 5.3 Å sized ellip-
tical channels running straight along the b axis [6,7]) is approximately
of the size of p-xylene, while the bulkierm- and o-xylene isomer mole-
cules can face significant sterical hindrance within the confines of the
zeolite pores. Therefore, due to molecular sieving through zeolitic
pores, defect-free MFI zeolite membranes have high permselectivity
for p-xylene over o-xylene and m-xylene [8–11].

Several groups have studied the separation of xylene isomers
through MFI zeolite membranes [12–20]. Keizer et al. [12] reported
that the separation factor of 0.62 kPa p-xylene and 0.52 kPa o-
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xylene vapor mixtures had a maximum value of about 60 between
room temperature and 473 K. Xomeritakis et al. [13,14] studied an
MFI-membrane synthesized on the surface of α-alumina disks to
evaluate the separation of xylenes in the 295–548 K temperature
range. The prepared membranes exhibited a p-xylene permeance of
2 × 10−8 molm−1 s−1 Pa−1 at 373–398 K and p/o separation factors
between 60 and 300. Lai et al. [15,16] reported the preparation of b-
Fig. 1. XRD patterns of PA-S, PA and pure silicalite-1.
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Fig. 3. Surface EDS analysis of (a) the bare PA catalyst and (b) the PA-S core–shell catalyst.

Fig. 2. (a, b) Top-view SEM images of the PA catalyst, (c, d) top-view SEM images and (e, f) cross-section SEM images of the PA-S core–shell catalyst under low (left) and high (right)
magnifications.
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Table 1
Hydrogenation product yields over the PA and PA-S catalysts in the hydrogenation of sin-
gle component xylene isomer.a

Hydrogenation product yields (wt.%) b Selectivity

Catalysts 1,2-DC 1,3-DC 1,4-DC p/o p/m

PA 80.7 83.9 81.8 1.0 1.0
PA-S 0.8 2.4 75.6 94.5 31.5

a Reaction conditions: 473 K, 1.0 MPa, Wcat = 2 g, feed= 4 ml h−1, WHSV= 1.0 h−1,
FH2

= 2400 ml h−1. Feed composition: single component xylene isomer.
b 1,4-Dimethylcyclohexane (1,4-DC), 1,3-dimethylcyclohexane (1,3-DC) and 1,2-

dimethylcyclohexane (1,2-DC) are hydrogenation products of p-xylene, m-xylene
and o-xylene, respectively.

Table 3
Hydrogenation product yields over the PA-S catalyst in the hydrogenation of equimolar bi-
nary p/m xylene.a

Hydrogenation product yields (wt.%) Selectivity

1,4-DC 1,3-DC p/m
39.3 2.9 13.6

a Reaction conditions: 473 K, 1.0 MPa, Wcat = 2 g, feed = 4 ml h−1, WHSV= 1.0 h−1,
FH2

= 2400 ml h−1. Feed composition: 50 wt.% p-xylene and 50 wt.%m-xylene.
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oriented silicalite membranes synthesized on the surface of α-
alumina disks. These membranes showed p/o-xylene separation fac-
tors (0.5 kPa/0.45 kPa) as high as 483 at 493 K with a p-xylene
permeance of 2 × 10−7 molm−1 s−1 Pa−1.

Although these approaches were successful in demonstrating
high selectivity for xylene separation, they are of limited practical
potential because of prohibitive low fluxes [15]. Bakker et al. [17] in-
dicated that themaximumpermeation flux could be described by the
equilibrium adsorption amount for xylenes through the MFI mem-
brane. Thus, a combination of separation with catalysis is required
to attain compatible separation fluxes and reaction rates. The selec-
tive conversion of reactant can break the equilibrium limitation on
the membrane. Besides, diffusion is an activated process and the dif-
fusivity increases with the reaction temperature, thus a catalytic re-
action under high temperature will further enhance the diffusion
efficiency through the membrane.

In this work, we report a catalyst with a core–shell structure that
couples molecular sieving and hydrogenation. A Pt/Al2O3 hydrogena-
tion catalyst was prepared as a core catalyst. One layer of silicalite-1
shell was successfully developed on the core catalyst. The silicalite-1@
Pt/Al2O3 particles were then used for the hydrogenation of xylene iso-
mers. The product selectivity for the silicalite-1@Pt/Al2O3 catalyst was
compared with that for the naked Pt/Al2O3 core catalyst. This concept
of core–shell catalyst has great potential to develop into a novel ap-
proach for xylene separation.
2. Experimental

Alumina (Al2O3) pellets (2.0–2.3 mm, Sasol Co.) were used as
support for the preparation of a 1.0 wt.% Pt/Al2O3 core catalyst by im-
pregnation with an aqueous solution of chloroplatinic acid hexahy-
drate (H2PtCl4·6H2O). The Pt/Al2O3 core catalyst, named PA, was
pre-modified with a 3.0 wt.% TPAOH solution, followed by the ad-
sorption of silicalite-1 nanoparticles. One layer of silicalite-1 shell
was synthesized on the thus-treated PA core catalyst using second-
ary hydrothermal synthesis, with a reaction solution composition
of 0.4TPAOH/1.0TEOS/160H2O, at 443 K for 3 days. The obtained
silicalite-1 membrane coated Pt/Al2O3 catalyst was named PA-S.

More detailed descriptions of the synthesis, characterization and
catalytic test were presented in the Supplementary material.
Table 2
Hydrogenation product yields over the PA-S catalyst in the hydrogenation of equimolar bi-
nary p/o xylene.a

Hydrogenation product yields (wt.%) Selectivity

1,4-DC 1,2-DC p/o
34.7 2.04 17.0

a Reaction conditions: 473 K, 1.0 MPa, Wcat = 2 g, feed= 4 ml h−1, WHSV= 1.0 h−1,
FH2

= 2400 ml h−1. Feed composition: 50 wt.% p-xylene and 50 wt.% o-xylene.
3. Results and discussion

3.1. Catalyst characterization

X-ray diffraction (XRD) patterns of the naked PA catalyst, PA-S core–
shell catalyst and pureMFI zeolite are presented in Fig. 1. For the PA cat-
alyst, only the peaks of crystalline α-Al2O3 were observed. For the
silicalite-1 coated PA-S catalyst, X-ray diffraction peaks belonging to
silicalite-1 appeared at 2θ = 7.9°, 8.9° and 23.5° by comparing with
pure silicalite-1 zeolite, indicating that silicalite-1 membrane had suc-
cessfully crystallized on the PA core catalyst.

The top-view SEM images in Fig. 2(a) and (c) show the whole sur-
face morphologies of the PA catalyst and the PA-S core–shell catalysts.
Both the PA and PA-S catalysts have spherical structures with the diam-
eters around 2 mm. From the magnified surface images of the PA and
PA-S catalyst in Fig. 2(b) and (d), it can be clearly observed that the sur-
face of the PA-S catalyst had been covered by one layer of silicalite-1.
Fig. 2(e) and (f) shows the cross-section SEM images of the PA-S catalyst
under different magnifications. A well-intergrown and uniform zeolite
shell coated on the surface of the PA core catalyst could be distin-
guished. The thickness of this silicalite-1 layer is about 4 μm. The ele-
mental distributions of the PA pellet surface before and after the MFI
zeolite coating are presented in Fig. 3(a) and (b). On the bare PA catalyst
surface, a Pt peak can be detected, but there is no Pt signal visible on the
surface of the PA-S core–shell catalyst after the zeolite coating step. This
indicates that the PA core catalyst is completely enwrapped by this inte-
grated silicalite-1 membrane.

3.2. Catalyst evaluation results

The PA-S catalyst was used for the selective hydrogenation of xylene
isomers to investigate the effect of the silicalite-1 coated core–shell struc-
ture. For comparison, the naked PA catalyst was also studied under the
same reaction conditions. The hydrogenation experiments were carried
out with single component xylene isomer and amixture of equimolar bi-
nary p/o-xylene and binary p/m-xylene, respectively, as the feeds. Hydro-
genation product yields of single component xylene isomer over the two
catalysts are presented in Table 1. When silicalite-1 crystals without Pt
were used for the reaction, no catalytic activity was observed, so the
silicalite-1 coating on the catalyst acted not as a catalyst but as a mem-
brane. For each xylene isomer, there was only one corresponding hydro-
genation product. That is, p-xylene was hydrogenated to produce 1,4-
dimethylcyclohexane (1,4-DC), m-xylene was hydrogenated to produce
1,3-dimethylcyclohexane (1,3-DC) and o-xylene was hydrogenated to
produce 1,2-dimethylcyclohexane (1,2-DC). For the naked PA core cata-
lyst, the yield of 1,4-DC, 1,3-DC and 1,2-DC all exceeded 80 wt.%, demon-
strating that the bare PA core catalyst has no selectivity in the
hydrogenation of the three xylene isomers. In contrast, for the PA-S
core–shell catalyst, the hydrogenation conversion of p-xylene was only
slightly lower (75.6 wt.%) than that over the PA catalyst (81.8 wt.%),
while the yield of 1,3-DC and 1,2-DC was much lower than over the
bare PA catalyst. This indicates that the hydrogenation of m-xylene and
o-xylene was strongly suppressed on the PA-S catalyst. The ideal p/o hy-
drogenation selectivity on the PA-S catalyst (the ratio of the conversion
of p-xylene to that of o-xylene) was as high as 94.5, which was much
higher than that of the PA catalyst (about 1.0). The high ideal p/m



Scheme 1. Selective hydrogenation model of xylene isomers over the PA-S core–shell catalyst.
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selectivity of 31.5was also obtained on the PA-S catalyst. The selective hy-
drogenation performance of the PA-S catalyst using binary p/o xylene and
binary p/m xylene feeds is shown in Tables 2 and 3, respectively. The real
p/o and p/m hydrogenation selectivities of 17.0 and 13.6, respectively,
were obtained, indicating that the PA-S catalyst also realized high para-
selectivities for binary p/o and p/m xylene mixtures.

The excellent para-selectivity is a consequence of diffusion resis-
tance, that is, the silicalite-1 membrane imposes sterical restriction on
the transport of m-xylene and o-xylene molecules relative to p-xylene
molecules. As illustrated in Scheme 1, when xylene isomers contact
the silicalite-1 shell, p-xylene is able to diffuse through the pores,
reach the Pt active site in the core, then undergo a hydrogenation, and
finally the produced 1,4-DC diffuses out. The bulkier isomers, m-
xylene and o-xylene, may be too large to diffuse into the pores easily
or at greatly reduced rates, suppressing their further hydrogenation to
generate 1,3-DC and 1,2-DC. As a result, the hydrogenation conversions
ofm-xylene and o-xylenewere decreased sharply over the PA-S catalyst
compared to those over the PA catalyst. The excellent catalysis and sep-
aration performance of the zeolite-coated PA-S catalyst confirmed that
this silicalite-1 membrane realized high-flux and high-selectivity of p-
xylene. Besides, the high permeability and reaction efficiency contribut-
ed to the combination of catalytic reaction and separation. The diffusion
limitation on the silicalite-1 membrane was broken by the selective
conversion of p-xylene to its hydrogenation product.

4. Conclusion

A core–shell catalystwas shown to couplemolecular sieving and hy-
drogenation. One layer of silicalite-1 membrane with a thickness of
4 μm was successfully coated onto the surface of Pt/Al2O3 catalyst by a
hydrothermal synthesis method. In the hydrogenation of xylene iso-
mers, the silicalite-1@Pt/Al2O3 catalyst showed much higher efficiency
for the hydrogenation of p-xylene than for that of m- and o-xylene.
The ideal p/o and p/m hydrogenation selectivities of 94.5 and 34.5, re-
spectively, as well as the real p/o and p/m hydrogenation selectivities
of 17.0 and 13.6, respectively, were obtained at 473 K due to the selec-
tive permeation of p-xylene into the Pt/Al2O3 particle through the
silicalite-1 layer.
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