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ABSTRACT: An efficient TBHP/KI-promoted annulation of anilines with ethers and elemental sulfur has been developed 
through the selective C-O bond cleavage of ethers under transition-metal-free conditions. A wide range of 2-aryl, 2-
heteroaryl and 2-alkyl substituted benzothiazoles were easily prepared with satisfactory yields and good functional group 
compatibility.

■ INTRODUCTION
Benzothiazole and its derivatives are one class of 
important heterocyclic compounds due to their diverse 
application in pharmaceuticals,1a-c organic light-emitting 
diodes (OLEDs)1d and fluorescent probes,1e etc. For 
example, some 2-substituted benzothiazoles show a 
variety of pharmacological properties, such as antitumor,2 
antimicrobial3 and anticonvulsant activities4. In general, 
prefunctionalized substrates, such as 2-
aminobenzenethiol,5 thiobenzanilides or N-arylthiourea,6 
2-haloanilines7 and 2-halonitroarenes8 are used as 
precursors to synthesize 2-substituted benzothiazoles. 
Besides, many efforts have been paid on the direct C−H 
arylation or alkylation at the 2-position of simple 
benzothiazoles.9 However, these prefunctionalized 
substrates and benzothiazoles are not readily available, 
resulting in limited synthetic applications in some ways. 
Therefore, it is of great importance for the development of 
efficient methods to construct benzothiazoles from more 
simple starting materials.

In recent years, the combination of simple anilines and 
elemental sulfur was synthetically attractive for one-pot 
generation of 2-substituted benzothiazoles through three-
component reaction. In 2012, Wei and co-workers 
described the direct construction of 2-substituted 
benzothiazoles from anilines or naphthylamine, sulfur and 

methylaromatics in absence of catalysts, but a high 
reaction temperature (275 oC) was needed.10 In 2017, 
Deng et al. reported a NH4I or KI-catalyzed reaction of 
aromatic amines, sulfur powder and benzaldehydes at 150 
oC, providing 2-arylbenzothiazoles and 2-arylnaphtho[2,1-
d]thiazoles in good to excellent yields.11 More recently, 
Chen et al. established an efficient I2-promoted reaction of 
aromatic amines, sulfur powder and acetophenones for the 
synthesis of 2-aryl benzothiazoles.12 Though these 
methods were successfully applied to generate 2-aryl 
benzothiazoles, aliphatic aldehydes and ketones were 
incompatible so that 2-alkyl benzothiazoles could not be 
obtained.

Ethers, such as diethyl ether, THF, etc. are cheap and 
readily available solvents in most labs, and are versatile 
building blocks in organic synthesis.13 During recent years, 
ethers have been reported as sources of alkyls through the 
C−O bond cleavage of ethers, but the application in the 
construction of heterocycles is still rare (Scheme 1a).14 In 
2019, we developed an efficient three-component reaction 
of 1-(2-aminoaryl)pyrroles, elemental sulfur and ethers for 
constructing 1,3,6-benzothiadiazepines, and found it easy 
to introduce both aryl and alkyl to the heterocyclic 
skeleton (Scheme 1b).15 Along this lines, we envisioned 
that aryl, heteroaryl or alkyl species generated from the 
C−O bond cleavage of ethers would be an alternative 
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source to 2-aryl, 2-heteroaryl or 2-alkyl substituted 
benzothiazoles (Scheme 1c).
Scheme 1. Synthesis of Heterocycles through the C−O 
Bond Cleavage of Ethers
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Initially, we commenced the three-component reaction 
of aniline (1a), benzyl methyl ether (2a) and sulfur 
powder (S8) in the presence of an organic or inorganic 
oxidant and a catalytic amount of iodide compound (Table 
1). To our delight, when the substrates was conducted with 
tert-butyl-hydroperoxide (TBHP) (4 equiv, 70% aqueous 
solution) and nBu4NI (20 mol %) in DMSO at 130 °C for 24 
h, the desired product 2-phenylbenzo[d]thiazole (3a) was 
obtained in 62% yield (entry 1). A screen with peroxides 
such as di-tert-butyl peroxide (DTBP), benzoyl peroxide 
(BPO), dicumyl peroxide (DCP) and K2S2O8 indicated TBHP 
to be optimal for this transformation (entries 2–5). The 
reaction did not occur in the absence of a catalyst (entry 
6). Thus, a series of catalysts including iodides (NH4I, KI, 
I2), nBu4NBr and nBu4NCl were tested, and KI was proved to 
be the best one (entries 1, 7−11). Further screen of the 
amount of TBHP (entries 12 and 13), KI (entries 14 and 
15), benzyl methyl ether (entry 16) and sulfur powder 
(entry 17) showed that the most appropriate amounts of 
these reagents were 4 equiv TBHP, 20 mol % KI, 4 equiv 2a 
and 2 equiv S8. Increase or decrease of the temperature 
might reduce the yield (entry 18). In addition, no desired 
product was obtained when 2 equiv Na2S or CS2 was used 
instead of elemental sulfur.
Table 1. Optimization of the Reaction Conditionsa

NH2

S8

conditions

1a 2a 3a

O N

S

Entry Oxidant (equiv) Catalyst (mol %) Yield (%)
1 TBHP (4) nBu4NI (20) 62
2 DTBP (4) nBu4NI (20) 46
3 BPO (4) nBu4NI (20) 32
4 DCP (4) nBu4NI (20) 29
5 K2S2O8 (4) nBu4NI (20) 0
6 TBHP (4) — 0
7 TBHP (4) NH4I (20) 69
8 TBHP (4) KI (20) 78

9 TBHP (4) I2 (20) 63
10 TBHP (4) nBu4NBr (20) 0
11 TBHP (4) nBu4NCl (20) 0
12 TBHP (3) KI (20) 65
13 TBHP (5) KI (20) 77
14 TBHP (4) KI (10) 60
15 TBHP (4) KI (30) 75
16 TBHP (4) KI (20) 65b, 77c

17 TBHP (4) KI (20) 55d, 76e

18 TBHP (4) KI (20) 61f, 73g

aReaction conditions: 1a (0.2 mmol), 2a (0.8 mmol, 4 
equiv), S8 (0.4 mmol, 2 equiv), oxidant, catalyst and DMSO 
(1 mL) were stirred in a sealed tube at 130 °C under air for 
24 h. b2a (0.6 mmol, 3 equiv). c2a (1.0 mmol, 5 equiv). dS8 
(0.2 mmol). eS8 (0.6 mmol). f120 °C. g140 °C. 

With the optimized reaction conditions in hand, the 
substrate scope of anilines 1 was investigated (Scheme 2). 
In general, anilines 1 bearing an electron-donating (Me, Et, 
tBu and MeO) or electron-withdrawing group (CN, CF3 and 
F) at different positions of the benzene ring were all 
effective, and delivered the corresponding products 3a−3l 
in 67% to 81% yield. The potential coupling groups Cl and 
Br at the para- or meta-position did not show obvious 
influences and furnished the desired products 3m−3p in 
satisfactory yields. It was worth noting that for the meta-
substituted anilines, only trace amounts of regioisomers 
were detected, presumably owing to the steric effect. In 
addition, the 3,5-dimethyl substituted substrate 1q could 
also smoothly react with benzyl methyl ether and sulfur 
powder to give the product 3q in 68% yield. Notably, when 
2-naphthylamine (1r) was used under the optimized 
conditions, the cyclization product 3r was obtained in high 
yield (76%).
Scheme 2. Reaction Scope of Anilines 1a
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aReaction conditions: 1 (0.2 mmol), 2a (0.8 mmol), S8 (0.4 
mmol), TBHP (0.8 mmol), KI (20 mol %), DMSO (1 mL), 
130 °C, 24 h, under air.

Next, the scope of benzyl methyl ethers was investigated 
to test the generality and limitations of this three-
component reaction. As shown in Scheme 3, benzyl methyl 
ethers 2 substituted with a variety of electron-donating 
(Me, MeO, and NMe2) or electron-withdrawing groups (CN, 
NO2, CF3 and F) at the para-position of the phenyl ring 
were well tolerated and generated the corresponding 
products 4a−4g in moderate to good yields (41%−75%). It 
should be noted that a lower yield (41%) and conversion 
(52%) were observed when the substrate 2e possessing a 
nitro group was used (4e). Moreover, substrates 2 with 
moderately electron-deficient (Cl and Br) substituents at 
the para- (2h, 2k), meta- (2i) and ortho-position (2j) also 
reacted well and afforded the 2-substituted benzothiazoles 
in good yields (4h−4k). The electron-rich 3,5-dimethoxy 
and 2,4-dimethoxy substituted benzyl methyl ethers (2l, 
2m) were also suitable for this transformation and 
produced 4l and 4m in 66% and 58% yields, respectively. 
We were pleased to find that α-naphthyl, β-naphthyl, 4-
pyridyl, 2-furanyl and 2-thienyl substituted ethers readily 
furnished benzothiazole products 4n−4r in good yields 
(65−77%).
Scheme 3. Reaction Scope of Benzyl Methyl Ethers 2a
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aReaction conditions: 1a (0.2 mmol), 2 (0.8 mmol), S8 (0.4 
mmol), TBHP (0.8 mmol), KI (20 mol %), DMSO (1 mL), 
130 °C, 24 h, under air.

To expand the general applicability of the method, we 
tested a set of ethers (Scheme 4). To our delight, linear 
ethers functionalized with a phenyl (5a, 5b) were 
applicable for this reaction, and the products 6a and 6b 
were obtained in 52% and 44% yields, respectively. The 
reaction of ethers 5c-5h which have low boiling points also 
gave the corresponding products 6c-6h when 1 mL ether 

was used as both reagent and solvent. Interestingly, in the 
case of cyclic ethers (5f-5h), ring opening occurred to yield 
the products 6f-6h in 60-62% yields. For the ether with a 
cyclopropyl substituent (5e), no ring-opening product was 
detected. Compared with the benzylic ethers, these 
unbenzylic ethers (5) showed lower reactivity, maybe due 
to the low stability of the reaction intermediates. 
Scheme 4. Reaction Scope of Ethers 2a
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aReaction conditions: 1 (0.2 mmol), 5 (0.8 mmol), S8 (0.4 
mmol), TBHP (0.8 mmol), KI (20 mol %), DMSO (1 mL), 
130 °C, 24 h, under air.  b5 (1 mL) was used instead of 
DMSO.

To demonstrate the scalability and synthetic utility of 
the method, we performed a gram-scale reaction of 1a (5 
mmol) with 2a and sulfur powder (Scheme 5, eqn (1)). 
Gratifyingly, the efficiency of this transformation was not 
obviously affected, and the desired product 3a was 
obtained in 65% yield. The current procedure provided an 
efficient pathway to synthesize the antitumor agent 4-
(benzo[d]thiazol-2-yl)-2-methylaniline (8) in one step 
(Scheme 5, eqn (2)). Upon treatment of 4k with benzamide 
(9) in the presence of CuI/K3PO4/N,N-dimethylglycine in 
DMF, an antibacterial active coupling product N-(4-
(benzo[d]thiazol-2-yl)phenyl) benzamide (10) was 
delivered in 64 % yield (Scheme 5, eqn (3)).1a, 21b 
Scheme 5. Synthetic Application and Product 
Transformations
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In order to gain mechanistic insights into this 
transformation, several control experiments were 
performed. When radical inhibitor 2,2,6,6-
tetramethylpiper-idine-1-oxyl (TEMPO) or 2,6-di-tert-
butyl-4-methylphenol (BHT) (2 equiv) was added to the 
reaction mixture, no desired product 3a was observed 
(Scheme 6, eqn (1)). These results indicated that a radical 
pathway might be involved in this process. When the 
model reaction was performed for 6 h, imine 11 could be 
detected by LC-MS (Scheme 6, eqn (2)). Treating 1a with 
2a in the absence of sulfur powder, imine 11 was isolated 
in 64% yield (Scheme 6, eqn (3)). Moreover, imine 11 
could be converted to the product 3a in 75% yield under 
standard reaction conditions (Scheme 6, eqn (4)). Besides, 
when we performed the reaction with substrate 5a, the 
desired product 6a was obtained in 52% yield, 
accompanied by a 15% yield of the thiazoline 12 (Scheme 
6, eqn (5)). 12 could also be easily converted to the final 
product 6a in 82% yield (Scheme 6, eqn (6)). These results 
indicated that imine 11 and thiazoline 12 might be the 
probable reaction intermediates.
Scheme 6. Control Experiments
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Based on the aforementioned experimental results and 
related reports, a plausible reaction mechanism was 
depicted in Scheme 7. Initially, tBuO· probably generated 
through the reaction of TBHP and KI, followed by 
regioselective hydrogen abstraction from 2a to produce 
carbon radical A. Next, a single electron transfer (SET) 
process between radical A and I2 led to the oxonium B.16 
The intermolecular nucleophilic addition of 1a to B as well 

as selective C–O bond cleavage of C occurred in sequence, 
and resulted in cation intermediate D (when cylic ethers 
such as tetrahydrofuran 5f was used, C–O bond cleavage 
and ring-opening occurred in the process). Deprotonation 
of cation D formed the imine E,15,17 which attacked sulfur 
powder (S8) to give F. Subsequent elimination of S7 and 
deprotonation, sulfurated imine G was formed.11,18 Finally, 
the intramolecular cyclization of intermediate G delivered 
thiazoline H, followed by oxidative aromatization to 
construct the desired product 3a.
Scheme 7. Proposed Mechanism
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In summary, we have developed a novel three-
component reaction of anilines, ethers and elemental 
sulfur to synthesize benzothiazole derivatives under 
transition-metal-free conditions. The annulation of anilines 
was initiated from the selective C(sp3)-H bond cleavage of 
ethers in the presence of TBHP and KI. The synthetic utility 
of our method was further reflected by the synthesis of 
two heterocyclic compounds with antitumor activity. Thus, 
this convenient protocol for constructing benzothiazoles 
may find applications in organic and pharmaceutical 
synthesis.

■ EXPERIMENTAL SECTION
1. General Information
All reagents were obtained from commercial suppliers and 
used without further purification. Reactions were 
monitored by thin-layer chromatography. Column 
chromatography was performed using silica gel (300−400 
mesh). The NMR spectra were recorded at 400 MHz (1H) 
and 100 MHz (13C) in CDCl3 using TMS as an internal 
standard. The following abbreviations were used to 
explain the multiplicities: s = singlet, d = doublet, dd = 
doublet of doublet, t = triplet, dt = doublet of triplet, td = 
triplet of doublet, q = quartet, m = multiplet, ddd = doublet 
of doublet of doublet. High-resolution mass spectra were 
obtained by ESI on a TOF mass analyzer. Melting points are 
uncorrected.
2. Experimental Procedures
2.1. General Procedure for the Preparation of 3, 4, 6a, 
6b and 8

To a sealed tube were added anilines (0.2 mmol, 1.0 
equiv), S8 (12.8 mg, 0.4 mmol, 2.0 equiv), ether (0.8 mmol, 
4.0 equiv), KI (6.6 mg, 0.04 mmol, 20 mol %), TBHP (112 
μL, 0.8 mmol, 4.0 equiv, 70% aqueous solution) and DMSO 
(1 mL). The reaction mixture was stirred at 130 °C in oil 
bath for 24 h under air. After cooled to room temperature, 
the resulting solution was diluted with EtOAc (10 mL). The 
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organic layer was washed with water (10 mL). The 
aqueous phase was extracted with EtOAc (5 mL). The 
combined organic layers were dried over Na2SO4 and 
concentrated in vacum, and the resulting residue was 
purified by silica gel column chromatography with 
petroleum ether/ethyl acetate (30:1) as eluent to afford 
the desired products.
2.2. General Procedure for the Preparation of 6c−6h

To a sealed tube were added anilines (0.2 mmol, 1.0 
equiv), S8 (12.8 mg, 0.4 mmol, 2.0 equiv), ether (1 mL), KI 
(6.6 mg, 0.04 mmol, 20 mol %) and TBHP (112 μL, 0.8 
mmol, 4.0 equiv, 70% aqueous solution). The reaction 
mixture was stirred at 130 °C in oil bath for 24 h under air. 
After cooled to room temperature, the resulting solution 
was diluted with EtOAc (10 mL). The organic layer was 
washed with water (10 mL). The aqueous phase was 
extracted with EtOAc (5 mL). The combined organic layers 
were dried over Na2SO4 and concentrated in vacum, and 
the resulting residue was purified by silica gel column 
chromatography with petroleum ether/ethyl acetate 
(30:1) as eluent to afford the desired products.
2.3. Procedure for the Preparation of 10

A mixture of 4k (57.8 mg, 0.2 mmol, 1.0 equiv), 
benzamide 9 (29.1 mg, 0.24 mmol, 1.2 equiv), CuI (7.6 mg, 
20 mol %), K3PO4 (106.1 mg, 0.5 mmol, 2.5 equiv) and N,N-
dimethylglycine (4.1 mg, 20 mol %, 0.2 equiv) in DMF (2 
mL) was stirred at 100 °C for 48 h in oil bath under Ar. 
After cooling to room temperature, the reaction mixture 
was diluted with water (10 mL) and extracted with ethyl 
acetate (3 × 5 mL). The combined organic layers were 
dried over Na2SO4 and concentrated in vacum, and the 
residue was purified by flash column chromatography 
using petroleum ether/ethyl acetate (3:1) as eluent to 
produce the desired product 10.
2.4. 1H and 13C NMR data of the products

2-Phenylbenzo[d]thiazole (3a).7f White soild (32.9 mg, 
78% yield). mp 111−113 oC. 1H NMR (400 MHz, CDCl3) δ 
(ppm) 8.16−8.11 (m, 3H), 7.94−7.92 (m, 1H), 7.55−7.51 (m, 
4H), 7.44−7.40 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3) δ 
(ppm) 168.1, 154.1, 135.0, 133.6, 131.0, 129.0, 127.6, 
126.4, 125.2, 123.2, 121.6. 

6-Methyl-2-phenylbenzo[d]thiazole (3b).7f Light yellow 
solid (33.8 mg, 75% yield). mp 126−128 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.12−8.05 (m, 2H), 7.97 (d, J = 8.3 Hz, 
1H), 7.67 (s, 1H), 7.51−7.46 (m, 3H), 7.32−7.28 (m, 1H), 
2.49 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 166.5, 
151.8, 134.8, 134.8, 133.3, 130.2, 128.5, 127.4, 126.9, 
122.3, 120.9, 21.1.

5-Methyl-2-phenylbenzo[d]thiazole (3c).7f White soild 
(33.3 mg, 74% yield). mp 146−148 oC. 1H NMR (400 MHz, 
DMSO-d6) δ (ppm) 8.09 (dd, J = 6.8, 3.0 Hz, 2H), 7.89 (s, 
1H), 7.78 (d, J = 8.1 Hz, 1H), 7.50−7.48 (m, 3H), 7.22 (d, J = 
7.8 Hz, 1H), 2.52 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 
(ppm) 168.5, 154.6, 136.2, 133.7, 132.0, 130.7, 128.9, 
127.4, 126.7, 123.2, 121.0, 21.4.

4-Methyl-2-phenylbenzo[d]thiazole (3d).12 White soild 
(30.2 mg, 67% yield). mp 138−140 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.13−8.11 (m, 2H), 7.53−7.28 (m, 3H), 7.44 
(d, J = 1.8 Hz, 1H), 7.40−7.34 (m, 1H), 7.24−7.22 (m, 1H), 
2.79 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 166.7, 

152.3, 135.3, 134.0, 133.1, 129.6, 129.0, 128.9, 128.6, 
127.5, 119.6, 18.6.

6-Ethyl-2-phenylbenzo[d]thiazole (3e).11 Light yellow 
solid (34.9 mg, 73% yield). mp 60−62 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.12−8.10 (m, 2H), 8.02 (d, J = 8.3 Hz, 
1H), 7.74 (s, 1H), 7.54−7.50 (m, 3H), 7.37 (d, J = 8.4 Hz, 
1H), 2.82 (q, J = 7.6 Hz, 2H), 1.34 (t, J = 7.6 Hz, 3H). 13C{1H} 
NMR (100 MHz, CDCl3) δ (ppm) 167.2, 152.3, 141.8, 135.2, 
133.7, 130.8, 129.0, 127.5, 126.9, 122.8, 120.2, 29.0, 15.9.

6-(tert-Butyl)-2-phenylbenzo[d]thiazole (3f).11 White 
solid (41.1 mg, 77% yield). mp 105−107 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.14−8.10 (m, 2H), 8.04 (d, J = 8.6 Hz, 
1H), 7.93 (d, J = 2.1 Hz, 1H), 7.61−7.58 (m 1H), 7.53−7.50 
(m, 3H), 1.44 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 
(ppm) 167.5, 152.1, 148.7, 135.1, 133.8, 130.8, 129.0, 
127.5, 124.6, 122.6, 117.7, 35.1, 31.6.

6-Methoxy-2-phenylbenzo[d]thiazole (3g).7f White 
solid (39.1 mg, 81% yield). mp 115−117 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.09−8.06 (m, 2H), 7.99 (d, J = 8.9 Hz, 
1H), 7.52−7.48 (m, 3H), 7.37 (d, J = 2.6 Hz, 1H), 7.13−7.11 
(m 1H), 3.91 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 
(ppm) 165.6, 157.8, 148.6, 136.4, 133.7, 130.6, 129.0, 
127.3, 123.7, 115.7, 104.1, 55.8.

5-Methoxy-2-phenylbenzo[d]thiazole (3h).19a White 
soild (34.7 mg, 72% yield). mp 63−65 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.07 (dd, J = 6.8, 3.1 Hz, 2H), 7.74 (d, J 
= 8.7 Hz, 1H), 7.58 (d, J = 2.4 Hz, 1H), 7.49−7.48 (m, 3H), 
7.04 (dd, J = 8.9, 2.4 Hz, 1H), 3.91 (s, 3H). 13C{1H} NMR (100 
MHz, CDCl3) δ (ppm) 169.3, 159.2, 155.4, 133.7, 130.9, 
129.0, 127.4, 126.9, 121.8, 115.5, 105.6, 55.6.

2-Phenylbenzo[d]thiazole-6-carbonitrile (3i).19a White 
solid (32.1 mg, 68% yield). mp 193−195 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 9.54 (s, 1H), 8.66 (dd, J = 6.5, 3.1 Hz, 
2H), 8.34 (s, 1H), 8.18 (d, J = 8.8 Hz, 1H), 8.04 (d, J = 8.8 Hz, 
1H), 7.59 (d, J = 2.6 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3) 
δ (ppm) 163.3, 160.9, 151.9, 137.0, 134.7, 133.4, 131.7, 
130.3, 128.9, 122.8, 117.9, 110.8.

2-Phenyl-6-(trifluoromethyl)benzo[d]thiazole (3j).7f 
Light yellow soild (39.1 mg, 70% yield). mp 150−152 oC. 1H 
NMR (400 MHz, DMSO-d6) δ (ppm) 8.67 (s, 1H), 8.24−8.12 
(m, 3H), 7.84 (d, J = 8.7 Hz, 1H), 7.63−7.58 (m, 3H). 13C{1H} 
NMR (100 MHz, DMSO-d6) δ (ppm) 171.7, 156.2 (d, J = 1.2 
Hz), 135.4, 132.8, 132.6, 130.0, 128.8, 128.0, 126.1 (q, J = 
270.3 Hz), 124.0, 123.8 (q, J = 3.2 Hz), 121.1 (q, J = 4.0 Hz).

6-Fluoro-2-phenylbenzo[d]thiazole (3k).7f Light yellow 
soild (33.0 mg, 72% yield). mp 133−135 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.09−8.02 (m, 3H), 7.60 (dd, J = 8.1, 
2.6 Hz, 1H), 7.53−7.51 (dt, J = 4.9, 1.8 Hz, 3H), 7.28−7.23 
(m, 1H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 167.8 (d, J 
= 3.3 Hz), 160.5 (d, J = 246.1 Hz), 150.7 (d, J = 1.8 Hz), 
136.0 (d, J = 11.4 Hz), 133.3, 131.1, 129.1, 127.5, 124.1 (d, J 
= 9.2 Hz), 115.0 (d, J = 24.9 Hz), 107.9 (d, J = 26.8 Hz).

5-Fluoro-2-phenylbenzo[d]thiazole (3l).12 White soild 
(30.7 mg, 67% yield). mp 118−120 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.09−8.05 (m, 2H), 7.81−7.73 (m, 2H), 
7.51−7.47 (m, 3H), 7.18−7.11 (m, 1H). 13C{1H} NMR (100 
MHz, CDCl3) δ (ppm) 170.45, 161.92 (d, J = 242.7 Hz), 
155.05 (d, J = 12.2 Hz), 133.36, 131.18, 130.43 (d, J = 2.2 
Hz), 129.01, 127.49, 122.2 (d, J = 9.8 Hz), 113.78 (d, J = 24.9 
Hz), 109.32 (d, J = 23.2 Hz).

6-Chloro-2-phenylbenzo[d]thiazole (3m).19b White 
solid (32.3 mg, 66% yield). mp 155−157 oC. 1H NMR (400 
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MHz, CDCl3) δ (ppm) 8.10−8.08 (m, 2H), 8.00 (d, J = 8.7 Hz, 
1H), 7.89 (d, J = 2.0 Hz, 1H), 7.54−7.51 (m, 3H), 7.47 (dd, J = 
8.7, 2.1 Hz, 1H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 
168.6, 152.6, 136.2, 133.1, 131.3, 131.1, 129.1, 127.6, 
127.2, 123.9, 121.3.

5-Chloro-2-phenylbenzo[d]thiazole (3n).12 White soild 
(34.3 mg, 70% yield). mp 137−139 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.14−8.04 (m, 3H), 7.81 (d, J = 8.5 Hz, 1H), 
7.51−7.50 (m, 3H), 7.37−7.35 (m, 1H). 13C{1H} NMR (100 
MHz, CDCl3) δ (ppm) 169.4, 154.5, 132.8, 132.8, 131.8, 
130.8, 128.6, 127.1, 125.1, 122.6, 121.8.

6-Bromo-2-phenylbenzo[d]thiazole (3o).7f White soild 
(40.5 mg, 70% yield). mp 154−156 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.11−8.08 (m, 2H), 8.00 (d, J = 8.7 Hz, 1H), 
7.89 (d, J = 2.1 Hz, 1H), 7.56−7.50 (m, 3H), 7.48-7.46 (m, 
1H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 168.6, 152.6, 
136.2, 133.2, 131.3, 129.1, 127.5, 127.2, 123.9, 121.3, 
121.2.

5-Bromo-2-phenylbenzo[d]thiazole (3p).12 White soild 
(39.9 mg, 69% yield). mp 134−136 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.23 (s, 1H), 8.09−8.07 (m, 2H), 7.75 (d, J = 
8.5 Hz, 1H), 7.51−7.48 (m, 4H). 13C{1H} NMR (100 MHz, 
CDCl3) δ (ppm) 169.6, 155.2, 133.8, 133.1, 131.2, 129.0, 
128.1, 127.5, 126.0, 122.5, 119.8.

5,7-Dimethyl-2-phenylbenzo[d]thiazole (3q).11 Light 
yellow solid (32.5 mg, 68% yield). mp 87−89 oC. 1H NMR 
(400 MHz, CDCl3) δ (ppm) 8.14−8.12 (m, 2H), 7.76 (s, 1H), 
7.51 (dd, J = 5.1, 1.8 Hz, 3H), 7.05 (s, 1H), 2.58 (s, 3H), 2.51 
(s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 167.6, 
154.3, 136.6, 133.9, 132.5, 131.1, 130.8, 129.0, 127.5, 
127.1, 120.7, 21.5, 21.3.

2-Phenylnaphtho[2,1-d]thiazole (3r).11 White soild 
(39.7 mg, 76% yield). mp 100−102 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.20−8.14 (m, 3H), 8.07 (d, J = 8.2 Hz, 1H), 
8.00 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.66−7.58 
(m, 2H), 7.55−7.52 (m, 3H). 13C{1H} NMR (100 MHz, CDCl3) 
δ (ppm) 167.3, 152.0, 133.6, 132.1, 131.1, 130.8, 129.1, 
129.0, 128.1, 127.5, 127.4, 127.1, 126.1, 125.2, 121.7.

2-(p-Tolyl)benzo[d]thiazole (4a).7f White soild (32.9 
mg, 73% yield). mp 86−88 oC. 1H NMR (400 MHz, CDCl3) δ 
(ppm) 8.10 (d, J = 8.1 Hz, 1H), 8.02 (d, J = 8.2 Hz, 2H), 7.91 
(d, J = 7.9 Hz, 1H), 7.53−7.49 (m, 1H), 7.42−7.38 (m, 1H), 
7.32 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H). 13C{1H} NMR (100 
MHz, CDCl3) δ (ppm) 168.3, 154.1, 141.5, 134.9, 130.9, 
129.7, 127.5, 126.3, 125.0, 123.0, 121.6, 21.5.

3-(2-Methylbenzo[4,5][1,3,6]thiadiazepino[3,2-
a]indol-6-yl)propan-1-ol (4b).7f White soild (36.2 mg, 
75% yield). mp 119−121 oC. 1H NMR (400 MHz, CDCl3) δ 
(ppm) 8.08−8.05 (m, 3H), 7.89 (d, J = 7.9 Hz, 1H), 
7.52−7.48 (m, 1H), 7.40−7.36 (m, 1H), 7.04−7.00 (m, 2H), 
3.90 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 167.9, 
162.0, 154.1, 134.8, 129.1, 126.4, 126.2, 124.8, 122.8, 
121.5, 114.4, 55.5.

4-(Benzo[d]thiazol-2-yl)-N,N-dimethylaniline (4c).7g 
Yellow soild (35.6 mg, 70% yield). mp 169−171 oC. 1H NMR 
(400 MHz, CDCl3) δ (ppm) 8.03−7.97 (m, 3H), 7.86 (d, J = 
7.8 Hz, 1H), 7.48−7.44 (m, 1H), 7.35−7.31 (m, 1H), 
6.78−6.75 (m, 2H), 3.07 (s, 6H). 13C{1H} NMR (100 MHz, 
CDCl3) δ (ppm) 168.9, 154.3, 152.2, 134.5, 128.9, 126.0, 
124.2, 122.2, 121.4, 121.3, 111.7, 40.2.

4-(Benzo[d]thiazol-2-yl)benzonitrile (4d).7f White solid 
(32.1 mg, 68% yield). mp 168−170 oC. 1H NMR (400 MHz, 

CDCl3) δ (ppm) 8.20−8.18 (m, 2H), 8.12 (d, J = 8.2 Hz, 1H), 
7.95 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.58−7.54 
(m, 1H), 7.49−7.45 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3) 
δ (ppm) 165.3, 153.9, 137.4, 135.3, 132.8, 127.9, 126.9, 
126.1, 123.8, 121.8, 118.3, 114.1.

2-(4-Nitrophenyl)benzo[d]thiazole (4e).19c White solid 
(21.0 mg, 41% yield). mp 220−222 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.39−8.37 (m, 2H), 8.31−8.28 (m, 2H), 
8.17−8.15 (m, 1H), 8.00−7.97 (m, 1H), 7.61−7.56 (m, 1H), 
7.52−7.47 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 
164.9, 154.1, 149.0, 139.2, 135.5, 128.2, 127.0, 126.3, 124.3, 
123.9, 121.9.

2-(4-(Trifluoromethyl)phenyl)benzo[d]thiazole 
(4f).19b White soild (33.6 mg, 71% yield). mp 162−164 oC. 
1H NMR (400 MHz, CDCl3) δ (ppm) 8.23 (d, J = 8.1 Hz, 2H), 
8.14 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 
8.2 Hz, 2H), 7.58−7.54 (m, 1H), 7.48−7.44 (m, 1H).13C{1H} 
NMR (100 MHz, CDCl3) δ (ppm) 166.1, 153.9, 136.8, 135.2, 
132.5 (q, J = 32.6 Hz), 127.8, 126.7, 126.0 (q, J = 3.7 Hz), 
125.8, 123.6 (q, J = 273.4 Hz), 122.5, 121.8.

2-(4-Fluorophenyl)benzo[d]thiazole (4g).19b White 
solid (32.5 mg, 71% yield). mp 99−101 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.13−8.08 (m, 3H), 7.92 (d, J = 8.4 Hz, 
1H), 7.52 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 7.42 (ddd, J = 8.2, 
7.2, 1.2 Hz, 1H), 7.24−7.18 (m, 2H). 13C{1H} NMR (100 MHz, 
CDCl3) δ (ppm) 166.8, 164.5 (d, J = 252.0 Hz), 154.0, 135.0, 
129.9 (d, J = 3.2 Hz), 129.6 (d, J = 8.7 Hz), 126.5, 125.3, 
123.2, 121.7, 116.2 (d, J = 22.1 Hz).

2-(4-Chlorophenyl)benzo[d]thiazole (4h).7f White solid 
(37.7 mg, 77% yield). mp 114−116 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.10 (d, J = 8.2 Hz, 1H), 8.07−8.02 (m, 2H), 
7.92 (d, J = 7.7 Hz, 1H), 7.55−7.51 (m, 1H), 7.50−7.47 (m, 
2H), 7.44−7.40 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3) δ 
(ppm) 166.6, 154.0, 137.1, 135.0, 132.0, 129.3, 128.7, 
126.5, 125.4, 123.3, 121.7.

2-(3-Chlorophenyl)benzo[d]thiazole (4i).19c White solid 
(30.9 mg, 63% yield). mp 95−97 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.15−8.14 (m, 1H), 8.12 (d, J = 8.2 Hz, 1H), 
7.99−7.96 (m, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.56−7.52 (m, 
1H), 7.50−7.42 (m, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 
(ppm) 166.3, 153.9, 135.2, 135.0, 130.9, 130.3, 127.4, 
126.6, 126.5, 125.7, 125.6, 123.4, 121.7.

2-(2-Chlorophenyl)benzo[d]thiazole (4j).19b White 
solid (31.9 mg, 65% yield). mp 84−86 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.27−8.17 (m, 1H), 8.18 (d, J = 8.1 Hz, 
1H), 7.98 (d, J = 8.0 Hz, 1H), 7.58−7.54 (m, 2H), 7.48−7.43 
(m, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 164.2, 
152.4, 136.1, 132.7, 132.2, 131.8, 131.2, 130.8, 127.2, 
126.4, 125.5, 123.5, 121.4.

2-(4-Bromophenyl)benzo[d]thiazole (4k).19c White 
solid (39.9 mg, 69% yield). mp 130−132 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.09 (d, J = 8.1 Hz, 1H), 7.98 (d, J = 8.6 
Hz, 2H), 7.92 (dd, J = 8.1, 1.5 Hz, 1H), 7.66−7.63 (m, 2H), 
7.55−7.51 (m, 1H), 7.44−7.40 (m, 1H). 13C{1H} NMR (100 
MHz, CDCl3) δ (ppm) 166.7, 154.0, 135.0, 132.5, 132.2, 
128.9, 126.5, 125.5, 125.5, 123.3, 121.7.

2-(3,5-Dimethoxyphenyl)benzo[d]thiazole (4l).19b 
White solid (35.8 mg, 66% yield). mp 85−87 oC. 1H NMR 
(400 MHz, CDCl3) δ (ppm) 8.11 (d, J = 8.1 Hz, 1H), 7.92 (d, J 
= 7.6 Hz, 1H), 7.54−7.50 (m, 1H), 7.44−7.39 (m, 1H), 7.29 
(d, J = 2.3 Hz, 2H), 6.62 (t, J = 2.3 Hz, 1H), 3.92 (s, 6H). 
13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 168.0, 161.1, 

Page 6 of 9

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



153.9, 135.3, 135.0, 126.4, 125.3, 123.2, 121.6, 105.5, 
103.5, 55.7.

2-(2,4-Dimethoxyphenyl)benzo[d]thiazole (4m).20a 
White solid (31.4 mg, 58% yield). mp 135−137 oC. 1H NMR 
(400 MHz, CDCl3) δ (ppm) 8.51 (d, J = 8.8 Hz, 1H), 8.08 (d, J 
= 8.1 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.51−7.47 (m, 1H), 
7.38−7.34 (m 1H), 6.70 (dd, J = 8.8, 2.4 Hz, 1H), 6.60 (d, J = 
2.3 Hz, 1H), 4.05 (s, 3H), 3.91 (s, 3H). 13C{1H} NMR (100 
MHz, CDCl3) δ (ppm) 163.3, 162.9, 158.6, 152.1, 135.6, 
130.8, 125.8, 124.2, 122.3, 121.1, 115.5, 105.9, 98.5, 55.7, 
55.6.

2-(Naphthalen-1-yl)benzo[d]thiazole (4n).19b White 
solid (38.1 mg, 73% yield). mp 77−79 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.98 (d, J = 8.5 Hz, 1H), 8.25 (d, J = 8.1 
Hz, 1H), 8.04−7.96 (m, 4H), 7.69−7.58 (m, 4H), 
7.51−7.47(m, 1H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 
167.7, 154.1, 135.5, 134.0, 131.2, 130.8, 130.7, 129.5, 
128.5, 127.7, 126.6, 126.4, 125.9, 125.4, 125.0, 123.6, 
121.5.

2-(Naphthalen-2-yl)benzo[d]thiazole (4o).7f White 
solid (40.2 mg, 77% yield). mp 128−130 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 8.62−8.58 (m, 1H), 8.24 (dd, J = 8.5, 
1.8 Hz, 1H), 8.16 (d, J = 8.1 Hz, 1H), 8.01−7.89 (m, 4H), 
7.60−7.53 (m, 3H), 7.45−7.41 (m, 1H). 13C{1H} NMR (100 
MHz, CDCl3) δ (ppm) 168.2, 154.1, 135.1, 134.6, 133.2, 
130.9, 128.9, 128.9, 127.9, 127.6, 127.5, 126.9, 126.5, 
125.3, 124.4, 123.2, 121.7.

2-(Pyridin-4-yl)benzo[d]thiazole (4p).19b White solid 
(27.6 mg, 65% yield). mp 130−132 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.78 (d, J = 5.6 Hz, 2H), 8.14 (d, J = 8.2 Hz, 
1H), 7.97−7.94 (m, 3H), 7.58−7.53 (m, 1H), 7.49−7.44 (m, 
1H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 165.1, 153.9, 
150.7, 140.5, 135.2, 126.8, 126.2, 123.9, 121.9, 121.2.

2-(Furan-2-yl)benzo[d]thiazole (4q).19b White solid 
(28.9 mg, 72% yield). mp 103−105 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.08 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.0 Hz, 
1H), 7.63 (d, J = 1.5 Hz, 1H), 7.53−7.49 (m, 1H), 7.42−7.38 
(m, 1H), 7.23 (d, J = 3.4 Hz, 1H), 6.62 (dd, J = 3.5, 1.8 Hz, 
1H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 157.6, 153.6, 
148.7, 144.8, 134.2, 126.5, 125.2, 123.1, 121.6, 112.6, 
111.6.

2-(Thiophen-2-yl)benzo[d]thiazole (4r).7f White solid 
(28.6 mg, 66% yield). mp 98−100 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.06 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.0 Hz, 
1H), 7.68 (d, J = 3.7 Hz, 1H), 7.54−7.48 (m, 2H), 7.41−7.37 
(m, 1H), 7.17−7.15 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3) 
δ (ppm) 161.4, 153.6, 137.3, 134.7, 129.4, 128.7, 128.1, 
126.5, 125.3, 123.0, 121.5.

2-Benzylbenzo[d]thiazole (6a).7f Yellow oil (30.6 mg, 
68% yield). 1H NMR (400 MHz, CDCl3) δ (ppm) 8.04 (d, J = 
8.2 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.51−7.46 (m, 1H), 
7.43−7.30 (m, 6H), 4.48 (s, 2H). 13C{1H} NMR (100 MHz, 
CDCl3) δ (ppm) 171.3, 153.2, 137.2, 135.7, 129.2, 128.9, 
127.4, 126.0, 124.9, 122.8, 121.6, 40.7.

2-Phenethylbenzo[d]thiazole (6b).20b Light yellow solid 
(30.1 mg, 63% yield). mp 58−60 oC. 1H NMR (400 MHz, 
CDCl3) δ (ppm) 8.03 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 8.4 Hz, 
1H), 7.52−7.48 (m, 1H), 7.41−7.25 (m, 6H), 3.50−3.45 (m, 
2H), 3.27−3.23 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 
(ppm) 171.2, 152.9, 140.1, 135.0, 128.6, 128.5, 126.5, 
126.1, 124.9, 122.5, 121.6, 36.0, 35.6.

2-Methylbenzo[d]thiazole (6c).20c Yellow oil (12.2 mg, 
41% yield). 1H NMR (400 MHz, CDCl3) δ (ppm) 7.97 (d, J = 
8.1 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.48−7.44 (m, 1H), 
7.37−7.33 (m, 1H), 2.85 (s, 3H). 13C{1H} NMR (100 MHz, 
CDCl3) δ (ppm) 166.9, 153.3, 135.6, 125.9, 124.7, 122.4, 
121.4, 20.1.

2-Isopropylbenzo[d]thiazole (6d).20b Yellow oil (21.6 
mg, 61% yield). 1H NMR (400 MHz, CDCl3) δ (ppm) 8.01 (d, 
J = 8.1 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.7 Hz, 
1H), 7.36 (t, J = 7.6 Hz, 1H), 3.45 (m, 1H), 1.51 (dd, J = 6.9, 
0.9 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 178.7, 
153.1, 134.7, 125.7, 124.6, 122.6, 121.6, 34.1, 22.9.

2-Cyclopropylbenzo[d]thiazole (6e).19b Yellow oil (19.3 
mg, 55% yield). 1H NMR (400 MHz, CDCl3) δ (ppm) 7.92 (d, 
J = 8.0 Hz, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.46−7.41 (m, 1H), 
7.34−7.30 (m, 1H), 2.44−2.38 (m, 1H), 1.26−1.22 (m, 4H). 
13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 174.6, 153.3, 
134.1, 125.9, 124.3, 122.0, 121.4, 15.3, 11.8.

3-(Benzo[d]thiazol-2-yl)propan-1-ol (6f).6f Yellow oil 
(23.2 mg, 60% yield). 1H NMR (400 MHz, CDCl3) δ (ppm) 
7.94−7.92 (m, 1H), 7.88−7.85 (m, 1H), 7.48−7.48 (m, 1H), 
7.38−7.34 (m, 1H), 3.86 (t, J = 5.7 Hz, 2H), 3.44 (t, J = 6.6 
Hz, 2H), 2.26−2.20 (m, 3H). 13C{1H} NMR (100 MHz, CDCl3) 
δ (ppm) 174.5, 153.3, 134.1, 125.9, 124.3, 122.0, 121.3, 
61.3, 32.8, 30.9.

4-(Benzo[d]thiazol-2-yl)butan-1-ol (6g). Yellow oil 
(25.7 mg, 62% yield). 1H NMR (400 MHz, CDCl3) δ (ppm) 
7.92−7.91 (m, 1H), 7.84−7.82 (m, 1H), 7.51−7.41 (m, 2H), 
3.73 (t, J = 6.2 Hz, 2H), 3.11 (t, J = 7.3 Hz, 2H), 2.10−2.03 (m, 
2H), 1.81−1.74 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 
(ppm) 172.3, 157.0, 135.4, 129.1, 127.1, 125.9, 125.2, 61.9, 
34.4, 32.4, 23.6. HRMS (ESI) m/z calcd for C11H14NOS+ 
[M+H]+ 208.0791, found 208.0794.

2-(6-Methylbenzo[d]thiazol-2-yl)ethanol (6h). Yellow 
solid (23.2 mg, 60% yield). mp 112−114 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 7.88−7.75 (m, 2H), 7.24−7.22 (m, 1H), 
4.22 (t, J = 5.4 Hz, 2H), 3.23 (t, J = 5.4 Hz, 2H), 2.54 (s, 3H). 
13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 170.5, 155.0, 137.7, 
129.0, 126.5, 122.4, 121.2, 60.5, 35.2, 21.8. HRMS (ESI) 
m/z calcd for C10H12NOS+ [M+H]+ 194.0634, found 
194.0638.

4-(Benzo[d]thiazol-2-yl)-2-methylaniline (8).21a Light 
yellow solid (27.8 mg, 58% yield). mp 148−150 oC. 1H NMR 
(400 MHz, CDCl3) δ (ppm) 8.10 (d, J = 7.7 Hz, 1H), 8.00 (d, J 
= 8.0 Hz, 1H), 7.54−7.50 (m, 1H), 7.45−7.40 (m, 2H), 7.18 
(dd, J = 7.6, 1.9 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 5.25 (s, 2H), 
2.13 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 168.7, 
154.1, 147.9, 134.6, 131.7, 131.1, 126.9, 125.6, 125.5, 
123.0, 122.6, 115.4, 112.3, 18.0.

N-(4-(Benzo[d]thiazol-2-yl)phenyl)benzamide (10).21b 
White solid (42.3 mg, 64% yield). mp 124−126 oC. 1H NMR 
(400 MHz, DMSO-d6) δ (ppm) 10.58 (s, 1H), 8.13−8.10 (m, 
3H), 8.06−8.00 (m, 5H), 7.63−7.60 (m, 1H), 7.59−7.52 (m, 
3H), 7.46−7.42 (m, 1H). 13C{1H} NMR (100 MHz, DMSO-d6) 
δ (ppm) 167.5, 166.4, 154.3, 142.6, 135.1, 134.8, 132.3, 
128.9, 128.4, 128.3, 128.3, 127.0, 125.7, 123.1, 122.7, 
120.9.

N-benzylideneaniline (11).21c Light yellow solid (23.2 
mg, 64% yield). mp 50−52 oC. 1H NMR (400 MHz, DMSO-d6) 
δ (ppm) 8.50 (s, 1H), 7.96 (dd, J = 6.6, 3.1 Hz, 2H), 
7.53−7.51 (m, 3H), 7.44 (t, J = 7.7 Hz, 2H), 7.30−7.26 (m, 
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3H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 160.5, 152.0, 
136.2, 131.5, 129.2, 128.9, 128.8, 126.0, 120.9.

2-Benzyl-2,3-dihydrobenzo[d]thiazole (12).22 White 
solid (6.8 mg, 15% yield). mp 98−100 oC. 1H NMR (400 
MHz, CDCl3) δ (ppm) 7.41−7.37 (m, 2H), 7.34−7.30 (m, 1H), 
7.28−7.25 (m, 2H), 7.12 (dd, J = 7.6, 1.3 Hz, 1H), 6.96 (td, J = 
7.7, 1.3 Hz, 1H), 6.79 (td, J = 7.5, 1.2 Hz, 1H), 6.66 (dd, J = 
7.8, 1.3 Hz, 1H), 5.43 (dd, J = 8.1, 5.7 Hz, 1H), 4.07 (s, 1H), 
3.24−3.10 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ (ppm) 
145.9, 137.0, 129.4, 128.8, 127.1, 126.4, 125.4, 122.2, 
120.7, 110.5, 68.9, 45.0.
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