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Zn(L-proline)2 as a powerful and reusable
organometallic catalyst for the very fast
synthesis of 2-amino-4H-benzo[g]chromene
derivatives under solvent-free conditions
Behrooz Maleki*, Saeed Babaee and Reza Tayebee
An efficient route for the synthesis of 2-amino-4H-benzo[g]chromenes via a three-component coupling reaction of aldehydes,
malononitrile and 2-hydroxy-1,4-naphthaquinone in the presence of Zn(L-proline)2 is reported. High yields, short reaction times,
non-toxicity and recyclability of the catalyst, and easywork-up are themainmerits of this protocol. Copyright © 2015 JohnWiley &
Sons, Ltd.
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Introduction

The development of methodologies that involve the use of inex-
pensive and reusable catalysts under mild and environmentally
friendly reaction conditions is one of the major goals in green and
sustainable chemistry. Methodologies leading to various heterocy-
clic structures are in high demand for both academic and industrial
applications.[1]

2-Hydroxy-1,4-naphthoquinone has been known for the past
4000 years, is found in many natural products and has been
employed as a synthetic intermediate for the preparation of numer-
ous heterocyclic compounds. Molecules containing the heterocy-
clic quinone group constitute one of the most important classes
of compounds in organic chemistry because of their biological
properties such as antitumor, antibacterial, antifungal and anti-
inflammatory activities.[2–8]

Multicomponent reactions (MCRs) have emerged as a powerful
synthetic strategy because of their efficiency, atom economy,
high selectivity and convenience in the construction of diverse
chemical libraries of ‘drug-like’ molecules.[9] MCRs are convergent
reactions, in which three or more starting materials react to give a
highly complex product in one pot. Typically, purification of
products resulting fromMCRs is also simple because all the organic
reagents employed are consumed and incorporated into the tar-
get compound.
Zn(L-proline)2 is an efficient, inexpensive, non-toxic, stable and re-

usable catalyst which is not dissociated under reaction conditions.
Also, many advantages such as higher solubility in water, insolubil-
ity in organic solvents, eco-friendly nature and convenient work-up
make Zn(L-proline)2 a green catalyst in organic synthesis.[10]

To the best of our knowledge, only a few methods are available
for the preparation of 4-aryl-5,10-dihydro-4H-benzo[g]chromene-
5,10-dione derivatives. Recently, many catalysts have been used
for this preparation such as triethylbenzylammonium chloride
(TEBA),[11] DMF/AcOH under microwave irradiation,[12] Et3N,

[13] 1,8-
diazabicyclo[5.4.0]undec-7-ene,[14] ionic liquids[15] and potassium
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phthalimide-N-oxyl.[16] However, several of these methods suffer
from certain drawbacks such as prolonged reactions times, use
of volatile or hazardous organic solvents, tedious work-up condi-
tions, use of extra energy sources and employment of large
amount of catalyst, which lead to difficulty in product separation
and non-recyclability of the catalyst. Therefore, it is desirable to
develop a more efficient and a general method for the synthesis
of 2-amino-4H-benzo[g]chromene derivatives.

Experimental

General

All chemicals were obtained from Merck and Sigma-Aldrich and
used as received. Infrared (IR) spectra were recorded with a
Shimadzu 435-U-04 spectrophotometer (KBr pellets). 1H NMR and
13C NMR spectra were recorded with a Bruker DRX-300 Avance
spectrometer in DMSO-d6 or CDCl3, and shifts are given in parts
per million (ppm) downfield from tetramethylsilane as an internal
standard. Melting points were determined using an Electrothermal
9200 instrument.

General Procedure for Synthesis of 2-Amino-4H-benzo[g]
chromene Derivatives

A mixture of aldehydes (1 mmol), malononitrile (1 mmol) and
2-hydroxy-1,4-naphthaquinone (1 mmol) was stirred with Zn(L-
proline)2 (20 mol%) at 60°C for the required period of time (for
solid aldehydes, 0.1 ml of ethanol was added). Upon completion
of the reaction as indicated using TLC (hexane–ethyl acetate,
Copyright © 2015 John Wiley & Sons, Ltd.
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4:1), an appropriate amount of hot EtOH (96%, 2 ml) was added
and the mixture stirred for 2 min. The resulting crude product
was poured into crushed ice and the solid product that separated
was filtered and recrystallized from ethanol (96%, 2 ml) to afford
pure 2-amino-4H-benzo[g]chromene derivatives.

Results and Discussion

In continuation of our efforts towards the development of greener
methodologies,[17] we report herein a simple, clean and environ-
mentally friendly process for the synthesis of 2-amino-4H-benzo
[g]chromene derivatives by reaction of various aldehydes,
malononitrile and 2-hydroxy-1,4-naphthaquinone in the presence
of Zn(L-proline)2 under solvent-free conditions (Scheme 1).

For the present study, the catalyst Zn(L-proline)2 was prepared
following a literature procedure.[9i] Initially, benzaldehyde (1mmol),
malononitrile (1 mmol) and 2-hydroxy-1,4-naphthaquinone
(1 mmol) were selected as representative substrates to investigate
the reaction conditions. The catalyst plays an important role in
the formation of 2-amino-4-(phenyl)-5,10-dihydro-5,10-dioxo-4H-
benzo[g]chromene-3-carbonitrile (4a). Without the catalyst, it is ob-
served that there is no conversion to product even after 2 h (Table 1,
entries 1 and 2). Then, we focused our attention on using Zn(L-pro-
line)2 catalyst, which might help to reduce the reaction time and
improve the yields of the target compounds. Our studies show that
Scheme 1. Synthesis of 2-amino-4H-benzo[g]chromene derivatives catalysed
by Zn(L-proline)2.

Table 1. Screening of reaction conditions for synthesis of 2-amino-4-
(phenyl)-5,10-dihydro-5,10-dioxo-4H-benzo[g]chromene-3-carbonitrile (4a)

Entry Zn(L-proline)2
(mol%)

Temp. (°C) Time (min) Yield (%)a

1 None r.t.b 120 No reaction

2 None 60 120 No reaction

3 30 r.t.b 5 22

4 30 50 5 76

5 30 60 5 90

6 30 70 5 85

7 20 60 5 91

8 10 60 5 82

aIsolated yield.
bRoom temperature.
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in the presence of Zn(L-proline)2 (30 mol%) under solvent-free
conditions at room temperature and after 5 min, 32% of product
is observed, and the yield of the reaction increases as the reaction
temperature increases (entries 3–6). As evident from entries 3 and
5, the temperature is necessary for the synthesis of 4a. Using
30mol% of Zn(L-proline)2 at 70°C, the yield unexpectedly decreases
to 85% (entry 6). A possible explanation for the trace product yield
is that the startingmaterial or the product may be destroyed during
the reaction. The best results are obtained at 60°C (entry 5). To de-
termine the optimal amount of Zn(L-proline)2, the model reaction
was carried out using various amounts (entries 7 and 8). The results
show that 20 mol% of Zn(L-proline)2 is sufficient to obtain the best
yield (entry 7).

Encouraged by this success, a study of the substrate scope was
carried out. The results are summarized in Table 2. It can be seen
from the results that a wide range of aromatic aldehydes are
suitable for this MCR. Aromatic aldehydes tethered with both
electron-donating and electron-withdrawing substituents afford
the desired products in very good yields.

There is no effect on the reaction time and the yield of the
corresponding products when electron-donating groups and
electron-withdrawing groups on benzaldehydes are used. Further-
more, we examined aliphatic aldehydes such as butanal instead
of benzaldehydes in the reaction. All the starting materials in the
Table 2. Three-component synthesis of 2-amino-4H-benzo[g]chromene
derivatives from the reaction of 2-hydroxynaphthalene-1,4-dione (1mmol),
malononitrile (1 mmol) and aldehydes (1 mmol) in the presence of Zn(L-
proline)2 (20 mol%)

Products (4a–q) RCHO (3a–q) Time (min) Yield (%)a Ref.

4a C6H5 4 91 [15b)]

4b 4-OCH3C6H4 5 90 [15b)]

4c 3-OCH3C6H4 9 90 [15b)]

4d 3,4-OCH3C6H3 5 92 [15b)]

4e 4-ClC6H4 6 93 [15b)]

4f 2-ClC6H4 10 86 [15b)]

4g 4-BrC6H4 8 89 [15b)]

4h 4-FC6H4 12 82 [15c)]

4i 4-CH3C6H4 15 78 [11]

4j 3-NO2C6H4 4 93 [10]

4k 2-NO2C6H4 6 89 [15b)]

4l 2,4-ClC6H3 8 90 [15b)]

4m 4-OHC6H4 14 80 [15b)]

4n 2,3,4-OCH3C6H3 6 87 [15b)]

4o 4-NO2C6H4 5 94 [15b)]

4p 2-Thienyl 7 90 [12]

4q 4-Pyridyl 7 86 [16]

aAll known products have been reported previously in the literature
and were characterized by comparison of IR and NMR spectra with
those of authentic samples.
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Scheme 3. Proposed mechanism.

Scheme 2. Reactionbetweenbenzaldehyde,2-hydroxy-1,4-naphthaquinone
and ethyl cyanoacetate in the presence of Zn(L-proline)2 (20mol%).

Figure 1. Reusability of Zn(L-proline)2 for the synthesis of 2-amino-4-
(phenyl)-5,10-dihydro-5,10-dioxo-4H-benzo [g]chromene-3-carbonitrile (4a).
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reaction are intact without formation of any desired product and
side products after 1 h. In addition to the aromatic aldehydes, the
reaction also proceeds smoothly using heterocyclic aldehydes in
high yield.
The applicability of the catalyst was further extended by reaction

between benzaldehyde (1 mmol), 2-hydroxy-1,4-naphthaquinone
(1 mmol) and ethyl cyanoacetate (1 mmol) under solvent-free
conditions at 60°C. The reaction is complete in 30 min and 69% of
13-phenyl-5H-dibenzo[b,i]xanthene-5,7,12,14(13H)-tetraone (5a) is
obtained after work-up (Scheme 2).[18] Subsequently, reactions of
other aromatic aldehydes (such as with 4-methoxy, 4-nitro substit-
uents) with ethyl cyanoacetate also give the corresponding deriva-
tives of 5a in good yields.
To show themerit of the present work, we summarize the results

for the synthesis of 2-amino-4H-benzo[g]chromenes obtained by
other workers in Table 3. In contrast to other existing methods,
the present methodology offers several advantages such as excel-
lent yields, simple procedure, short reaction times, easy synthesis,
simple work-up and greener conditions using Zn(L-proline)2 as an
efficient catalyst (Table 3).
Finally, the recycling of Zn(L-proline)2 was investigated during

the synthesis of 4a. After completion of the reaction, the solid prod-
uct was collected by filtration. Then, water was removed under re-
duced pressure, and diethyl ether was added to the solidified
mixture in order to separate the catalyst from themixture, being in-
soluble in organic solvents. Then the catalyst was filtered, washed
with diethyl ether and dried at 80°C for 2 h to afford Zn(L-proline)2
Table 3. Comparison of the efficiencies of various catalysts used in the
synthesis of 2-amino-4H-benzo[g]chromenes

Entry 2-Amino-4H-
benzo[g]chromene

Conditions Time
(min)

Yield
(%)

4b 4-OCH3C6H4 DMF/AcOH/MWI[12] 6 81

Et3N/rt/CH3CN
13a) 1440 70

[bmim]OH/rt/EtOH15c) 120 80

This work 5 90

4e 4-ClC6H4 TEBA/85°C/solvent free[11] 190 93

Pyrr[CH3COO]/rt/solvent free
15a) 12 90

[bmim]OH/rt/EtOH15c) 50 92

This work 6 93

4o 4-NO2C6H4 TEBA/85°C/solvent free[11] 180 94

Et3N/rt/CH3CN
13a) 1440 75

[bmim]OH/rt/EtOH15c) 40 93

[Et3NH][HSO4]/rt/solvent free
15d) 12 91

This work 4 94

wileyonlinelibrary.com/journal/aoc Copyright © 2015 John W
which was reused directly for the next run. It is found that Zn
(L-proline)2 can be used for the reactions for up to three runs
without any appreciable loss of efficiency (Fig. 1).

A plausible mechanism of the reaction is presented Scheme 3.
We believe that Zn(L-proline)2 facilitates cyanoolefin formation
and synthesis of 2-amino-4H-benzo[g]chromenes. The reaction
occurs via initial formation cyanoolefin [A] from condensation of al-
dehydesandmalononitrile,which reactswith2-hydroxynaphthalene-
1,4-dione to give intermediate [B] which subsequently undergoes
cyclization to afford the desired products (4a–q).
Conclusions

We have developed an efficient and environmentally friendly
method for the synthesis of 2-amino-4H-benzo[g]chromenes in ex-
cellent yield within short reaction times. This procedure provides
several advantages such as cleaner reactions, easier work-up and
being an eco-friendly and promising strategy. It is expected that
iley & Sons, Ltd. Appl. Organometal. Chem. 2015, 29, 408–411
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the present methodology will find application in organic synthesis.
In addition, it is easy to separate and recover the catalyst for an-
other catalytic cycle.
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