

Synthesis of 2-Oxazolines by *in Situ* Desilylation and Cyclodehydration of β -Hydroxyamides

Marco Brandstätter, Fabian Roth, and Nathan W. Luedtke*

Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Supporting Information

ABSTRACT: A powerful method for the synthesis of 2oxazolines from silyl-protected β -hydroxyamides is reported. Using diethylaminosulfur trifluoride (DAST) or its tetrafluoroborate salt (XtalFluor-E), silyl-protected β -amidoalcohols can be *in situ* deprotected and dehydrated to give 2-oxazolines in good yields. The utility of this approach was demonstrated by preparing the first reported oligomer of [2,4']-coupled 2-

oxazoline units. By tuning the stability of the silvl protecting groups (ex. IPDMS < TES < TBS, etc.), the deprotection rate can be optimized so that all reaction intermediates remain soluble, allowing cyclodehydration to occur at all potential sites of ring closure. *N*-Terminal Ser residues containing an Fmoc carbamate are converted into 2-(9'-fluorenylmethyloxy)-2-oxazoline in high yield, thereby providing a new pathway for the synthesis of peptides capped with an *N*-terminal 2-alkoxy-2-oxazoline or 2oxazolidinone unit.

INTRODUCTION

The discovery of oxazoline-containing bioactive natural products spawned widespread interest in the stereoselective synthesis of 2-oxazolines.¹ One common approach to this is the cyclodehydration of β -hydroxyamides.² While simple dehydrating reagents can be used (e.g., PCl₅, POCl₃, COCl₂, etc.), they exhibit low functional group compatibility and can cause epimerization of the α -position. In 1968, Burgess et al. reported methyl N-(triethylammoniumsulfonyl)carbamate, a mild dehydrating agent used for the elimination of secondary and tertiary alcohols.^{3,4} Wipf and others utilized this reagent for the stereoselective cyclodehydration of β -hydroxyamides and thioamides.⁵⁻⁷ The Burgess reagent, however, exhibits limited functional group tolerance, high moisture sensitivity, and a short shelf life even when it is stored at low temperature.⁸ Diethylaminosulfur trifluoride (DAST) is a commercially available fluorinating agent that can be used to cyclodehydrate β -hydroxyamides in good yields and with little or no epimerization of the α -position.⁹ Recently, diethylaminodifluorosulfinium tetrafluoroborate (XtalFluor-E)¹⁰ has been reported as an attractive alternative to DAST, due to its enhanced thermal stability and reduced side product formation.¹¹ One drawback to the use of these common cyclodehydration reagents is that a relatively inert, apolar solvent must be used for cyclodehydration, most commonly CH₂Cl₂.⁹⁻¹¹ The inability of such solvents to solubilize large, polar molecules limits the scope of these reactions. This can be evidenced by the conspicuous absence of reported oligomers of [2,4']-coupled 2-oxazolines that, at least conceptually, could be prepared via dehydration of Serine oligomers. We speculated that the solubility of such peptides in apolar solvents could be dramatically improved by protecting the Serine residues as silyl ethers, and that the fluoride ions generated during the course of the reaction would remove the silyl protective groups *in situ*, allowing for cyclodehydration to occur (Scheme 1). Such

Scheme 1. In Situ Desilylation and Cyclodehydration of β -Hydroxyamides by DAST or XtalFluor-E

"direct" conversions of silyl ethers into other functional groups including aldehydes,¹² bromides,¹³ acetates,¹⁴ and one example of a 2-oxazoline have been previously demonstrated using similar approaches.¹⁵

Herein we report a method for the synthesis of 2-oxazolines by combining silylated β -hydroxyamides with DAST or XtalFluor-E to facilitate *in situ* desilylation and cyclodehydration of β -hydroxyamides under standard reaction conditions (Scheme 1). By tuning the stability of the silyl protecting group (e.g., IPDMS < TES < TBS, etc.), the rate of deprotection can be modulated so that it is slower than cyclodehydration, yet faster than undesirable side reactions (Scheme 2). This feature

 Received:
 July 23, 2014

 Published:
 December 2, 2014

Scheme 2. Proposed Reaction Pathway for the Cyclodehydration of a Silyl-Protected β -Hydroxyamide by XtalFluor-E

allows intermediates to remain soluble during the course of the reactions, so that cyclodehydration can occur at all potential sites within large, polar peptides containing multiple serine residues.

RESULTS AND DISCUSSION

Cyclodehydration of Silyl-Protected β -Hydroxyamides. To evaluate the impact of silyl group structure on cyclodehydration efficiency, the benzoylated serine methyl ester 1 was protected using isopropyldimethylsilyl chloride (IPDMS-Cl), triethylsilyl chloride (TES-Cl), *tert*-butyldimethylsilyl chloride (TBS-Cl), thexyldimethylsilyl chloride (TDS-Cl), triisopropylsilyl chloride (TIPS-Cl), or *tert*-butyldiphenylsilyl chloride (TBDPS-Cl) to give compounds 2–7 in isolated yields ranging from 70% to 98% (Scheme 3). Trimethylsilyl (TMS)

Scheme 3. Synthesis of Silyl-Protected β -Hydroxyamides 2–7

was not included in this series due to the low stability of TMS ethers.¹⁶ Compounds 1-7 were reacted with 2 equiv of XtalFluor-E in CH₂Cl₂ at rt for 24 h. Consistent with previous studies,9-11 the unprotected alcohol 1 was converted into oxazoline 8 with a good isolated yield of 81%. The use of silylprotected β -hydroxyamides containing IPDMS (2) or TES (3) also provided 8 in good yields of 87% and 85%, respectively (Table 1). The larger silvl groups present in 4-7 caused dramatically lower yields ranging from 16% to 49% of 8. According to HPLC and TLC analyses, compounds containing TDS (5), TIPS (6), and TBDPS (7) were not fully deprotected, as starting materials were still present in these reactions after 24 h. Deprotection was complete for the TBS derivative (4), but a mixture of alcohol 1 and oxazoline 8 was obtained, suggesting that XtalFluor-E decomposed over the course of the reaction with a rate similar to that of TBS deprotection.

To evaluate the relative rates of product formation, compounds 1-7 were reacted with 2 equiv of XtalFluor-E in CH_2Cl_2 at rt, and aliquots from each reaction were removed as a function of time, quenched with MeOH, and analyzed by quantitative HPLC (Figure 1). Under these conditions, the unprotected alcohol 1 is rapidly converted to oxazoline 8,

XtalFluor-E (2 eq) CH₂Cl₂, rt, 24 h 1 - 7 compound "R" vield of 8 [%] notes 1 Н 81 IPDMS 87 2 TES 85 3 TBS 41 4 а TDS 45 b 5 TIPS 49 b 6 TBDPS h 16

Table 1. Cyclodehydration of 1-7 Using XtalFluor-E

"Complete removal of silyl group after 24 h. "Remaining starting material observed after 24 h.

Figure 1. Percent conversion of compounds 1-7 into oxazoline 8 according to quantitative analytical HPLC analysis of crude reactions containing 75–95 nmoles of 1-7 and XtalFluor-E (2 equiv) in 2 mL of CH₂Cl₂ at rt.

giving a 60% conversion after only 120 s, with an initial slope of $0-30 \ s \approx 1.1 \ nmol/s$. The silyl-protected substrates 2 and 3 exhibited a delay of roughly 50 s before any product formation could be observed. After this initiation period, the IPDMSprotected compound 2 gave a rapid rate of product formation (slope $\approx 0.58 \text{ nmol/s}$), nearly that of the free alcohol 1 (slope \approx 1.1 nmol/s). The TES-protected compound 3, in contrast, exhibited a significantly lower rate of product formation (slope \approx 0.22 nmol/s). The lower rates exhibited by 2 and 3 did not negatively impact the yields of these reactions, giving similar % conversions for compounds 1-3 after 10 min. Substrates 4-7, in contrast, exhibited dramatically lower cyclodehydration rates (slopes $\approx 0.004-0.015$ nmol/s), consistent with the lower isolated yields from these reactions after 24 h (Table 1). The overall reaction rates for compounds 2-7 (IPDMS > TES \gg TBS \geq TIPS > TDS \geq TBDPS) follow the known trends for nucleophilic substitution rates on silicon.¹⁷ A 20-fold lower conversion rate was observed for 4 as compared to 2, which is

consistent with the general differences in $S_N 2$ reaction rates for branched haloalkanes containing *t*Bu versus *i*Pr groups at the β position.¹⁸ In summary, these results demonstrate the feasibility of *in situ* desilylation and cyclodehydration of large polar molecules, where the triethylsilyl ether (TES) derivative **3** exhibited a markedly slower rate for deprotection as compared to the subsequent cyclodehydration reaction. This feature should prevent the accumulation of insoluble alcohol/alkoxide groups during the course of cyclodehydration reactions on substrates that contain multiple sites of ring closure. Importantly, the lower cyclodehydration rate for **3** did not negatively impact the isolated yield for its conversion into oxazoline **8** (Table 1). We therefore selected TES for further development of this methodology.

Cyclodehydration of β -Substituted-Hydroxyamides. To evaluate the S_N2 character of the proposed ring-closing step (Scheme 2), cyclodehydration reactions were conducted on the threonine-derivative 9 and its TES-protected analogue 10 using XtalFluor-E and DAST. Good-to-excellent yields for the formation of a single 2-oxazoline diastereomer (according to NMR, see Supporting Information) were obtained for all four reactions. The specific rotation ($[\alpha]_D^{25}$, in deg dm⁻¹ cm³ g⁻¹) of the products were compared to literature values of +96.7 for (*R*,*S*)-11 and +69.4 for (*S*,*S*)-11,¹⁹ to reveal the formation of (*S*,*S*)-11 (Table 2). These results indicate that an

 Table 2. Inversion of Configuration upon Cyclodehydration

 of Threonine Derivatives

$Ph \xrightarrow{R} O_{R} \xrightarrow{XtalFluor-E \text{ or DAST}}_{(2 \text{ eq})} Ph \xrightarrow{R} H_{(R,S)-9, R = H}_{(R,S)-10, R = TES} (S,S)-11$							
entry	substrate	R	reagent	yield [%]	$[\alpha]^{25}_{ m D}$	config	
1	9	Н	XtalFluor-E	85	67.0	(<i>S</i> , <i>S</i>)	
2	9	Н	DAST	89	60.4	(<i>S</i> , <i>S</i>)	
3	10	TES	XtalFluor-E	88	62.1	(<i>S</i> , <i>S</i>)	
4	10	TES	DAST	94	64.1	(<i>S</i> , <i>S</i>)	

inversion of configuration occurred during the cyclodehydration reactions of both silylated and nonsilylated substrates, consistent with an S_N 2-like ring closing mechanism (Scheme 2).

Cyclodehydration of Dipeptides: Substrate Scope. The functional group tolerance of DAST and XtalFluor-E has been previously reported, 9^{-11} but their compatibility with common protecting groups used in peptide chemistry including benzyl (Bn), trityl (Tr), and *tert*-Butyl carbamate (Boc) has not been fully investigated. Acid-labile protective groups such as Tr and Boc are of particular concern, 2^{0} due to the formation of HF during the course of cyclodehydration (Scheme 2). As model systems to evaluate the functional group compatibility of DAST and XtalFluor-E with 2-oxazoline formation, we prepared dipeptides **12–17** of the general formula Boc-Ser(Bn)-Ser(TES/OH)-OMe and Boc-Cys(Bn/Tr)-Ser(TES/OH)-OMe (Scheme 4).

Paquin and co-workers previously demonstrated that XtalFluor-E can give excellent yields for cyclodehydration of simple β -hydroxyamides when the reactions were heated from rt to 90 °C.¹¹ When XtalFluor-E was mixed with dipeptide **12** at rt, a complex mixture of decomposition products was observed by TLC, none of which corresponded to the desired

product 18 ("n.o.", Table 3). To prevent decomposition, the reaction temperature was lowered prior to the addition of

\downarrow_{\circ}	0 N H O 12, R = H 15, R = TES		XtalFluor-E or D CH ₂ Cl ₂			Bn
entry	substrate	R	reagent	$T [^{\circ}C]$	base	yield [%]
1	12	Н	XtalFluor-E	rt	-	n.o. ^a
2	12	Н	XtalFluor-E	0 to rt	_	11
3	12	Н	XtalFluor-E	-78 to rt	_	46
4	12	Н	XtalFluor-E	-78 to rt	NEt ₃	59 ^b
5	12	Н	XtalFluor-E	-78 to rt	DBU	76 ^b
6	12	Н	DAST	-78 to rt	-	85
7	15	TES	XtalFluor-E	-78 to rt	_	56
8	15	TES	DAST	-78 to rt	_	89
<i>a</i> ",	, 1	,	1 . 1			

^a"n.o." = no observed product, decomposition of starting material. ^bMixture of diastereomers obtained.

XtalFluor-E. By mixing the components at 0 $^{\circ}$ C or $-78 ^{\circ}$ C, followed by slow warming to rt, oxazoline **18** could be isolated in low-to-modest yields of 11% and 46%, respectively (entries 2 and 3, Table 3).

Couturier and co-workers previously demonstrated that the addition of base can improve the yields for deoxofluorination of simple alcohols and carbonyl compounds by XtalFluor-E,¹⁰ but it was hitherto unknown how added base would affect cyclodehydration efficiencies. This could, in principle, result in increased fluoride concentrations to facilitate silvl deprotection, while protecting Boc, Bn, and Tr groups from HFmediated cleavage.²⁰ Indeed, the inclusion of 1.5 equiv of triethyl amine (TEA) to reactions containing 12 and XtalFluor-E increased the isolated yield of 18 to 59%. By using 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) the yield was further increased to 76%. Unfortunately, the use of base in both reactions caused epimerization, giving a mixture of diastereomers (entries 4 and 5, Table 3; see Supporting Information). Reactions lacking exogenous base that utilized DAST instead of XtalFluor-E furnished oxazoline 18 as a single diastereomer in an 85% isolated yield, representing a dramatic improvement as compared to the 46% obtained with XtalFluor-E (entries 3 and 6, Table 3). No loss of the Boc or Bn groups was observed when using DAST, despite the fact that HF concentrations were previously reported to be higher in DAST-containing reactions as compared to XtalFluor-E.¹⁰ These results suggest that the higher Lewis acidity of XtalFluor-E as compared to DAST might cause compatibility problems with certain acidlabile protecting groups. The results obtained using SBn and STr groups support this notion vide infra (Tables 4 and 5).

Having optimized the yields for cyclodehydration of the alcohol-containing Ser-Ser dipeptide 12, we next applied these

^a"n.o." = no observed product, decomposition of starting material. ^bMixture of diastereomers obtained.

Table 5. Cyclodehydration of Boc-Cys(Tr)-Ser(TES/OH) Dipeptide

	\neq_{o}	STr O N N O O 14, R = H 17, R = TES	CH ₂ Cl ₂		r N 0	
entry	substrate	R	reagent	T [°C]	base	yield [%]
1	14	Н	XtalFluor-E	0 to rt	_	n.o. ^a
2	14	Н	XtalFluor-E	-78	-	12
3	14	Н	XtalFluor-E	-78	DBU	39 ^b
4	14	Н	DAST	-78	_	79
5	17	TES	DAST	-78 to rt	_	85
6	17	TES	XtalFluor-E	-78 to rt	-	n.o. ^a
a^{a} n $a^{"}$ = n a observed	rived product decom	position of starting	matorial ^b Mixture of dias	taraamars obtained		

".no." = no observed product, decomposition of starting material. "Mixture of diastereomers obtained.

Table 6. Cyclodehydration of Boc-Ser(Bn)-Ser(TES/OH)-Ser(TES/OH)

conditions to the cyclodehydration of the TES-silylated peptide **15**. The presence of the TES group had a small, yet consistently positive effect on the isolated yields of oxazoline **18** that ranged from 56% to 89% (entries 7–8, Table 3). These yields represent improvements in the range of 4–10% as compared to the yields obtained for the corresponding free alcohol **12** (entries 3 and 6). Larger improvements upon silylation were observed for Cys-Ser dipeptide and (Ser)₃ tripeptides (Tables 4–6). In all cases, fewer byproducts were generated when using the silylated peptides, thereby facilitating product purification.

Cysteine is an important synthetic precursor of thiazole and thiazolinum,²¹ but the compatibility of sulfur-containing peptides with DAST and XtalFluor-E is potentially problem-

atic,¹⁰ and peptides containing fused Cysteine-oxazoline units are only rarely reported.²² Peptide **13** contains a Cys(Bn)-Ser(TES/OH) unit and was highly susceptible to decomposition at rt in reactions containing XtalFluor-E (entries 1 and 2, Table 4). By starting the reaction at -78 °C, a 44% isolated yield of oxazoline **19** could be obtained (entry 3). The addition of DBU improved the yield to 50%, but epimerization was again observed (entry 4). Reacting **13** with DAST yielded **19** in 61% as a single diastereomer (entry 6, Table 4). Approximately 10% higher yields were obtained in these reactions when using the silylated peptide **16** (entries 6–8) as compared to the free alcohol **13** (entries 3–6, Table 4).

Article

Scheme 5. Synthesis and Silvlation of Boc-Ser(Bn)-Ser(TES/OH)-Ser(TES/OH)

In general, C–S bonds are about 20 kcal mol⁻¹ weaker than C-O bonds²³ and are therefore more susceptible to cleavage by Lewis and Brønsted acids.¹⁷ Accordingly, the yields obtained for the Cys(Bn)-containing peptides 13 and 16 (Table 4) were consistently lower than those for the corresponding Ser(Bn)containing peptides 12 and 15 (Table 3). The highly labile trityl protective group (Tr) was even more problematic in the context of peptides 14 and 17 that contain a Cys(Tr) residue. Upon addition of XtalFluor-E, peptide 14 immediately decomposed in reactions maintained at 0 °C or above, giving an intensely colored yellow solution (entry 1, Table 5). When the temperature of the reaction was maintained at -78 °C, 12% of oxazoline 20 could be obtained from a complex mixture of decomposition products (entry 2, Table 5). A slightly higher yield of 39% was obtained by including DBU in the reaction, but epimerization was observed (entry 3, Table 5). At -78 °C, the reaction of 14 with DAST yielded 79% of the desired product as a single diastereomer (entry 4, Table 5). A slightly higher yield of 85% was obtained when using the corresponding TES-protected peptide 17, upon warming the reaction to 0 °C to facilitate deprotection of the silvl group (entry 5, Table 5). Under the same conditions, the reaction of XtalFluor-E with TES-protected peptide 17 gave a complex mixture of decomposition products containing little or no desired product (entry 6, Table 5). Together, these results demonstrate that TES-protected Ser units in Cys-Ser dipeptides can serve as efficient oxazoline precursors, especially in cases where DAST is used as the cyclodehydrating reagent.

Tandem [2,4']-coupled 2-oxazoline units can be prepared via cyclodehydration reactions of peptides containing multiple serine residues.²¹ We therefore compared the ability of XtalFluor-E and DAST to generate two consecutive 2oxazolines from peptides containing Ser(OH) or Ser(TES) residues. To provide starting material for these reactions, peptide 12 was elongated by one serine moiety in a two-step procedure, where the methyl ester was hydrolyzed using LiOH in H₂O/MeOH, followed by peptide coupling with L-serine methyl ester hydrochloride to give an inseparable mixture of diastereomers (Scheme 5). Silvlation of tripeptide 21 was performed using TES-Cl and imidazole in DMF (81%). 21 was reacted with XtalFluor-E at -78 °C to give a 27% isolated yield of the desired products containing two consecutive 2-oxazoline units (entry 1, Table 6). The reaction of tripeptide 21 with DAST at -78 °C gave a moderate yield of 53%, which could be further improved to 73% by utilizing the TES-protected peptide

22. This improvement in yield was only observed when using DAST, and not in the case of XtalFluor-E (entries 3 and 4, Table 6). These reactions provide rare examples of simultaneous synthesis of two tandem [2,4']-fused 2-oxazoline units and further demonstrate the potential advantages of using silyl-protected Ser units in the starting material.

Cyclodehydration of β -Hydroxycarbamates. Carbamates are ubiquitous groups in peptide synthesis, where tertbutoxycarbonyl (Boc), fluorenylmethyloxycarbonyl (Fmoc), and benzyl carbonate (Cbz) are used to protect the N-terminal amines. It is well-known that O-protected, N-terminal serine residues containing Cbz or Boc remain stable in the presence of DAST, giving good to excellent yields for cyclodehydration reactions at remote β -hydroxyamides (Tables 3 - 6).⁹ However, little or nothing is reported about the reactivity of Boc, Cbz, and Fmoc groups in the context of β hydroxycarbamates, where the N-terminal Ser residue carries a free alcohol. In this case, cyclodehydration could conceivably furnish 2-alkoxy-2-oxazolines. In general, only a few methods have been reported for the synthesis of 2-alkoxy-2-oxazolines,² the most common being the O-alkylation of 2-oxazolidinones to give 2-ethoxy-25 and 2-benzoxyoxazolines.26 To investigate the potential synthesis of N-terminal 2-alkoxy-2-oxazolines from β -hydroxycarbamates, substrates 24–28 were prepared and reacted with DAST or XtalFluor-E (Table 7).

Boc-protected carbamate 24 was reacted with XtalFluor-E at rt or at -78 °C, but no oxazoline **29** could be observed by TLC or ESI-MS. The reaction of Cbz-protected 25 with XtalFluor-E gave oxazoline 30 in a 16% isolated yield, while the reaction of TES-protected 26 with DAST gave a complex mixture of products containing no detectable product 30. The cyclodehydration of Fmoc-protected 27 using XtalFluor-E and DAST gave 31 in 45% and 61% isolated yields, respectively. When using the TES-protected derivative 28, the isolated yield of 31 increased to 71% with little or no byproduct formation. These results suggest that N-terminal Fmoc/TES-protected serine residues are especially well suited for cyclodehydration reactions to give an N-terminal 2-alkoxy-2-oxazoline. We therefore selected Fmoc as the N-terminal protecting group for the synthesis of oligomers containing [2,4']-coupled 2oxazoline units.

Cyclodehydration of (Ser)₅**.** Little is known about the synthesis or physical properties of linear oligomers of oxazoline units. The longest reported example is an intermediate from the total synthesis of thiangazole, containing only three consecutive

Table 7. Cyclodehydration of Carbamates Using XtalFluor-E and DAST

Scheme 6. Solid-Phase Peptide Synthesis of (Ser)₅ 32

units.²¹ To evaluate the synthesis of oxazoline oligomers by in situ desilylation and cyclodehydration of β -hydroxyamide oligomers, **32** was synthesized via Fmoc solid-phase synthesis and isolated as a crude product in an 84% yield (Scheme 6).

Crude peptide 32 was protected on each termini and silylated in a three-step procedure to obtain silylated pentaserine 33 (Scheme 7). The N-terminal amine was protected using Fmoc-Cl and NaHCO₃ in a MeOH/H₂O (1:2) solution. After the protection was complete, the product was precipitated using DCM and directly used for the esterification. The methyl ester was formed by adding excess TMS-Cl to a stirring suspension of the crude material in MeOH. The product was again precipitated and directly used for silylation. Reaction with TES-Cl in pyridine and purification by silica gel column chromatography provided pure peptide 33 in a 22% isolated yield over three steps.

Peptide 33 was reacted with 15 equiv of DAST at -78 °C in DCM and slowly warmed to 0 °C over 4 h, during which 33 and all reaction intermediates remained soluble.²⁷ The reaction was then quenched with MeOH and purified by silica gel column chromatography. Pentaoxazoline 34 was thereby obtained in a 34% isolated yield as a single diastereomer, representing a >80% yield for cyclodehydration at each independent position. This molecule represents the first example of a linear oligomer of oxazoline containing more than three units, and it contains a novel, *N*-terminal 2-(9'-fluorenylmethyloxy)-2-oxazoline.

CONCLUSIONS

We have developed a method to synthesize 2-oxazolines from silyl-protected β -amido alcohols in a tandem two-step reaction comprising deprotection and cyclodehydration upon addition of a deoxofluorinating agent. After screening various silyl Scheme 7. Synthesis of Silyl-Protected $\text{Fmoc-}(\text{Ser})_5$ 33 and Its Cyclodehydration to 34

groups, we found that triethylsilyl (TES) was optimal, giving a rate of deprotection that was significantly slower than the

cyclodehydration reaction. This prevents accumulation of highly polar and insoluble alcohol/alkoxide groups during the course of cyclodehydration reactions on substrates containing multiple sites of ring closure. This provides a means to synthesize 2-oxazolines from highly polar starting materials that would otherwise be insoluble under standard reaction conditions. As a demonstration, we synthesized the first oxazoline oligomer containing five linear units from a Fmoc- $(Ser)_5$ peptide. During the course of the reaction, the *N*-terminal F-moc protected Ser residue was converted into a 2-(9'-fluorenylmethyloxy)-2-oxazoline unit, thereby revealing a new pathway for the synthesis of peptides capped with an *N*-terminal 2-alkoxy-2-oxazoline or, following deprotection, a 2-oxazolidinone unit.²⁸

EXPERIMENTAL SECTION

General Information. Starting materials were obtained in the highest commercial grades and used without further purification. All reactions sensitive to moisture and/or air were carried out under an atmosphere of argon or nitrogen in dry, freshly distilled solvents and oven-dried glassware. Commercially available dichloromethane (CH₂Cl₂) was purified by distillation prior to use. Commercially available anhydrous pyridine was used directly without further drying. For all aq. solutions, H₂O was purified on a Purelab Ultra MK2 apparatus from ELGA Labwater. Analytical thin-layer chromatography was performed on precoated 250 μ m layer thickness silica gel 60 F254 plates. Visualization was performed by ultraviolet light and staining with a KMnO₄ solution. Flash column chromatography was performed using 40–63 μ m silica gel and compressed air. ¹H NMR spectra were recorded on 300, 400, and 500 MHz spectrometers; tetramethylsilane or the residual solvent peaks were used as internal standards: DMSO (quint, $\delta H = 2.50$ ppm), CHCl₃ (s, $\delta H = 7.26$ ppm). ¹³C NMR spectra were recorded on 75, 100, and 125 MHz spectrometers, with δ relative to DMSO (δ 40.5 ppm) or CHCl₃ (δ 77.23 ppm). Coupling constants (J) are reported in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, dd = doublet-doublet, ddd = doubletdoublet-doublet, dt = doublet-triplet, br = broad. Mass spectra were obtained on a quadrupole ion trap instrument equipped with an atmospheric pressure ion (API) source. High-resolution electrospray mass spectra (HR-ESI MS) were recorded on a QTOFMS instrument. Infrared spectra were recorded on an FTIR spectrometer. Optical rotation $([\alpha]_{D}^{25})$ was measured at room temperature with a PerkinElmer 241MC polarimeter, and values are given in deg cm³ g^{-1} dm⁻¹; concentration *c* is given in g (100 mL)⁻

Synthesis of Hydroxyamide Derivatives. General Procedure A.²⁹ To a stirring solution of amine (1 mmol) in EtOH at rt, the carboxylic acid (1.03 mmol), NMM (2.2 mmol), and HOBt (0.15 mmol) were subsequently added. The solution was then cooled to 0 °C, and EDC (1.2 mmol) was added. The reaction was stirred at rt overnight, followed by the addition of 0.1 M citric acid. The mixture was then extracted with EtOAc (3×). The combined organic phases were washed with brine (1×), dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The crude material was purified by column chromatography to give the indicated product.

Synthesis of Silylated Hydroxyamide Derivatives. General Procedure B.³⁰ To a stirring solution of the hydroxyamide derivative (1 mmol) in DMF or DCM, the corresponding silyl chloride (1.3–3 mmol) was added at rt. After the solution stirred for 30 min, imidazole or NEt₃ (2–5 mmol) was added and stirred overnight. The solution was diluted with EtOAc and washed with 0.1 M citric acid and brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude material was purified by column chromatography to give the desired product.

Synthesis of 2-Oxazolines via Cyclodehydration. General Procedure C. To a stirring solution of β -hydroxyamide or silylated β -hydroxyamide (1 mmol) in DCM (2 mL), DAST or XtalFluor-E (2–3 mmol) and DBU or NEt₃ (1.5 mmol, optionally) were added. The

solution was then stirred at -45 or -78 °C and allowed to warm to 0 °C or rt. After completion, the reaction was quenched by sat. NaHCO₃ in MeOH or MeOH and dried using a rotary evaporator. The crude material was purified by column chromatography to give the desired product.

N-Benzoyl-(S)-serine Methyl Ester (1). To a suspension of HCl-Ser-OMe (3.00 g, 19.28 mmol) at 0 °C in CH₂Cl₂ (50 mL) was added a solution of Bz-Cl (2.50 mL, 21.50 mmol) in CH₂Cl₂ (20 mL) and successively a solution of NEt₃ (5.40 mL, 38.96 mmol) in CH₂Cl₂ (30 mL) over a period of 20 min. The reaction mixture was maintained at 4 °C for 2 h and allowed to slowly warm to rt. After completion, 0.1 M citric acid was added. The resulting solution was extracted with DCM $(3\times)$ and the combined organic layers were washed with brine $(1\times)$, dried over MgSO4, filtered, and evaporated in vacuo. The crude material was subjected to column chromatography on silica gel (hexane/EtOAc, gradient from 2:1 to 1:2) to give a white solid which was recrystallized (hexane/CH₂Cl₂, 1:1) to give 1 as white needles (2.61 g, 11.68 mmol, 61%): R_f (hexane/EtOAc, 1:1) 0.21; IR (neat) ν = 3349, 2953, 1739, 1639, 1578, 1528, 1488, 1442, 1348, 1209, 1160, 1073, 713, 691, 530 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (*d*, *J* = 9.0, 2 H), 7.51 (t, J = 6.0, 1 H), 7.42 (t, J = 6.0, 2 H), 7.12 (d, J = 6.0, 1H), 4.87-4.84 (m, 1H), 4.09-3.99 (m, 2H), 3.80 (s, 3H), 2.49 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 167.9, 133.6, 132.2, 128.9, 127.4, 63.8, 55.4, 53.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₁₁H₁₄NO₄Na 246.0737, found 246.0734.

N-Benzoyl-O-((1-methylethyl)dimethylsilyl)-(S)-serine Methyl Ester (2). Following general procedure B on a 2.24 mmol scale of 1 using IPDMS-Cl (453 μL, 2.69 mmol) and imidazole (305 mg, 4.48 mmol) in DMF (1 mL), the desired product (714 mg, 2.21 mmol, 98%) was isolated as colorless oil by extraction: R_f (hexane/EtOAc, 3:1) 0.57; IR (neat) ν = 3448, 3333, 2953, 2865, 1745, 1653, 1518, 1486, 1348, 1302, 1251, 1207, 1163, 1104, 999, 883, 829, 776, 712, 691, 520 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (*d*, *J* = 6.0, 2 H), 7.56–7.43 (*m*, 3 H), 6.97 (*d*, *J* = 7.8, 1 H), 4.87 (dt, *J* = 1.8, 8.1, 1 H), 4.15 (*dd*, *J*₁ = 2.7, *J*₂ = 10.2, 1 H), 3.95 (*dd*, *J*₁ = 3.0, *J*₂ = 10.0, 1 H), 3.79 (*s*, 3 H), 0.93 (*d*, *J* = 6.3, 6H), 0.88–0.79 (*m*, 1H), 0.04 (*s*, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 167.2, 134.2, 131.9, 128.8, 127.3, 63.4, 54.8, 52.7, 16.9, 14.5, -4.4; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calculated for C₁₆H₂₅NO₄SiNa 346.1445, found 346.1446.

N-Benzoyl-O-(triethylsilyl)-(*S*)-serine Methyl Ester (3). Following general procedure B on a 2.24 mmol scale of 1 using TES-Cl (451 μ L, 2.69 mmol) and imidazole (305 mg, 4.48 mmol) in DMF (1 mL) the desired product (679 mg, 2.00 mmol, 90%) was isolated as a colorless oil by silica gel column chromatography: R_f (hexane/EtOAc, 9:1) 0.21; IR (neat) ν = 3448, 3333, 2953, 2911, 2876, 1746, 1655, 1516, 1485, 1465, 1350, 1296, 1243, 1207, 1163, 1104, 1004, 973, 814, 712 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (*d*, *J* = 6.0, 2 H), 7.53–7.41 (*m*, 3 H), 6.98 (*d*, *J* = 6.0, 1 H), 4.86 (dt, *J* = 3.0, 9.0, 1 H), 4.15 (*dd*, J_1 = 3.0, J_2 = 12.0, 1 H), 3.95 (*dd*, J_1 = 3.0, J_2 = 12.0, 1 H), 3.95 (*dd*, *J* = 6.0, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 167.2, 134.2, 132.0, 128.8, 127.3, 63.5, 54.9, 52.7, 6.8, 4.4; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₁₇H₂₇NO₄SiNa 360.1602, found 360.1600.

N-Benzoyl-O-((*tert*-butyl)-dimethylsilyl)-(*S*)-serine Methyl Ester (4). Following general procedure B on a 4.48 mmol scale of 1 using TBS-Cl (960 μL, 5.38 mmol) and imidazole (762 mg, 11.99 mmol) in DMF (2 mL), the desired product (1.23 g, 3.66 mmol, 82%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 6:1): R_f (hexane/EtOAc, 6:1) 0.55; IR (neat) ν = 3442, 3333, 2953, 2929, 2856, 2348, 1745, 1653, 1518, 1486, 1471, 1436, 1385, 1350, 1302, 1253, 1207, 1163, 1105, 1046, 833, 777, 712, 691, 666 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.83–7.80 (*m*, 2 H), 7.50–7.45 (*m*, 3 H), 6.96 (*d*, *J* = 9.0, 1 H), 4.68–4.85 (*m*, 1 H), 4.16 (*dd*, J_1 = 3.0, J_2 = 10.5, 1 H), 3.96 (*dd*, J_1 = 3.0, J_2 = 9.0, 1 H), 3.78 (*s*, 3 H), 0.87 (*s*, 9H), 0.03 (*s*, 3 H), 0.03 (*s*, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 167.7, 134.6, 132.3, 129.2, 127.6, 63.7, 54.8, 52.5, 25.6, 18.0, 5.9, 5.8; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₁₇H₂₇NO₄SiNa 360.1602, found 360.1604.

N-Benzoyl-O-((2,3-dimethyl-2-butyl)-dimethylsilyl)-(S)-serine Methyl Ester (5). Following general procedure B on a 1.17 mmol scale of 1 using TDS-Cl (299 μ L, 1.52 mmol) and imidazole (161 mg, 2.34 mmol) in DMF (1 mL), the desired product (376 mg, 1.03 mmol, 89%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 6:1): R_f (hexane/EtOAc, 6:1) 0.61; IR (neat) ν = 3448, 3338, 2954, 2870, 1746, 1666, 1514, 1485, 1467, 1437, 1380, 1350, 1252, 1206, 1166, 1104, 1040, 827, 777, 711, 691, 494 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 1.8, 2 H), 7.53–7.43 (m, 3 H), 6.96 (d, J = 7.2, 1 H), 4.88 (dt, J = 2.7, 5.4, 1 H), 4.15 (dd, J_1 = 3.0, J_2 = 10.0, 1 H), 3.95 (dd, J_1 = 3.0, J_2 = 9.9, 1 H), 3.78 (s, 3 H), 1.64–1.55 (m, 1H), 0.87 (d, J = 6.9, 6 H), 0.83 (s, 6H), 0.1 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 167.1, 134.3, 132.0, 128.9, 127.3, 63.7, 54.9, 52.7, 34.5, 25.3, 20.4, 18.7, -3.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₁₉H₃₁NO₄SiNa 388.1915, found 388.1913.

N-Benzoyl-O-(triisopropyl)-(*S*)-serine Methyl Ester (6). Following general procedure B on a 4.51 mmol scale of 1 using TIPS-Cl (1.11 mL, 5.67 mmol) and imidazole (765 mg, 11.18 mmol) in DMF (2 mL), the desired product (1.19 g, 3.13 mmol, 70%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 6:1): R_f (hexane/EtOAc, 3:1) 0.69; IR (neat) ν = 3442, 3333, 2943, 2866, 2354, 1746, 1666, 1516, 1485, 1464, 1437, 1380, 1349, 1296, 1245, 1206, 1163, 1110, 1066, 1040, 994, 881, 799, 735, 712, 683, 661 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.83–7.80 (*m*, 2 H), 7.50–7.45 (*m*, 3 H), 7.03 (*d*, *J* = 9.0, 1 H), 4.91–4.86 (*m*, 1 H), 4.27 (*dd*, J_1 = 3.0, J_2 = 6.0, 1 H), 3.96 (*dd*, J_1 = 3.0, J_2 = 6.0, 1 H), 3.78 (*s*, 3 H), 1.07–0.99 (*m*, 21H); ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 167.7, 134.7, 132.3, 129.2, 127.6, 64.3, 54.8, 52.5, 17.7, 17.6, 11.6; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₂₀H₃₃NO₄SiNa 402.2071, found 402.2072.

N-Benzoyl-*O*-(*tert*-butyldiphenylsilyl)-(*S*)-serine Methyl Ester (7). Following general procedure B on a 2.24 mmol scale of 1 using TBDPS-Cl (757 μL, 2.91 mmol) and imidazole (305 mg, 4.48 mmol) in DMF (1 mL), the desired product (925 mg, 2.00 mmol, 89%) was isolated as a white solid by silica gel column chromatography (hexane/ EtOAc, 9:1): R_f (hexane/EtOAc, 3:1) 0.58; IR (neat) ν = 3442, 3338, 2953, 2932, 2885, 2854, 1745, 1665, 1514, 1484, 1472, 1428, 1349, 1247, 1207, 1162 1106, 823, 736, 700, 690, 613, 488 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.68–7.03 (*m*, 15H), 7.02 (*d*, *J* = 6.0, 1H), 4.20 (*dd*, J_1 = 3.0, J_2 = 9.0, 1H), 4.01 (*dd*, J_1 = 3.0, J_2 = 9.0, 1H), 3.77 (*s*, 3H), 1.03 (*s*, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 166.9, 135.5, 134.8, 133.9, 132.9, 131.8, 130.0, 129.6, 128.6, 127.8, 127.7, 127.1, 64.5, 54.6, 52.6, 26.7, 19.3; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₂₇H₃₁NO₄SiNa 484.1915, found 484.1919.

(45)-4-Methoxycarbonyl-2-phenyl-2-oxazoline (8). Following general procedure C on a 0.10 mmol scale of 3 using XtalFluor-E (46 mg, 0.20 mmol) in CH₂Cl₂ and sat. NaHCO₃ in MeOH to quench the reaction, the desired product (18 mg, 0.09 mmol, 87%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 2:1): R_f (hexane/EtOAc, 1:1) 0.64; $[\alpha]_D^{25}$ +123.2 (c = 1.0, CHCl₃) {(Lit.³¹ [α]_D^{25} + 122.7 (c =1.0, CHCl₃)}; IR (neat) ν = 2953, 1738, 1639, 1450, 1436, 1360, 1296, 1272, 1203, 1176, 1088, 1068, 1059, 1039, 1025, 970, 945, 778, 693 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.00–7.98 (m, 2 H, Ph), 7.52–7.48 (m, 1H, Ph), 7.43–7.40 (m, 2H, Ph), 4.96 (dd, J_1 = 8.0, J_2 = 10.5, 1H, CHCH₂O), 4.70 (dd, J_1 = 8.0, J_2 = 9.0, 1H, CH₂O), 4.60 (dd, J_1 = 8.5, J_2 = 10.5, 1H, CH₂O), 3.82 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 166.6, 132.1, 128.85, 128.6, 127.1, 69.8, 68.8, 53.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₁₁H₁₁NO₃Na 228.0631, found 228.0627.

N-Bz-Thr-OMe (9). To a suspension of HCl·Thr-OMe (2.00 g, 11.6 mmol) at 0 °C in CH₂Cl₂ (40 mL) was added a solution of Bz-Cl (1.56 mL, 11.56 mmol) in CH₂Cl₂ (10 mL) and successively a solution of NEt₃ (3.29 mL, 23.6 mmol) in CH₂Cl₂ (40 mL) over a period of 30 m. The reaction mixture was allowed to slowly warm up to rt overnight. After completion, 0.1 M citric acid was added. The resulting solution was extracted with DCM (3×), and the combined organic layers were washed with brine (1×), dried over MgSO₄, filtered, and evaporated *in vacuo*. The crude material was subjected to column chromatography on silica gel (hexane/EtOAc, gradient from 2:1 to 1:2) to give 1 as a slightly yellow powder (2.64 g, 11.1 mmol, 96%): R_f (hexane/EtOAc, 1:1): 0.24; IR (neat) ν = 3375, 2974, 2359,

2333, 1740, 1643, 1579, 1524, 1488, 1437, 1316, 1211, 1165, 1080, 1017, 1000, 927, 884, 838, 713, 691, 665, 541, 412 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (*d*, *J* = 6.0, 2H), 7.53–7.45 (*m*, 3H), 6.93 (*br* s, 1H), 4.85–4.81 (*m*, 1H), 4.49–4.43 (*m*, 1H), 3.80 (*s*, 3H), 2.17 (*br* s, 1H), 1.29 (*d*, *J* = 6.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 168.7, 134.4, 132.5, 129.2, 127.7, 68.5, 57.7, 52.8, 20.0; HRMS (ESITOF) *m*/*z*: [M + Na]⁺ calculated for C₁₂H₁₅NO₄Na 260.0893, found 260.0890.

N-Bz-Thr(TES)-OMe (10). Following general procedure B on a 1.77 mmol scale of 1 using TES-Cl (350 μ L, 2.12 mmol) and NEt₃ (320 μ L, 2.30 mmol) in CH₂Cl₂ (5 mL), the desired product (522 mg, 1.49 mmol, 84%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 3:1): R_f (hexane/EtOAc, 3:1): 0.36; IR (neat) ν = 2954, 2913, 2876, 2361, 2335, 1748, 1670, 1513, 1484, 1439, 1381, 1349, 1317, 1239, 1207, 1167, 1126, 1092, 1004, 963, 840, 712, 527, 465 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (*d*, *J* = 6.0, 2H), 7.54–7.44 (*m*, 3H), 6.85 (*d*, *J* = 9.0, 1H), 4.78–4.75 (*m*, 1H), 4.60–4.53 (*m*, 1H), 3.76 (*s*, 3H), 1.26 (*d*, *J* = 6.0, 3H), 0.95 (*t*, *J* = 9.0, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.0, 168.5, 134.9, 132.3, 129.2, 127.7, 69.1, 58.3, 52.4, 21.1, 6.5, 4.6; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calculated for C₁₈H₂₉NO₄SiNa 374.1758, found 374.1762.

(45,55)-4-Carboxymethoxy-5-methyl-2-phenyloxazoline (11). Following general procedure C on a 0.21 mmol scale of 1 using DAST (55 μL, 0.41 mmol) in CH₂Cl₂ and sat. NaHCO₃ in MeOH to quench the reaction, the desired product (40 mg, 0.18 mmol, 89%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 3:1): R_f (hexane/EtOAc, 3:1): 0.41. $[\alpha]_D^{25}$ +60.36 (c =0.92, CHCl₃); IR (neat) $\nu = 2984$, 2950, 2361, 2340, 1737, 1645, 1583, 1493, 1449, 1436, 1349, 1244, 1197, 1174, 1082, 1066, 1044, 1027, 932, 841, 778, 734, 694, 491 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.99–7.96 (m, 2H), 7.47–7.36 (m, 3H), 5.10–5.02 (m, 1H), 4.97 (d, J = 10.2, 1H), 3.75 (s, 3H), 1.36 (d, J = 6.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.4, 166.5, 132.2, 128.7, 128.5, 78.0, 71.6, 52.3, 16.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₁₂H₁₃NO₃Na 242.0788, found 242.0787.

N-Boc-Ser(Bn)-Ser-OMe (12). Following general procedure A on a 5.57 mmol scale of HCl-Ser-OMe using Boc-Ser(OBn)-OH (1.70 g, 5.74 mmol), EDC (1.29 g, 6.69 mmol), NMM (1.35 mL, 12.25 mmol), and HOBt (112.93 mg, 0.84 mmol) in EtOH (20 mL), the desired product (1.96 g, 4.93 mmol, 86%) was isolated as colorless oil by silica gel column chromatography (hexane/EtOAc, 3:1): R_f (hexane/EtOAc, 1:1) 0.27; IR (neat) ν = 3342, 2978, 2354, 1744, 1665, 1498, 1455, 1439, 1392, 1366, 1248, 1163, 1072, 1025, 862, 735, 699, 461 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.28 (*m*, SH), 5.46 (*d*, *J* = 7.0), 4.65–4.62 (*m*, 1H), 4.54 (*s*, 2H), 4.32 (*br s*, 1H), 3.91–3.88 (*m*, 3H), 3.75 (*s*, 3H), 3.62 (*dd*, J_1 = 5.5, J_2 = 9.5, 1H), 1.44 (*s*, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.7, 155.8, 137.5, 128.7, 128.2, 128.1, 80.7, 73.7, 70.0, 63.0, 60.6, 55.2, 52.9, 28.5; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₁₉H₂₈N₂O₇Na 419.1789, found 419.1791.

N-Boc-Cys(Bn)-Ser-OMe (13). N-Boc-Cys(Bn)-OH (10.54 g, 34 mmol) and HOBt·H₂O (5.03 g, 37 mmol, 1.1 equiv) were dissolved into 100 mL of dry DMF, and N,N'-diisopropylcarbodiimide (5.80 mL, 37 mmol, 1.1 equiv) was added and stirred at rt under N₂ for 30 min, whereupon HCl·Ser-OMe (5.80 g, 37 mmol, 1.1 equiv) was added and the mixture was sonicated in a bath sonicator. Triethylamine (30 mL, 216 mmol, 6.4 equiv) was added to the reaction and stirred at rt under N2 for 2.5 h. A white precipitate was removed from the reaction by filtration and washed with 50 mL of ethyl acetate. The combined filtrate was diluted into 500 mL of ethyl acetate and washed four times with 0.1 M citric acid (4 \times 60 mL), saturated sodium bicarbonate (2 \times 100 mL), and brine (1 \times 100 mL), dried over anhydrous MgSO4, and concentrated in vacuo. The crude material was dissolved into CH₂Cl₂ and loaded onto silica gel (350 mL). The column was washed with $\mathrm{CH}_2\mathrm{Cl}_2$ and the product was eluted using a gradient of hexane/EtOAc from a ratio of 2:1 to 1:2, with the combined fractions concentrated to yield 9.53 g (68%). R_f (hexane/ EtOAc, 1:1) 0.43; IR (neat) $\nu = 3306$, 2979, 2364, 1744, 1657, 1517, 1454, 1437, 1366, 1245, 1163, 1050, 1023, 864, 769, 736, 702, 561

cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.29 (*m*, 5H), 5.43 (*d*, *J* = 5.0, 1H), 4.61–4.58 (*m*, 1H), 4.24–4.21 (*m*, 1H), 3.90–3.88 (*m*, 2H), 3.72 (*s*, 3H), 3.71 (*s*, 2H), 2.78 (*d*, *J* = 10.0, 2H), 1.40 (*s*, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.8, 171.3, 156.3, 138.4, 129.5, 129.1, 127.7, 80.8, 62.7, 55.0, 52.7, 42.33, 36.5, 33.6, 28.2; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calculated for C₁₉H₂₈N₂O₆SNa 435.1560, found 435.1556.

N-Boc-Cys(Tr)-Ser-OMe (14). Following general procedure A on a 3.15 mmol scale of HCI-Ser-OMe using Boc-Cys(Tr)-OH (1.50 g, 3.25 mmol), EDC (742.32 mg, 3.78 mmol), NMM (762 μ L, 6.93 mmol), and HOBt (65.20 mg, 0.47 mmol) in EtOH (20 mL), the desired product (1.59 g, 2.81 mmol, 89%) was isolated as a white solid by silica gel column chromatography (hexane/EtOAc, 3:1): R_f (hexane/EtOAc, 1:1) 0.43; IR (neat) ν = 3392, 3319, 3055, 2974, 2358, 2335, 1745, 1671, 1491, 1444, 1391, 1367, 1248, 1166, 1030, 861, 743, 701, 627 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.29–7.21 (*m*, 15H), 6.79 (*d*, *J* = 8.1, 1H), 4.77 (*d*, *J* = 5.7, 1H), 4.76–4.54 (*m*, 1H), 4.03 (*dd*, *J*₁ = 2.7, *J*₂ = 9.9, 1H), 3.94 (*m*, 1H), 3.76 (*dd*, *J*₁ = 3.0, *J*₂ = 10.1, 1H), 3.69 (*s*, 3H), 2.78 (*dd*, *J*₁ = 5.7, *J*₂ = 13.2, 1H), 2.54 (*dd*, *J*₁ = 4.8, *J*₂ = 12.6, 1H), 1.42 (*s*, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.6, 144.5, 129.8, 128.4, 128.3, 127.2, 80.3, 67.5, 62.7, 55.3, 54.2, 52.9, 34.2, 28.5; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₃₁H₃₆N₂O₆SNa 587.2186, found 587.2189.

N-Boc-Ser(Bn)-Ser(TES)-OMe (15). Following general procedure B on a 0.63 mmol scale of **12** using TES-Cl (316 μL, 1.89 mmol) and imidazole (129 mg, 1.89 mmol) in DMF (1 mL), the desired product (294 mg, 0.58 mmol, 91%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 9:1): R_f (hexane/EtOAc, 7:1) 0.25; IR (neat) ν = 3333, 2954, 2876, 2359, 2333, 1749, 1717, 1680, 1497, 1456, 1366, 1247, 1206, 1167, 1109, 1047, 1017, 858, 743, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.29 (*m*, 5H), 5.39 (*s*, 1H), 4.67–4.64 (*m*, 1H), 4.58 (*s*, 2H), 4.35 (*br s*, 1H), 4.08 (*dd*, J_1 = 3.0, J_2 = 10.3, 1H), 3.89 (*dd*, J_1 = 5.0, J_2 = 9.3, 1H), 3.80 (*dd*, J_1 = 3.5, J_2 = 10.0, 1H), 3.72 (*s*, 3H), 3.59 (*dd*, J_1 = 6.5, J_2 = 9.3, 1H), 1.45 (*s*, 9H), 0.90 (*t*, *J* = 7.5, 9H), 0.54 (*q*, *J* = 7.5, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 170.5, 155.6, 137.7, 128.6, 128.0, 127.9, 80.3, 73.7, 70.1, 63.4, 54.6, 54.0, 52.5, 28.5, 6.8, 4.4; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calculated for C₂₅H₄₂N₂O₇SiNa 533.2654, found 533.2653.

N-Boc-Cys(Bn)-Ser(TES)-OMe (16). Following general procedure B on a 0.49 mmol scale of 13 using TES-Cl (108 μ L, 0.64 mmol) and imidazole (168 mg, 2.46 mmol) in DCM (5 mL), the desired product (167 mg, 0.32 mmol, 65%) was isolated as a white solid by silica gel column chromatography (hexane/EtOAc, 7:1): R_f (hexane/EtOAc, 7:1) 0.30; IR (neat) ν = 3286, 2953, 2874, 1743, 1710, 1673, 1650, 1508, 1452, 1366, 1241, 1164, 1105, 1045, 1019, 1005, 869, 746, 733, 717, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.23 (*m*, SH), 7.12 (*d*, *J* = 7.5, 1H), 5.33 (*br* s, 1H), 4.61 (*ddd*, J_1 = 5.5, J_2 = 6.0, J_3 = 8.0, 1H), 4.32 (*br* s, 1H), 4.09 (*dd*, J_1 = 2.5, J_2 = 10.0, 1H), 3.82 (*dd*, J_1 = 3.0, J_2 = 10.3, 1H), 3.78 (*s*, 2H), 3.73 (*s*, 3H), 2.87 (*dd*, J_1 = 5.5, J_2 = 14.0, 1H), 0.57 (*q*, *J* = 8.0, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.6, 138.1, 129.3, 128.8, 127.4, 77.4, 63.2, 54.7, 53.0, 52.6, 36.7, 34.2, 28.5, 6.8, 4.4; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₂₅H₄₂N₂O₆SSiNa 549.2425, found 549.2432.

N-Boc-Cys(Tr)-Ser(TES)-OMe (17). Following general procedure B on a 0.45 mmol scale of 14 using TES-Cl (226 μL, 1.35 mmol) and imidazole (92 mg, 1.35 mmol) in DMF (1 mL): R_f (hexane/EtOAc, 3:1), the desired product (274 mg, 0.40 mmol, 90%) was isolated as a white solid by silica gel column chromatography (hexane/EtOAc, gradient from 9:1 to 3:1): 0.71; IR (neat) ν = 3412, 3334, 2954, 2912, 2876, 2361, 1748, 1716, 1672, 1490, 1444, 1366, 1248, 1207, 1167, 1110, 1047, 1016, 862, 753, 700, 676, 618 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.28 (*m*, 5H), 5.46 (*d*, *J* = 7.0), 4.65–4.62 (*m*, 1H), 4.54 (*s*, 2H), 4.32 (*br s*, 1H), 3.91–3.88 (*m*, 3H), 3.75 (*s*, 3H), 3.62 (*dd*, *J*₁ = 5.5, *J*₂ = 9.5, 1H), 1.44 (*s*, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 170.7, 155.8, 137.5, 128.7, 128.2, 128.1, 80.7, 73.7, 70.0, 63.0, 60.6, 55.2, 52.9, 28.5; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₃₇H₅₀N₂O₆SSiNa 701.3051, found 701.3054.

2-[(15)-1-[[(1,1-Dimethylethoxy)carbonyl]amino]-2-(phenylmethoxy)ethyl]2-(4S)-oxazoline Methyl Ester (18). Following general procedure C on a 0.13 mmol scale of **12** using DAST (50 μ L, 0.38 mmol) at -78 °C and warming up to rt in CH₂Cl₂ (2 mL), the desired product (41 mg, 0.11 mmol, 85%) was isolated by silica gel column chromatography (hexane/EtOAc, 3:1): R_f (hexane/EtOAc, 1:1) 0.62; $[\alpha]_D^{25}$ +63.2 (c = 1.0, CHCl₃); IR (neat) ν = 2971, 2360, 2334, 1741, 1713, 1664, 1498, 1458, 1366, 1249, 1203, 1164, 1024, 971, 918, 862, 734, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.20 (m, 5H), 5.41 (d, J = 7.5, 1H), 4.71–4.69 (m, 1H), 4.55–4.37 (m, 6H), 3.72–3.63 (m, 5H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 168.6, 155.4, 138.0, 128.5, 127.9, 127.7, 80.1, 73.3, 70.3, 70.1, 68.2, 52.9, 49.5, 28.5; HRMS (ESI-TOF) m/z: [M + H]⁺ calculated for C₁₉H₂₇N₂O₆ 379.1864, found 379.1863.

2-[(15)-1-[[(1,1-Dimethylethoxy)carbonyl]amino]-2-(thiobenzyl)ethyl]2-(45)-oxazoline Methyl Ester (19). Following general procedure C on a 0.1 mmol scale of 13 using DAST (41 μ L, 0.31 mmol) at -45 °C and warming up to rt in CH₂Cl₂ (2 mL), the desired product (25 mg, 0.061 mmol, 61%) was isolated by silica gel column chromatography (hexane/EtOAc, 3:1): R_f (hexane/EtOAc, 5:1) 0.21; $[\alpha]_D^{25}$ +45.4 (c = 1.0, CHCl₃); IR (neat) ν = 3391, 2979, 2920, 1742, 1713, 1662, 1496, 1454, 1366, 1332, 1247, 1208, 1167, 1047, 1017, 766, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.16 (m, 5 H), 5.35 (d, J = 7.5, 1H), 4.73–4.68 (m, 1H), 4.62–4.59 (m, 1H), 4.51–4.47 (m, 1H), 2.82 (dd, J_1 = 8.8, J_2 = 10.6, 1H), 3.71 (s, 3H), 3.66 (d, J = 1.5, 2H), 2.82 (dd, J_1 = 5.3, J_2 = 14.1, 1H), 2.73 (dd, J_1 = 5.6, J_2 = 14.0, 1H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 71.11, 169.0, 155.1, 138.0, 129.1, 128.7, 127.3, 80.2, 70.4, 68.1, 52.9, 48.7, 36.8, 34.5, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₁₉H₂₆N₂O₅SNa 417.1455, found 417.1459.

2-[(15)-1-[[(1,1-Dimethylethoxy)carbonyl]amino]-2-((triphenylmethyl)thio)ethyl]2-(4S)-oxazoline Methyl Ester (**20**). Following general procedure C on a 0.09 mmol scale of 14 using DAST (37 μ L, 0.28 mmol) at -78 °C and warming up to rt in CH₂Cl₂ (2 mL), the desired product (40 mg, 0.07 mmol, 79%) was isolated by silica gel column chromatography (hexane/EtOAc, 3:1): R_f (hexane/EtOAc, 3:1) 0.27; $[\alpha]_D^{25}$ +48.5 (c = 1.0, CHCl₃); IR (neat) ν = 2976, 2361, 1743, 1715, 1661, 1491, 1444, 1366, 1265, 1248, 1209, 1165, 1035, 981, 964, 849, 767, 738, 700, 676, 620 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.30 (m, 6H), 7.21-7.11 (m, 9H), 5.09 (br *s*, 1H), 4.68-4.64 (m, 1H), 4.48-4.31 (m, 2H), 3.67 (s, 3H), 2.52(d, J = 5.4, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 168.9, 154.9, 144.6, 129.7, 128.1, 127.0, 80.1, 70.4, 68.1, 66.9, 52.8, 48.1, 35.2, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₃₁H₃₄N₂O₅SNa 569.2081, found 569.2086.

N-Boc-Ser(Bn)-Ser-Ser-OMe (21). To a stirring solution of 12 (1.72 g, 4.35 mmol) at rt in MeOH (30 mL) was added a solution of LiOH (625.20 mg, 26.09 mmol) in H₂O (15 mL) and stirred for 4 h. After completion, approximately 2/3 of the MeOH was removed by a rotary evaporator. The solution was then acidified by adding 40 mL of 1 M NaHSO₄ whereon a white precipitate was formed. The suspension was extracted with EtOAc $(3\times)$, and the combined organic phases were dried with MgSO4, filtered, and evaporated in vacuo to yield the carboxylic acid (1.60 g, 4.11 mmol, 96%) as a white solid. The crude material was directly used for peptide bond formation. To individual stirring solutions of the carboxylic acid (1.55 g, 4.05 mmol) and HCl-Ser-OMe (630.62 mg, 4.05 mmol), DMF was added (each 20 mL) and NMM (each 1.23 mL, 12.16 mmol)·PyBop (3.17 g, 6.08 mmol) was added to the stirring solution of carboxylic acid, followed by the solution of H-Ser-OMe. The reaction solution was stirred overnight at rt. After completion, most of the DMF was removed on a rotary evaporator; diluted with EtOAc (30 mL); washed with 0.1 M citric acid $(2\times)$, sat. NaHCO₃ $(2\times)$, and brine; dried over MgSO4; filtered; and evaporated in vacuo. The crude material was purified by column chromatography (gradient from 0 to 10% MeOH in CHCl₃) to give 21 (1.09 g, 2.25 mmol, 56%) as a mixture of four diastereomers: R_f (CHCl₃/MeOH, 9:1) 0.31; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.28 (m, 20H), 5.62-5.52 (m, 4H), 4.60-4.56 (m, 8H), 4.29 (br-s, 4H), 4.08-3.82 (m, 16H), 3.75-3.73 (m, 12H), 3.69-3.66 (m, 8H), 1.42 (s, 36H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 171.3, 170.9, 170.8, 137.5, 137.4, 137.4, 137.4, 173.4, 137.3, 128.8, 128.8, 128.7, 128.4, 128.3, 128.2, 128.2, 128.1, 128.1,

128.1, 128.1, 81.2, 73.8, 73.7, 73.6, 62.9, 62.6, 62.5, 62.5, 56.0, 55.3, 55.3, 54.8, 53.1, 53.0, 53.0, 52.9, 46.7, 28.5, 28.5, 28.5, 28.4, 26.6, 26.5, 26.5, 26.4; HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{22}H_{33}N_3O_9Na$ 506.2109, found 506.2105.

N-Boc-Ser(Bn)-Ser(TES)-Ser(TES)-OMe (22). Following general procedure B on a 0.59 mmol scale of 21 using TES-Cl (498 µL, 2.96 mmol) and imidazole (243 mg, 3.56 mmol) in DMF (2 mL), the desired product (344 mg, 0.48 mmol, 85%) was isolated as a mixture of four diastereomers as a colorless oil by column chromatography (hexane/EtOAc, 5:1): R_f (hexane/EtOAc, 3:1) 0.43; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.28 (m, 20H), 0.83 (s, 4H), 4.68-4.65 (m, 4 H), 4.62-4.51 (m, 8H), 4.48-4.43 (m, 4H), 4.32 (br s, 4H), 4.07-4.02 (m, 8H), 3.90-3.77 (m, 8H), 3.73-3.71 (m, 12H), 3.62-3.56 (m, 8H), 1.44 (s, 36H), 0.98-0.89 (m, 72H), 0.66-0.55 (m, 48H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.4, 170.3, 170.3, 170.3, 170.2, 169.9, 169.9, 169.8, 155.5, 137.5, 128.5, 128.5, 128.4, 128.4, 128.4, 127.8, 127.8, 127.8, 127.8, 127.7, 127.7, 73.4, 73.4, 73.3, 69.9, 69.8, 69.6, 69.6, 63.3, 63.2, 54.6, 54.6, 54.4, 54.4, 54.3, 54.3, 54.3, 54.2, 28.3, 28.2, 28.3, 6.7, 6.6, 6.6, 4.2, 4.2; HRMS (ESI-TOF) m/z: [M + Na] calculated for C34H61N3O9Si2Na 734.3839, found 734.3834.

2-[(1S)-1-[[(1,1-Dimethylethoxy)carbonyl]amino]-2-(phenylmethoxy)ethyl]2-[2,4':2',4"]-bis-oxazoline Methyl Ester (23). Following general procedure C on a 0.07 mmol scale of 21 using DAST (53 μ L, 0.40 mmol) at -78 °C and warming up to rt in CH₂Cl₂ (2 mL), the desired product (16 mg, 0.04 mmol, 53%) was isolated by silica gel column chromatography (1% MeOH in CHCl₃) as a mixture of four diastereomers: R_f (1% MeOH in CHCl₃) 0.50; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.28 (*m*, 20H), 6.52 (*d*, *J* = 9.5, 4H), 5.64 (*d*, *J* = 7.5, 4H), 5.45 (s, 4H), 4.83-4.73 (m, 4H), 4.65-4.50 (m, 20H), 4.65 (s, 4H), 3.95 (s, 4H), 3.80-3.72 (m, 12H), 3.63-3.57 (m, 8H), 1.46–1.45 (*m*, 36H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 172.0, 171.9, 171.9, 171.8, 171.3, 171.2, 169.5, 169.2, 169.1, 169.0, 168.9, 168.8, 138.0, 137.9, 129.0, 129.0, 129.0, 128.9, 128.8, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 128.0, 81.1, 80.7, 73.6, 73.5, 70.5, 70.4, 70.2, 68.1, 68.0, 67.7, 54.6, 54.5, 53.5, 52.6, 52.6, 52.5, 49.9, 49.9, 49.7, 49.4, 49.4, 28.2, 28.2, 28.2, 28.1; HRMS (ESI-TOF) m/z: [M + Na] calculated for C₂₂H₂₉N₃O₇Na 470.1898, found 470.1897.

N-Boc-Ser-OMe (24). To a stirring solution of H-Ser-OMe·HCl (10 g, 64.3 mmol) at rt in CH₂Cl₂ (150 mL) was added Et₃N (20 mL, 140 mmol), and the resulting suspension was cooled to 0 $^\circ C$ in an ice bath. After 30 min, Boc₂O (15.5 g, 71 mmol) was added and the suspension was stirred overnight while slowly warming to rt. After completion, the suspension was diluted with CH2Cl2 and washed with 1 M NaHSO₄ (3 \times), sat. NaHCO₃ (1 \times), and brine (1 \times). All aq. layers were back extracted with CH2Cl2, and the combined organic layers were dried over MgSO4, filtered, and evaporated in vacuo to give 24 as a colorless oil (14.31 g, 65.3 mmol, 99%). R_f (hexane/EtOAc, 3:1) 0.10; IR (neat) $\nu = 3412, 2979, 2364, 1743, 1693, 1506, 1458, 1438,$ 1392, 1367, 1350, 1249, 1210, 1159, 1059, 1030, 853, 780, 736, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.49 (br s, 1 H), 4.40 (br s, 1 H), 3.94 (*dd*, $J_1 = 10.1$, $J_2 = 3.7$, 2 H), 3.79 (*s*, 3 H), 1.45 (*s*, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ171.2; 155.7; 80.3, 63.5, 55.6; 52.6; 28.2; HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for C₉H₁₇NO₅Na 242.0999, found 242.1003.

N-[(Phenlymethoxy)carbonyl]-(S)-serine Methyl Ester (25). To a stirring solution of HCl·Ser-OMe (458 mg, 2.95 mmol) at rt in H₂O/MeOH (8:3, 5.5 mL) was added NaHCO₃ (744 mg, 8.84 mmol), followed by cooling to 0 °C. Benzyl chloroformate (505 µL, 3.54 mmol) was added to yield a white suspension that was slowly warmed to rt and then refluxed at 70 °C for 6 h. The reaction mixture was allowed to cool to rt, diluted with sat. NaHCO₃, extracted with EtOAc $(3\times)$, dried over MgSO₄, filtered, and evaporated *in vacuo*. The crude material was purified by column chromatography on silica gel (hexane/EtOAc, 3:1) to give 25 as a white solid (535 mg, 2.11 mmol, 72%): R_f (hexane/EtOAc, 1:1) 0.30; IR (neat) $\nu = 3426, 2956, 2361,$ 1703, 1516, 1450, 1341, 1266, 1210, 1059, 1028, 977, 733, 697, 474 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.36–7.31 (*m*, 5H), 5.78 (*d*, *J* = 6.9, 1H), 5.12 (s, 2H), 4.47–4.42 (m, 1H), 3.99 (dd, $J_1 = 3.6$, $J_2 = 11.1$, 1H), 3.90 (*dd*, $J_1 = 3.3$, $J_2 = 11.1$, 1H), 3.77 (*s*, 3H); ¹³C NMR (75) MHz, CDCl₃) δ 171.3, 156.4, 136.2, 128.8, 128.5, 128.3, 67.4, 63.4,

56.2, 53.0; HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{12}H_{15}NO_5Na$ 276.0842, found 276.0839.

N-[(Phenlymethoxy)carbonyl]-O-(triethylsilyl)-(S)-serine Methyl Ester (26). Following general procedure B on a 0.46 mmol scale of 25 using TES-Cl (233 μ L, 0.1.39 mmol) and imidazole (96 mg, 1.39 mmol) in DMF (1 mL), the desired product (86 mg, 0.23 mmol, 51%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 7:1): R_f (hexane/EtOAc, 3:1) 0.49; IR (neat) ν = 2954, 2877, 2361, 1725, 1505, 1456, 1438, 1381, 1343, 1297, 1239, 1203, 1174, 1109, 1084, 1063, 1028, 1005, 979, 821, 732, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.34–7.31 (*m*, 5H), 5.73 (*d*, *J* = 8.4, 1H), 5.13 (*d*, *J* = 2.4, 2H), 4.44–4.40 (*m*, 1H), 4.07 (*dd*, *J*₁ = 2.7, *J*₂ = 10.1, 1H), 3.84 (*dd*, *J*₁ = 3.0, *J*₂ = 10.1, 1H), 3.75 (*s*, 3H), 0.91 (*t*, *J* = 8.1, 9H), 0.54 (*q*, *J* = 7.8, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 156.2, 136.5, 128.7, 128.4, 128.3, 67.2, 63.5, 56.2, 52.6, 6.7, 4.4; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₁₈H₂₉NO₅Na 390.1707, found 390.1709.

N-[(9-Fluorenvlmethoxy)carbonvl]-(S)-serine Methyl Ester (27). To a stirring solution of HCl·Ser-OMe (316 mg, 2.03 mmol) at rt in H₂O/MeOH (8:3, 5.5 mL) was added NaHCO₃ (512 mg, 6.10 mmol), which was subsequently cooled to 0 °C. At 0 °C, Fmoc-Cl (632 mg, 2.44 mmol) was added to give a white suspension that was slowly warmed to rt and then refluxed overnight at 70 °C. The reaction mixture was allowed to cool to rt, diluted with sat. NaHCO₃, extracted with EtOAc (3×), dried over MgSO₄, filtered, and evaporated in vacuo. The crude material was purified by column chromatography on silica gel (hexane/EtOAc, 3:1) to give 27 as a white solid (350 mg, 1.03 mmol, 51%): R_f (hexane/EtOAc, 1:1) 0.36; IR (neat) $\nu = 3412$, 3061, 2950, 2868, 2354, 2334, 1704, 1519, 1449, 1338, 1265, 1209, 1104, 1057, 976, 759, 735, 702, 621, 568, 534, 519, 507, 426 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.30 (*m*, 8H), 5.81 (d, J = 7.5, 1H), 4.46-4.24 (m, 3H), 4.22 (t, J = 7.0), 4.00 (dd, J_1 $= 2.5, J_2 = 11.0, 1H), 3.91 (dd, J_1 = 2.5, J_2 = 11.5, 1H), 3.78 (s, 3H);$ $^{13}\mathrm{C}$ NMR (125 MHz, CDCl₃) δ 171.2, 156.5, 144.0, 143.8, 141.5, 141.5, 128.0, 127.3, 127.3, 125.3, 120.2, 120.2, 67.4, 63.4, 56.8, 53.0, 47.3; HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for C₁₉H₁₉NO₅Na 364.1155, found 364.1152.

N-[(9-Fluorenylmethoxy)carbonyl]-O-(triethylsilyl)-(S)-serine Methyl Ester (28). Following general procedure B on a 0.28 mmol scale of 27 using TES-Cl (138 μ L, 0.82 mmol) and imidazole (57 mg, 0.82 mmol) in DMF (1.5 mL), the desired product (64 mg, 0.14 mmol, 51%) was isolated as a colorless oil by silica gel column chromatography (hexane/EtOAc, 7:1): R_f (hexane/EtOAc, 3:1) 0.69; IR (neat) ν = 2955, 2876, 2361, 1722, 1506, 1449, 1341, 1242, 1204, 1106, 1082, 1059, 1006, 979, 756, 736, 543 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.60–7.29 (*m*, 8H), 5.69 (*d*, *J* = 8.7), 4.47–4.41 (*m*, 1H), 4.37 (*d*, *J* = 6.9, 1H), 4.26 (*t*, *J* = 7.2, 1H), 4.10 (*dd*, J_1 = 2.7, J_2 = 10.4, 1H), 3.88 (*dd*, J_1 = 3.3, J_2 = 10.2, 1H), 3.77 (*s*, 3H), 0.95 (*t*, *J* = 7.9, 9H), 0.59 (*q*, *J* = 8.1, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 156.0, 143.8, 141.3, 127.7, 127.1, 125.2, 125.1, 120.0, 67.2, 63.4, 56.0, 52.4, 47.1, 6.6, 4.2; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₂₅H₃₃NO₅SiNa 478.2020, found 478.2019.

(45)-4-Methoxycarbonyl-2-benzyloxy-2-oxazoline (30). Following general procedure C on a 0.11 mmol scale of **25** using XtalFluor-E (50 mg, 0.22 mmol) at -78 °C and warming up to rt in CH₂Cl₂ (2 mL), the desired product (5 mg, 0.02 mmol, 16%) was isolated by silica gel column chromatography (hexane/EtOAc, 3:1): R_f (hexane/EtOAc, 5:1) 0.21; IR (neat) $\nu = 1740$, 1438, 1414, 1363, 1217, 1202, 1176, 1090, 1062, 1030, 1001, 937, 758, 741,701, 672, 593, 457 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.24 (*m*, SH), 4.90 (*d*, *J* = 15.0, 1H), 4.44–4.38 (*m*, 1H), 4.34 (*dd*, *J*₁ = 4.8, *J*₂ = 8.9, 1H), 4.24 (*d*, *J* = 15, 1H), 4.10 (*dd*, *J*₁ = 5.1, *J*₂ = 9.5, 1H), 3.74 (*s*, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 158.3, 135.6, 129.5, 129.1, 128.8, 64.5, 56.0, 52.9, 47.4; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calculated for C₁₂H₁₃NO₄Na 258.0737, found 258.0734.

(45)-2-(9-Fluorenylmethoxy)-4-methoxycarbonyl-2-oxazoline (31). Following general procedure C on a 0.11 mmol scale of 27 using DAST (44 μ L, 0.33 mmol) at -78 °C and warming up to rt in CH₂Cl₂ (2 mL), the desired product (21 mg, 0.07 mmol, 61%) was isolated by silica gel column chromatography (hexane/EtOAc, 3:1): R_f

(hexane/EtOAc, 3:1) 0.31; IR (neat) $\nu = 1742$, 1660, 1477, 1449, 1404, 1354, 1306, 1249, 1209, 1181, 1100, 1059, 964, 760, 742 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.77 (*d*, *J* = 9, 2H), 7.63 (*d*, *J* = 9, 2H), 7.43–7.38 (*m*, 2H), 7.34–7.29 (*m*, 2H), 4.70–4.52 (*m*, 5H), 4.34 (*t*, *J* = 9, 1H), 3.77 (*s*, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 164.8, 143.4, 143.3, 141.5, 128.1, 127.3, 125.5, 120.2, 73.4, 70.5, 65.4, 52.8, 46.8; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calculated for C₁₉H₁₇NO₄Na 346.1050, found 346.1051.

Solid-Phase Synthesis of TFA·H₂N-[Ser]₅-OH (32). Fmoc-Ser(OtBu)-OH (2.36 g, 6.14 mmol) and DIEA (2.09 mL, 12.28 mmol) in CH₂Cl₂ (30 mL) were stirred at rt for 5 min. The solution was added to a preactivated and swelled 2-chlorotrityl chloride resin (8.19 g), which was agitated at rt for 4.5 h. The resin was washed with CH_2Cl_2 (3 × 30 mL), DMF (3 × 30 mL), and CH_2Cl_2 (3 × 30 mL). Unreacted resin positions were capped by adding a solution of $CH_2Cl_2/MeOH/DIEA$ (80:15:5, 3 × 30 mL), which was agitated at rt for 3×10 min. The resin was then washed with CH₂Cl₂ (4×30 mL) and dried over KOH in vacuo. A solution of 25% piperidine in DMF (6 \times 15 mL) was added to the resin, which was agitated for 6 \times 10 min. The resin was then washed with DMF (3×30 mL), CH₂Cl₂ (2×30 mL), and DMF (2 × 30 mL). Fmoc-Ser(OtBu)-OH (3.64 g, 9.51 mmol), DIEA (4.04 mL, 23.76 mmol), HOBt (1.25 g, 9.27 mmol), and HBTU (3.52 g, 9.27 mmol) were dissolved in DMF (30 mL) at rt and stirred for 10 min. The solution was added to the preswelled resin which was agitated at rt for 4.5 h. The resin was then washed with DMF (5 \times 30 mL) and dried in vacuo. Fmoc deprotection of resin bound dipeptide and loading of Fmoc-Ser(OtBu)-OH were then repeated three times. Fmoc-removal was carried out using piperidine as described above. A solution of TFA/H2O/TIS (95:2.5:2.5, 40 mL) was added to the resin and agitated at rt for 2 h. The resin was filtered off, and the pentapeptide 32 was precipitated by adding diisopropyl ether (-20 °C) to the filtrate. The peptide was centrifuged, washed with $Et_2O(3\times)$, and dried in vacuo. The peptide was redissolved in a solution of H₂O/CH₃CN (2:1, 10 mL) and lyophilized to give crude 32 (2.26 g, 3.99 mmol, 84%) as a slightly yellow powder. The crude peptide was used without further purification. ¹H NMR (500 MHz, $\overline{\text{DMSO-}d_6}$ δ 8.58 (d, J = 7.5, 1H), $\overline{8.06}$ (d, J = 7.5, 1H), 7.98–7.94 (m, 2H), 4.49-4.45 (m, 1H), 4.40-4.35 (m, 2H), 4.27-4.24 (m, 1H), 3.92-3.90 (m, 1H), 3.71-3.56 (m, 10H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 171.4, 171.3, 170.9, 170.5, 68.2, 62.5, 62.3, 61.7, 61.2, 58.9, 57.9, 57.4, 56.4, 55.7, 55.4; HRMS (ESI-TOF) *m*/*z*: [M – TFA + H]⁺ calculated for $C_{15}H_{28}N_5O_{11}$ 454.1780, found 454.1781.

N-Fmoc-[Ser]₅-OMe (33). To a stirring solution of 32 (205 mg, 0.36 mmol) at rt in H₂O/MeOH (8/3) was added NaHCO₃ (121 mg, 1.44 mmol) and Fmoc-Cl (121 mg, 0.47 mmol), and the resulting mixture was refluxed at 70 °C overnight. The reaction mixture was then dried down, transferred to a 50 mL falcon tube, washed, and centrifuged with DCM (2×). After drying in vacuo, the crude material was suspended in MeOH (10 mL) at rt and TMS-Cl (916 µL, 7.22 mmol) was added dropwise. The reaction mixture was stirred overnight and diluted with Et_2O (50 mL). The precipitate was collected by centrifugation, washed with Et₂O (3×), and dried in vacuo. The crude material was suspended in pyridine (5 mL) at rt, and TES-Cl (909 μ L, 5.42 mmol) was added dropwise and stirred overnight. The reaction mixture was diluted with EtOAc and washed with 0.1 M citric acid $(2\times)$ and brine $(2\times)$, dried over MgSO₄, filtered, and dried by rotary evaporator. The remaining pyridine was removed by coevaporation with toluene $(2 \times 5 \text{ mL})$. The crude material was purified by silica gel column chromatography (hexane/EtOAc, gradient from 7:1 to 4:1) to give 33 (100 mg, 0.079 mmol, 22%) as a white solid: R_f (hexane/EtOAc, 5:1) 0.21; IR (neat) ν = 3299, 2954, 2911, 2876, 2361, 2333, 1753, 1636, 1512, 1463, 1239, 1112, 1037, 1007, 973, 811, 738, 668 cm^{-1}; $^1{\rm H}$ NMR (500 MHz, DMSO- d_6) δ 8.58 (d, J = 7.5, 1H), 8.06 (d, J = 7.5, 1H), 7.98-7.94 (m, 2H), 4.49-4.45 (m, 1H), 4.40–4.35 (m, 2H), 4.27–4.24 (m, 1H), 3.92–3.90 (m, 1H), 3.71–3.56 (m, 10H); $^{13}\mathrm{C}$ NMR (125 MHz, CDCl₃) δ 170.2, 169.7, 169.6, 169.5, 169.5, 169.5, 141.3, 141.3, 127.7, 127.1, 125.2, 125.2, 120.0, 72.6, 63.6, 63.2, 62.7, 62.5, 55.1, 54.8, 54.6, 52.5, 47.5, 7.1, 7.1, 7.1, 7.1, 7.0, 6.3, 4.7, 4.7, 4.6, 4.6; HRMS (ESI-TOF) m/z: [M

+ Na]⁺ calculated for $C_{61}H_{109}N_5O_{13}Si_5Na$ 1282.6760, found 1282.6760.

2-(9-Fluorenylmethyl)-[2,4':2',4":2",4":2",4''':2",4''']-pentoxazoline Methyl Ester (34). To a stirring solution of 33 (36 mg, 0.029 mmol) in CH₂Cl₂ at -78 °C was added DAST (43 µL, 0.33 mmol). The reaction was stirred for 4 h, while being slowly warmed to 0 °C. The reaction was quenched using MeOH, and the solvent was removed by rotary evaporator. The crude material was subjected to silica gel column chromatography (2% MeOH in CHCl₃) to give 34 as a single diastereoisomer (5.9 mg, 0.010 mmol, 34%): ¹H NMR (500 MHz, CDCl₃) δ 7.77 (*d*, *J* = 7.5, 2H), 7.60 (*t*, *J* = 7.5, 2H), 7.49 (*d*, *J* = 8.0, 1H), 7.39 (t, J = 7.5, 2H), 7.31 (t, J = 7.5, 2H), 5.76 (s, 1H), 4.70– 4.67 (m, 1H), 4.42-4.38 (m, 4H), 4.25-4.22 (m, 2H), 4.07-4.02 (m, 4H), $3.99 (dd, J_1 = 4.5, J_2 = 9.5, 1H)$, $3.78 (dd, J_1 = 3.5, J_2 = 10.0, 1H)$, 3.72 (s, 3H), 3.69-3.65 (m, 2H), 3.58-3.55 (m, 2H), 0.99-0.90 (m, 45H), 0.69–0.53 (m, 30H); ¹³C NMR (125 MHz, CDCl₃) δ 144.5, 141.8, 141.5, 132.4, 127.8, 127.3, 124.9, 120.3, 110.2, 71.2, 70.5, 68.1, 65.4, 63.3, 52.9, 50.6, 47.0, 29.9, 27.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for $C_{31}H_{29}N_5O_8Na$ 622.1908, found 622.1909.

ASSOCIATED CONTENT

Supporting Information

Copies of ¹H NMR and ¹³C NMR spectra of compounds 1-34. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: nathan.luedtke@chem.uzh.ch.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Martin Seyfried and Olivia Schmidt for technical assistance. This work was made possible by support from the Swiss National Science Foundation (#146754) and the University of Zurich.

REFERENCES

(1) For examples see: (a) Perez, L. J.; Faulkner, D. J. J. Nat. Prod. 2003, 66, 247. (b) Kim, M. Y.; Vankayalapati, H.; Shin-ya, K.; Wierzba, K.; Hurley, L. H. J. J. Am. Chem. Soc. 2002, 124, 2098. (c) Parsons, R. L.; Heathcock, C. H. J. Org. Chem. 1994, 59, 4733. (d) Wipf, P. In Alkaloids: Chemical and Biological Perspective; Pelletier, S. W., Ed.; Pergamon: New York, 1998; p 187.

(2) For examples see: (a) Vorbrüggen, H.; Krolikiewicz, K. Tetrahedron Lett. **1981**, 22, 4471. (b) Lutomski, K. A.; Meyers, A. I. J. Am. Chem. Soc. **1982**, 104, 879. (c) Panek, J. S.; Masse, C. E. J. Org. Chem. **1998**, 63, 2382. (d) Ishihara, M.; Togo, H. Tetrahedron **2007**, 63, 1474. (e) Hamada, Y.; Shibata, M.; Shiori, T. Tetrahedron Lett. **1985**, 26, 6501. (f) Vorbrüggen, H.; Krolikiewicz, K. Tetrahedron **1993**, 49, 9353. (g) Jouin, P.; Poncet, J.; Montagne, C.; Galéotti, N. Tetrahedron Lett. **1992**, 33, 2807. (h) Miller, C. P.; Wipf, P. Tetrahedron Lett. **1992**, 33, 907.

(3) Atkins, G. M.; Burgess, E. M. J. Am. Chem. Soc. 1968, 90, 4744.
(4) For a review, see: Khapli, S.; Dey, S.; Mal, D. J. Indian Inst. Sci. 2001, 81, 461.

(5) Miller, C. P.; Wipf, P. Tetrahedron Lett. 1992, 33, 907.

(6) Fritch, P. C.; Wipf, P. Tetrahedron Lett. 1994, 35, 5397.

(7) (a) Fritch, P. C.; Wipf, P. J. Am. Chem. Soc. 1996, 118, 12358.
(b) Okonya, J. F.; Kolasa, T.; Miller, M. J. J. Org. Chem. 1995, 60, 1932. (c) Liyanage, W.; Weerasinghe, L.; Strong, R. K.; Del Valle, J. R. J. Org. Chem. 2008, 73, 7420. (d) Grant, C. M.; Miller, P.; Wipf, P. Tetrahedron 2000, 56, 9143. (e) Doi, T.; Yoshida, M.; Shin-ya, K.; Takahashi, T. Org. Lett. 2006, 8, 4165. (f) Plant, A.; Stieber, F.; Scherkenbeck, J.; Lösel, P.; Dyker, H. Org. Lett. 2001, 3, 3427.
(g) Boyce, R. J.; Mulqueen, G. C.; Pattenden, G. Tetrahedron Lett.

1994, 35, 5705. (h) Castellano, S.; Kuck, D.; Sala, M.; Novellino, E.; Lyko, F.; Sbardella, G. *J. Med. Chem.* **2008**, *51*, 2321. (i) Jing, Y.; Hong, J. *Tetrahedron Lett.* **2007**, *48*, 8104. (j) You, S.; Kelly, J. W. *Tetrahedron Lett.* **2005**, *46*, 2567.

(8) Metcalf, T. A.; Simionescu, R.; Hudlicky, T. J. Org. Chem. 2010, 75, 3447.

(9) (a) Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165. (b) Burrell, G.; Evans, J. M.; Jones, G. E.; Stemp, G. Tetrahedron Lett. 1990, 31, 3649. (c) Lafargue, P.; Guenot, P.; Lellouche, J.-P. Heterocycles 1995, 41, 947.

(10) L'Heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.; LaFlamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M. J. Org. Chem. **2010**, *75*, 3401.

(11) Pouliot, M.; Angers, L.; Hamel, J.; Paquin, J. *Tetrahedron Lett.* **2012**, 53, 4121.

(12) Mohammadopoor-Baltork, I.; Pouranshirvani, S. Synthesis 1997, 7, 756.

(13) Kim, S.; Park, J. H. J. Org. Chem. 1988, 53, 3111.

(14) Danishefsky, S. J.; Mantlo, N. J. Am. Chem. Soc. 1988, 110, 8129.
(15) Metaferia, B. B.; Fetterolf, B. J.; Shazad-ul-Hussan, S.; Moravec,
M.; Smith, J. A.; Ray, S.; Gutierrez-Lugo, M.-T.; Bewley, C. A. J. Med. Chem. 2007, 50, 6326.

(16) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190. (17) Wuts, P. G. M.; Green, T. W. Greene's Protective Groups in

Organic Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, 1999; p 113. (18) Schore, N. E.; Vollhardt, K. P. C. Organic Chemistry, 6th ed; W.

H. Freeman and Company: New York, NY, 2009; p 240.

(19) Ait-Haddou, H.; Hoarau, O.; Cramailére, D.; Pezet, F.; Daran, J.; Balavoine, G. G. A. *Chem.—Eur. J.* **2004**, *10*, 699.

(20) Walker, J. M. Peptide Synthesis Protocols: Methods in Molecular Biology; Pennington, M. W., Dunn, B. M., Eds.; Humana Press Inc.: NJ, 1994; pp 41–62.

(21) Venkatraman, S.; Wipf, P. J. Org. Chem. 1995, 60, 7224.

(22) Riedrich, M.; Harkal, S.; Arndt, H.-D. Angew. Chem., Int. Ed. 2007, 46, 2701.

(23) Smith, M. B.; March, J. March's Adcanced Organic Chemistry: Reactions, Mechanisms, and Structure; John Wiley & Sons, Inc.: Hoboken, NJ, 2007; p 29.

(24) (a) Ambroise, L.; Dumez, E.; Szeki, A.; Jackson, R. F. W. Synthesis 2002, 15, 2296. (b) Pandit, N.; Singla, R. K.; Shrivastava, B. Int. J. Med. Chem. 2012, doi: 10.1155/2012/159285.

(25) Rein, K.; Giocoechea-Pappas, M.; Anklekar, T. V.; Hart, G. C.; Smith, G. A.; Gawley, R. E. J. Am. Chem. Soc. **1989**, 111, 2211.

(26) Seki, M.; Matsumoto, K. Synthesis 1999, 6, 924.

(27) The limited solubility properties of peptide **32** and its terminiprotected derivatives prevented their purification and evaluation as cyclodehydration substrates.

(28) (a) Fujino, M.; Kobayashi, S.; Obayashi, M.; Fukuda, T.; Shinagawa, S.; Yamazaki, I.; Nakayama, R.; White, W. F.; Rippel, R. H. *Biochem. Biophys. Res. Commun.* **1972**, *49*, 698. (b) Vlieghe, P.; Liswoski, V.; Martinez, J.; Khreestchatisky, M. Drug Disc. Tod. **2010**, *15*, 40.

(29) Martin, V. S.; Hernandez, J. N. J. Org. Chem. 2004, 69, 3590.

(30) Cunico, R. F.; Bedell, L. J. Org. Chem. 1980, 45, 4797.

(31) Fukuhara, T.; Hasegawa, C.; Hara, S. Synthesis 2007, 10, 1528.