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1 Introduction

The azobenzenes have been proven to be a valuable 
structural motifs in pharmaceutical [1, 2], liquid crys-
tals [3], molecular switches [4, 5], a femtosecond fluores-
cence [6]. Among them, the hydroxyazobenzenes play an 
important role in the field of functional materials such as 
photo-switchable [7] and spectral probe [8], because an 
ether bond can be formation between the hydroxyl group 
with phenol, α-cyclodextrin and β-cyclodextrin and many 
other supramolecular are shown in (Fig.  1). Especially, 
2-hydroxyazobenzenes have many excellent features and 
has attracted a great deal of attention. For example, it can 
be work as acidity indicators [9, 10] or synthesis of neu-
tral dyeing metal–complex dyes [11, 12] which having no 
ionic groups in early. Hereafter, 2-hydroxyazobenzenes 
have been reported to synthesis of 2-aryl-2H-benzotria-
zoles that are important intermediate [13]. It was said that 
the hybrid metal–organic compounds with 2-hydroxya-
zobenzene (HAB) rings have are high industrial and eco-
nomic potential as thin films, transfer for sensor, optical-
storage and detectors [14–23]. Also, the role of H-bonded 
chelate rings of 2-hydroxyazobenzenes is most important 
in the organization of liquid crystalline such as modifica-
tion of mesophases [24–29]. Similarly, this H-bonded is 
better for have excellent spectroscopic and electrochemi-
cal properties [27–29]. So, several methods for synthesis 
of 2-hydroxyazobenzenes have been developed. The com-
mon approaches for preparing ortho-hydroxyazobenzenes 
include the Hydroxylated of 1,2-diphenyldiazene oxide 
[30–33] or diazotization of diazonium salt [34–36]. It is 
disappointing that these methods are tedious and have 
a low conversion. In 2010, Yoshino et  al. [37] reported a 
methord to produce of 2-hydroxyazobenzenes by hydroly-
sis of the (2-(phenyldiazenyl)phenyl)boronic acid at a high 
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yield but these arylboronic acids are difficult to obtain. In 
recent years, many more efficient routes such as directed 
C–H hydroxylation of arenes have been developed although 
they have low yields [38, 39].

Similar to 2-aryloxypyridines [40, 41], quinoline 
N-Oxide [42], arylpyrazoles [43], triazene azoxybenzenes 
[44], quinoline [45–47], and 2-aryl-1,2,3-triazoles group 
[48], the azoxybenzenes work as the directing groups 
in this strategy have attracted more and more attention. 
For example, Satoh’s [49] group reported a method of 
rhodium-catalyzed regioselective arylation of phenyla-
zoles and related compounds with arylboron reagents via 
C–H bond cleavage. In addition, Wang’s group have done 
excellent work on the formate C–C bonds through ortho-
selective C–H activation with alkenes [50, 51] and heter-
oarenes [52]. Tang [53] and co-workers have developed a 
highly efficient method by palladium-catalyzed cascade 
oxidative C–H cross-coupling of azoarenes with alcohols to 
synthesis ortho-acylazoarenes. Similarly, Cui’s group [54] 
also reported a practical procedure to synthesize mono and 
diacylazobenzene via Pd-catalyzed oxidative C–H bond 
activation from toluene. In addition, Li et  al. [55–57] has 
made a remarkable progress that a palladium-catalyzed 
decarboxylative ortho acylation of azobenzenes with 
α-oxocarboxylic acids. Recently, Jia’s [58] group indepen-
dently reported a rhodium(III)-catalyzed direct ortho-ami-
dation of azobenzenes with sulfonyl azides as the amino 
source is disclosed. More recently, Wu [59] and Zhang [60] 
disclosed a method to formation sulfonylazobenzenes from 
azobenzene and arylsulfonyl chlorides. Also, cinnolinium 
salts [61, 62] and indolo[2,1-α]isoquinolines [63] have 
been produced from azobenzenes and alkynes catalyzed by 
Rhodium. Additionally, Ellman’s and wang’s groups [64, 
65] independently reported a new Co- catalyst or Pd-Cat-
alyzed for the synthesis of 2-aryl indazoles and furans use 
aldehyde and azobenzenes. However, methods for direct 
conversion of a C–H bond into a C–O bond by metal-cat-
alyzed remains a tremendous challenge. In 2004, Sanford’s 

[66] group first reported a methord oxidative functionaliza-
tion of C–H bonds and product 2-(phenyldiazenyl)phenyl 
acetate in 62% yield at 100 °C about 12H. After these, Tato 
[67] discover a palladium-catalyzed acetoxylation of arenes 
by novel sulfinyl N-heterocyclic carbene ligand complexes, 
and reaction was carried out with azobenzene and PIDA 
in MeCN at 80 °C for 72H at 66% yield. Simultaneously, 
sun’s group [68] released a palladium-catalyzed direct 
ortho alkoxylation of aromatic azo compounds with alco-
hols. More recently, Qian et al. [69] find a good methord to 
synthesis of various ortho-acyloxylated azoarenes by pal-
ladium-catalyzed ortho-functionalization of azoarenes with 
aryl acylperoxides. But it no desired product was observed 
under same reaction conditions when use acetyl peroxide 
as an acyloxyl source. As part of our continuing efforts in 
C–X bonds formation [70, 71], herein we describe a palla-
dium-catalyzed direct C–O bond formation of azobenzenes 
with iodobenzene diacetate via C–H activation to synthe-
size 2-alkoxy aromatic azo compounds at room temprature 
and have better yield in shorter times. Also, it is important 
method to synthesis of 2-hydroxyazobenzene by hydrolysis 
reaction of the above product.

2  Results and Discussion

We initiated our investigation on the model reaction of 
azobenzene (1a) with PhI(OAc)2 (2) to optimize the reac-
tion parameters (Table 1). To our delight, the  C2- esterifi-
cation took place in the presence of Pd(OAc)2 (10 mol%) 
in hexafluoroisopropanol (HFIP) under air for 30  min, 
the desired product was acquired in 93% yield (entry 1, 
Table 1).

Thus, Pd(CH3CN)2Cl2, Pd(Ph3P)2, Pd(CF3COO)2, 
 PdCl2,  PtCl2, Cu(OAc)2, Co(OAc)2  4H2O and  LaCl2 
were tested to catalyze this reaction, in which Pd(OAc)2 
gave the best result (entries 1–9, Table  1). Without cat-
alyst, the reaction could not take place at all (entry 10, 
Table 1). The solvent also played an important role in the 
reaction. Solvents such as HOAc,  CH3CN, DMF, DMSO, 
and EtOH were screened, but the yield is poor (entries 
11–15, Table  1). Subsequently, the yield decreased to 
72% when the catalyst loading was reduced to 5  mol% 
from 10  mol% (entry 16, Table  1). When the tempera-
ture was increased to 60 °C or reduced to 20 °C, the yield 
decreased to 80 and 73%, respectively (entries 17–18, 
Table 1). And the reaction time on 30 min has a highest 
yield (entries 1 and 19–20, Table 1). Based on the results 
obtained above, the optimized reaction conditions were 
identified as follows: 10 mol% of Pd(OAc)2 as the cata-
lyst, and HFIP as the solvent, at 40 °C under an air atmos-
phere for 30 min.

Fig. 1  Many functional materials of hydroxyazobenzenes
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With the optimized reaction conditions in hand, we 
then investigated the substrate scope of this transformation 
(Scheme 1, 2)

A series of azobenzenes were allowed to react with iodo-
benzene diacetate (2), affording the corresponding 2-alkoxy 
aromatic azo compounds in moderate to good yields. It was 
found that azobenzenes containing an electron-donating 
groups such as 1,2-diphenyldiazene, 1,2-di-p-tolyldiazene, 
1,2-di-m-tolyldiazene, 1,2-bis(4-ethylphenyl)diazene, 
1,2-bis(4-isopropylphenyl)diazene, 2-bis(3-methoxyphenyl)
diazene, 1,2-bis(4-methoxyphenyl)-diazene, 1,2-bis(4-
ethoxyphenyl)diazene, 1-(4-methoxyphenyl)-2-(m-tolyl)
diazene, 1-(4-methoxyphenyl)-2-phenyldiazene, gave good 
yields (Scheme  1, see compounds 3a–i, 3k, l). However, 
the 1,2-bis(4-chlorophenyl)diazene, dimethyl 4,4’-(diazene-
1,2-diyl)dibenzoate substituted with electron-withdrawing 
group afforded a lower yield (Scheme  1, see compounds 
3j, o). Meanwhile, the bulkier group at the phenyl ring of 
azobenzenes impede the reaction, as exemplified by 3e, f. 

Furthermore, the reactions of unsymmetrical azobenzenes 
also proceeded smoothly and gave the products which could 
be determined by 1H NMR, were obtained in good yields 
(84% for 3k; 86% for 3l, respectively). Next, we were inter-
ested in examining the 2 equivalent of iodobenzene diacetate 
(2) and extend the duration to 1 hours, the reactions only 
delivered corresponding products of 3m and 3n in lower 
yields (47 and 31%) (Scheme 3).

Furthermore, we find an important method to synthesis 
of2-hydroxyazobenzene by hydrolysis reaction of the above-
product at room temperature.

On the basis of previous related studies [55–60] and these 
results we obtained, a plausible reaction mechanism of this 
direct ortho C–O bond construction of an azobenzenes with 
iodobenzene diacetate via C–H activation is proposed, as 

Table 1  Optimization of reaction conditions

Reaction conditions:1a (0.5 mmol), 2 (0.5 equiv), catalyst (10 mol%) 
and solvent (2.0 mL) under air atmosphere at 40°Cfor 30 min, unless 
otherwise noted
a Isolated yields
b Pd(OAc)2 (5 mol%)
c 60 °C
d 20 °C
e 1 h
f 4 h

Entry Catalyst Solvent Yield(%)a

1 Pd(OAc)2 HFIP 93
2 Pd(CH3CN)2Cl2 HFIP 73
3 Pd(Ph3P)2 HFIP 41
4 Pd(CF3COO)2 HFIP 17
5 PdCl2 HFIP Trace
6 PtCl2 HFIP Trace
7 Cu(OAc)2 HFIP Trace
8 Co(OAc)2  4H2O HFIP Trace
9 La  Cl2 HFIP Trace
10 – HFIP Trace
11 Pd(OAc)2 HOAc Trace
12 Pd(OAc)2 CH3CN 4
13 Pd(OAc)2 DMF Trace
14 Pd(OAc)2 DMSO Trace
15 Pd(OAc)2 EtOH Trace
16 Pd(OAc)2 HFIP 72b

17 Pd(OAc)2 HFIP 80c

18 Pd(OAc)2 HFIP 73d

19 Pd(OAc)2 HFIP 87e

20 Pd(OAc)2 HFIP 82f
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Scheme  1  Substrate scope of the palladium-catalyzed direct ortho 
C–O bond construction of an azobenzenes. Conditions: 1 (0.5 mmol), 
2 (0.5 equiv), Pd(OAc)2 (10  mol%) and solvent (2.0  mL) under air 
atmosphere at 40 °C for 30 min. The yields are of the isolated prod-
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(2.0 mL) under air atmosphere at 40 °C for 1h. The yields are of the 
isolated products
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shown in Scheme  1. Step (i), coordination of the nitrogen 
atom in azobenzene (1a) with palladium(II) species triggers 
cyclopalladation to form a five-membered cyclopalladated(II) 
intermediate A. In step (ii), the cyclopalladated(II) inter-
mediate A would then be oxidized to Pd (IV) species B by 
PhI(OAc)2(2). In step (iii), the final product 3a would be 
obtained via reductive elimination of B. Meanwhile, the 
Pd(II) was regenerated for the next catalytic cycle.

3  Conclusions

In conclusion, we have developed a palladium-catalyzed 
direct C(sp2)–H acyloxylation of aromatic azo compounds 
with PhI(OAc)2. This novel method provides a conveni-
ent method for the syntheses of various ortho-acyloxylated 
azoarenes from commercially available materials under 
mild reaction conditions. And also we can get 2-hydroxya-
zobenzenes or o-aminophenol through hydrolysis reaction 
of the ortho-acyloxylated azoarenes.

4  Experimental Section

4.1  General Information

All reactions were run under argon in Schlenk tubes using 
vacuum lines. HOAc,  CH3CN, DMF, DMSO, and EtOH, 
analytical grade were not distilled before use. Commercial 
PhI(OAc)2 and azobenzenes were used without purifica-
tion. 1H NMR, 13C NMR spectra were recorded using a 
500  MHz spectrometer in  CDCl3 and DMSO with shifts 
referenced to  SiMe4 (δ= 0). IR spectra were recorded on an 
FTIR spectrophotometer. Melting points were determined 

by using a local hot-stage melting point apparatus and are 
uncorrected. Elemental analyses were carried out on a 
CHN analyzer. Mass spectra were recorded using LC–MS 
and HRMS (ESI-TOF analyzer) equipment.

4.2  General procedure for Palladium-Catalyzed Direct 
Ortho C–O bond construction of an Azobenzenes 
with Iodobenzene diacetate via C–H Activation

Mix azoic compound (0.5equiv), PhI(OAc)2 (0.5equiv), 
Pd(OAc)2 (10 mol%) in HFIP (2 ml) under atmosphere. The 
reaction mixture was vigorously stirred at 40 °C for 30 min. 
After cooling down to room temperature and concentrating 
in vacuum, the residue was purified by flash chromatogra-
phy on a short silica gel to afford corresponding product.

4.2.1  (E)‑2‑(phenyldiazenyl)phenyl acetate (3a)

Obtained as an orange liquid in 95% yield. 1H NMR 
(500 MHz,  CDCl3) δ 7.80–7.75 (m, 2H), 7.73 (dd, J = 8.1, 
1.6  Hz, 1H), 7.44–7.38 (m, 4H), 7.28–7.23 (m, 1H), 
7.17–7.14 (m, 1H), 2.31 (s, 3H). 13C NMR (126  MHz, 
 CDCl3) δ 169.61, 152.84, 148.98, 143.97, 132.09, 131.38, 
129.12, 126.59, 123.35, 123.01, 117.67, 20.78. HRMS 
(ESI+): Calculated for  C14H13N2O2: [M+H]+ 241.0977, 
Found 241.0952.

4.2.2  (E)‑5‑methyl‑2‑(p‑tolyldiazenyl)phenyl acetate(3b)

Obtained as an orange liquid in 92% yield. 1H NMR 
(500  MHz,  CDCl3) δ 7.92 (s, 1H), 7.64 (dd, J = 11.7, 
8.3Hz, 3H), 7.19 (d, J = 8.2Hz, 2H), 7.03 (dd, J = 8.2, 
1.1 Hz, 1H), 6.94 (s, 1H), 2.32 (s, 6H), 2.29 (s, 3H). 13C 
NMR (126  MHz,  CDCl3) δ 168.67, 149.99, 147.68, 
141.77, 140.83, 140.59, 128.66, 126.33, 122.60, 121.82, 
116.38, 20.45, 20.40, 19.71. HRMS (ESI+): Calculated for 
 C16H16N2O2: [M+H]+ 269.1290, Found 269.1267.

4.2.3  (E)‑4‑methyl‑2‑(m‑tolyldiazenyl)phenyl acetate(3c)

Obtained as an orange liquid in 90% yield. 1H NMR 
(500  MHz,  CDCl3) δ 7.68–7.63 (m, 2H), 7.60 (d, 
J = 1.4 Hz, 1H), 7.38 (dd, J = 13.0, 5.4 Hz, 1H), 7.30–7.26 
(m, 2H), 7.13–7.09 (m, 1H), 2.43 (d, J = 3.7 Hz, 3H), 2.40 
(s, 3H), 2.37 (d, J = 3.8  Hz, 3H). 13C NMR (126  MHz, 
 CDCl3) δ 169.83, 152.98, 146.76, 143.55, 138.95, 136.51, 
132.66, 132.06, 128.91, 123.63, 122.96, 120.11, 117.86, 
21.40, 21.04, 20.77. HRMS (ESI+): Calculated for 
 C16H16N2O2: [M+H]+ 269.1290, Found 269.1253.
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Scheme 3  Plausible reaction mechanism
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4.2.4  (E)‑5‑ethyl‑2‑((4‑ethylphenyl)diazenyl)phenyl 
acetate(3d)

Obtained as an orange liquid in 90% yield. 1H NMR 
(500  MHz,  CDCl3) δ 7.92–7.82 (m, 2H), 7.79–7.72 (m, 
3H), 7.31 (d, J = 8.4 Hz, 2H), 2.72 (d, J = 7.6 Hz, 4 H), 
2.39 (s, 3H), 1.28 (dd, J = 2.5, 1.1  Hz, 6  H). 13C NMR 
(126  MHz,  CDCl3) δ 169.72, 151.15, 149.01, 148.85, 
128.57, 128.52, 126.76, 126.17, 122.96, 122.36, 117.51, 
20.80, 15.42, 14.99. HRMS (ESI+): Calculated for 
 C18H20N2O2: [M+H]+ 297.1603, Found 297.1583.

4.2.5  (E)‑5‑isopropyl‑2‑((4‑isopropylphenyl)diazenyl)
phenyl acetate(3e)

Obtained as an orange liquid in 83% yield. 1H NMR 
(500  MHz,  CDCl3) δ 7.70 (d, J = 8.3Hz, 2H), 7.66 (d, 
J = 8.3Hz, 1 H), 7.26 (d, J = 8.3Hz, 2H), 7.11 (dd, J = 8.3, 
1.7  Hz, 1  H), 7.00 (d, J = 1.5  Hz, 1  H), 2.94–2.85 (m, 
2H), 2.31 (s, 3H), 1.21 (dd, J = 6.9, 2.1  Hz, 12H). 13C 
NMR (126  MHz,  CDCl3) δ 168.64, 152.58, 151.39, 
150.31, 147.83, 141.06, 126.04, 123.75, 121.92, 119.90, 
116.48, 33.12, 33.01, 22.82, 22.63, 19.76. HRMS 
(ESI+): Calculated for  C20H24N2O2: [M+H]+ 325.1916, 
Found 325.1871.

4.2.6  (E)‑2‑((3,5‑dimethylphenyl)
diazenyl)‑4,6‑dimethylphenyl acetate(3 f)

Obtained as an orange liquid in 78% yield. 1H NMR 
(500  MHz,  CDCl3) δ 7.46 (s, 2H), 7.40 (d, J = 0.8  Hz, 
1  H), 7.17 (dd, J = 1.3, 0.6  Hz, 1  H), 7.11 (s, 1  H), 2.40 
(d, J = 2.4 Hz, 9 H), 2.36 (s, 3H), 2.27 (s, 3H). 13C NMR 
(126  MHz,  CDCl3) δ 169.54, 153.14, 145.49, 143.70, 
138.66, 135.86, 134.11, 132.83, 131.34, 120.76, 115.32, 
21.29, 21.00, 20.55, 15.89. HRMS (ESI+): Calculated for 
 C18H20N2O2: [M+H]+ 297.1603, Found 297.1578.

4.2.7  (E)‑4‑methoxy‑2‑((3‑methoxyphenyl)diazenyl)phenyl 
acetate(3 g)

Obtained as an orange liquid in 87% yield. 1H NMR 
(500 MHz,  CDCl3) δ 7.51 (ddd, J = 7.8, 1.4, 1.0 Hz, 1H), 
7.43–7.37 (m, 2H), 7.34 (d, J = 3.0  Hz, 1H), 7.15 (d, 
J = 8.9  Hz, 1H), 7.08–7.02 (m, 2H), 3.87 (d, J = 6.6  Hz, 
6H), 2.37 (s, 3H). 13C NMR (126 MHz,  CDCl3) δ 169.95, 
160.27, 157.90, 153.97, 144.06, 143.12, 129.81, 123.93, 
119.15, 118.03, 117.14, 106.21, 100.77, 55.83, 55.39, 
20.70. HRMS (ESI+): Calculated for  C16H16N2O4: 
[M+H]+ 301.1188, Found 301.1158.

4.2.8  (E)‑5‑methoxy‑2‑((4‑methoxyphenyl)diazenyl)phenyl 
acetate(3h)

Obtained as an orange liquid in 90% yield. 1H NMR 
(500 MHz,  CDCl3) δ 7.89–7.85 (m, 2H), 7.83 (dd, J = 8.7, 
2.3Hz, 1  H), 7.65 (d, J = 2.3Hz, 1H), 7.09–7.05 (m, 1H), 
7.02–6.97 (m, 2H), 3.89 (d, J = 14.7 Hz, 6H), 2.34 (s, 3H). 
13C NMR (126  MHz,  CDCl3) δ 168.88, 161.81, 153.07, 
146.90, 146.78, 140.24, 124.52, 124.31, 115.04, 114.21, 
111.79, 56.16, 55.58, 20.68. HRMS (ESI+): Calculated for 
 C16H16N2O4: [M+H]+ 301.1188, Found 301.1163.

4.2.9  (E)‑5‑ethoxy‑2‑((4‑ethoxyphenyl)diazenyl)phenyl 
acetate(3i)

Obtained as an orange liquid in 85% yield. 1H NMR 
(500 MHz,  CDCl3) δ 7.87–7.83 (m, 2H), 7.80 (dt, J = 5.2, 
2.6 Hz, 1H), 7.65 (t, J = 2.4 Hz, 1H), 7.06–7.03 (m, 1 H), 
6.99–6.96 (m, 2H), 4.12 (dd, J = 13.8, 6.9 Hz, 4H), 2.34 (d, 
J = 4.5 Hz, 3H), 1.44 (dd, J = 7.0, 3.8 Hz, 6 H). 13C NMR 
(126  MHz,  CDCl3) δ 161.24, 152.46, 146.74, 146.61, 
146.56, 140.48, 124.54, 124.18, 115.02, 114.68, 112.66, 
64.61, 63.81, 20.60, 14.78, 14.67. HRMS (ESI+): Calcu-
lated for  C18H20N2O4: [M+H]+ 329.1501, Found 329.1461.

4.2.10  (E)‑5‑chloro‑2‑((4‑chlorophenyl)diazenyl)phenyl 
acetate(3j)

Obtained as an orange liquid in 40% yield. 1H NMR 
(500  MHz,  CDCl3) δ 7.74–7.68 (m, 3H), 7.44–7.39 (m, 
3H), 7.25 (dd, J = 8.7, 2.2Hz, 1H), 2.32 (s, 3H). 13C NMR 
(126  MHz,  CDCl3) δ 167.99, 158.08, 153.76, 149.80, 
141.24, 137.65, 128.44, 125.98, 123.21, 122.86, 117.47, 
19.63. HRMS (ESI+): Calculated for  C14H10Cl2N2O2: 
[M+H]+ 309.0198, Found 309.0154.

4.2.11  (E)‑5‑methoxy‑2‑(m‑tolyldiazenyl)phenyl 
acetate(3k)

Obtained as an orange liquid in 84% yield. 1H NMR 
(500  MHz,  CDCl3) δ 7.69–7.47 (m, 2H), 7.42–7.31 (m, 
2H), 7.31–7.26 (m, 1H), 7.13 (dd, J = 11.0, 8.5  Hz, 1H), 
7.06–7.00 (m, 1H), 3.85 (d, J = 7.7  Hz, 3H), 2.39 (dd, 
J = 23.3, 11.0  Hz, 6H). 13C NMR (126  MHz,  CDCl3) δ 
169.54, 157.85, 146.72, 137.18, 131.97, 129.18, 123.33, 
120.27, 117.81, 116.87, 106.08, 55.01, 21.13, 20.49. 
HRMS (ESI+): Calculated for  C16H16N2O3: [M+H]+ 
285.1239, Found 285.1203.

4.2.12  (E)‑5‑methoxy‑2‑(phenyldiazenyl)phenyl acetate(3l)

Obtained as an orange liquid in 86% yield. 1H NMR 
(500  MHz,  CDCl3) δ 7.87–7.84 (m, 1H), 7.52–7.49 (m, 
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2H), 7.44–7.37 (m, 1 H), 7.37–7.32 (m, 1H), 7.26–7.14 (m, 
2H), 7.08–7.03 (m, 1 H), 3.87 (d, J = 6.3Hz, 3H), 2.39 (d, 
J = 5.1  Hz, 3H). 13C NMR (126  MHz,  CDCl3) δ 170.02, 
160.26, 157.88, 132.14, 131.40, 129.11, 123.94, 123.33, 
123.04, 119.07, 100.77, 55.83, 20.73. HRMS (ESI+): 
Calculated for  C15H14N2O3: [M+H]+ 271.1083, Found 
271.1044.

4.2.13  (E)‑2‑(phenyldiazenyl)‑1,3‑phenylene 
diacetate(3 m)

Obtained as an orange solid in 47% yield; M.p. 40–41 °C. 
1H NMR (500  MHz,  CDCl3) δ 7.80–7.74 (m, 2H), 
7.51–7.48 (m, 3H), 7.42 (dd, J = 10.6, 5.8 Hz, 1H), 7.12 (d, 
J = 8.2Hz, 2H), 2.29 (s, 6H). 13C NMR (126 MHz,  CDCl3) 
δ 169.07, 153.20, 144.77, 136.62, 131.74, 130.53, 129.21, 
122.62, 121.68, 20.80. HRMS (ESI+): Calculated for 
 C16H14N2O4: [M+H]+ 299.1032, Found 299.1003.

4.2.14  (E)‑5‑ethoxy‑2‑((4‑ethoxyphenyl)
diazenyl)‑1,3‑phenylene diacetate(3n)

Obtained as an orange solid in 31% yield; M.p. 50–51 °C. 
1H NMR (500 MHz,  CDCl3) δ 7.79–7.71 (m, 2H), 7.50 (s, 
1H), 7.18 (s, 1H), 6.93–6.87 (m, 2H), 4.06–4.00 (m, 4H), 
2.27 (d, J = 10.6  Hz, 6H), 1.37 (dd, J = 9.2, 4.7  Hz, 3H), 
1.27 (dd, J = 9.0, 5.1 Hz, 3H). 13C NMR (126 MHz,  CDCl3) 
δ 167.55, 160.70, 146.80, 145.50, 143.88, 143.57, 123.87, 
114.36, 113.69, 111.37, 68.88, 62.82, 28.68, 19.74. HRMS 
(ESI+): Calculated for  C20H22N2O6: [M+H]+ 387.1556, 
Found 387.1527.

4.2.15  (E)‑methyl 3‑acetoxy‑4‑((4‑(methoxycarbonyl)
phenyl) diazenyl)benzoate(3o)

Obtained as a light-red solid in 73% yield; M.p. 143–145 °C. 
1H NMR (300 MHz,  CDCl3) δ 8.20 (d, J = 8.4, 2H), 8.03 
(d, J = 8.4, 1H), 7.89–7.94 (m, 3H), 7.84 (d, J = 8.4, 1 H), 
3.96 (s, 6H), 2.41 (s, 3H). 13C NMR (75 MHz,  CDCl3) δ 
169.27, 166.32, 165.57, 155.10, 148.90, 146.53, 133.77, 
132.71, 130.70, 127.83, 125.98, 125.05, 124.11, 122.98, 
125.05, 124.11, 122.98, 117.59, 52.59, 52.44, 20.66. 
HRMS (ESI+): Calculated for  C18H16N2O6: [M+H]+ 
357.1087, Found 357.1085.

4.2.16  (E)‑2‑(phenyldiazenyl)phenol (4)

Obtained as an orange solid in 91% yield; M.p. 82–83 °C. 
1H NMR (500  MHz,  CDCl3) δ 12.94 (s, 1H), 7.95 (d, 
J = 10 Hz, 1H), 7.88 (d, J = 5 Hz, 2H), 7.48–7.54 (m, 3H), 
7.35 (t, J = 10  Hz, 1H), 7.02–7.09 (m, 2H). 13C NMR 
(126  MHz,  CDCl3) δ 152.80, 150.54, 137.38, 133.30, 
133.27, 131.20, 129.38, 122.27, 119.95, 118.22.
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