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A B S T R A C T

A series of magnetically recyclable Pd/Fe3O4@g-Al2O3 catalysts were synthesized using the super-

paramagnetic Fe3O4@g-Al2O3 core–shell microspheres as the supporter and nano-Pd particles

assembled on g-Al2O3 shell as the active catalytic component. The structure of the catalysts was

characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption–

desorption and vibrating sample magnetometer (VSM). The catalytic activity and the recyclability

properties of the catalysts for the Heck coupling reaction with aryl bromides and the olefins were

investigated. The results show that the microspheres of the magnetic Pd/Fe3O4@g-Al2O3 catalysts

were about 400 nm and the nano-Pd particles assembled on g-Al2O3 shell were about 3–4 nm in size.

The saturation magnetization (MS) of the magnetic catalysts was sufficiently high to allow magnetic

separations. In the Heck coupling reactions, the magnetic Pd/Fe3O4@g-Al2O3 catalysts exhibited good

catalytic activity and recyclability. With Pd/Fe3O4@g-Al2O3 (0.021 mol%) catalyst, the bromobenzene

conversion and product yield reached about 96.8% and 91.2%, respectively, at 120 8C and in 14 h. After

being recycled for six times, the conversion of bromobenzene and the recovery of the catalyst were about

80% and 90%, respectively. The nano-Pd particles were kept well dispersed in the used Pd/Fe3O4@g-Al2O3

catalysts.

� 2014 Sheng-Fu Ji. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
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1. Introduction

The Heck reaction catalyzed by the noble metal Pd is one of the
most important coupling reactions in organic syntheses [1,2].
Homogeneous and heterogeneous Pd catalysts are often used in
the Heck reaction. However, homogeneous catalysts are used in
less than one fifth of industrial applications due to the facts that the
homogeneous catalysts are easily lost after reaction, difficult to
separate from the reaction system and certainly costly [3].
Generally, Pd catalysts are initially synthesized as heterogeneous
catalysts followed by loading onto active carbon [4], metal oxides
[5], zeolites [6], polymers [7], or clay [8].

Magnetic catalysts have the incomparable advantages over the
traditional catalysts because of their high activity, magnetic
recyclability, and reusability. Research on the magnetic nano-
catalysts for the Heck reaction had been reported earlier [9,10].
41
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However, due to their high specific surface areas and magnetic
properties, magnetic nanoparticles are often easily self-agglomer-
ated [11]. Therefore, SiO2, C, and metal oxides, polymers are
usually used to modify the magnetic nanoparticles and to obtain
magnetic nanoparticles with special surface properties that still
keep their dispersiveness [12–15]. g-Al2O3 has been used as
supporter, adsorbent, and catalyst, owing to its low cost, good
chemical stability, high surface area, acidic sites, and controllable
synthetic process [16–19]. In the catalytic industry, g-Al2O3 is an
ideal supporter. Particularly, the catalysts that are formed by
loading the noble metal on the g-Al2O3 were used in organic
reactions [19–22]. It is still difficult, however, to separate the
catalyst from the liquid phase after the reaction. In our previous
research, we found an easy way to synthesize monodispersed
Fe3O4 [23], which had uniformed diameter. Thus we hypothesized
that if we could coat the Fe3O4 with g-Al2O3 to obtain core–shell
structures, and then load Pd onto the Fe3O4@g-Al2O3 nanospheres,
the resulting catalysts would combine their advantages of high
activity, excellent mesoporous structure, magnetic recyclability,
and reusability.
bled on superparamagnetic core–shell microspheres: Synthesis,
 reaction, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/
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Fig. 1. Wide-angle XRD patterns of Pd/Fe3O4@g-Al2O3 with different Pd loading.
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In this paper, we illustrated the construction of magnetically
cyclable Pd/Fe3O4@g-Al2O3 nanocomposites possessed the
re–shell structure. To evaluate the activity and the stability of
e Pd/Fe3O4@g-Al2O3 nanocomposites, the Heck coupling reac-
ns were chosen as the model reaction. Results showed that the
talyst could be easily separated from the reaction system by
ploying an external magnetic field, because of the super-

ramagnetic behavior of Fe3O4. Furthermore, it can be reused for
veral cycles with sustained selectivity and activity.

 Experimental

1. Synthesis of Fe3O4@g-Al2O3

Fe3O4 was synthesized according to a slightly modified
lvothermal method [23]. Briefly: FeCl3�6H2O (10.8 g), NaAc
8.8 g) and cetyltrimethyl ammonium bromide (CTAB, 0.014 g)
ere dissolved in 400 mL of glycol under stirring. The obtained
mogeneous yellow solution was transferred into a Teflon-lined

ainless-steel autoclave. The autoclave was sealed and heated at
0 8C under 400 rpm stirring speed. After heating for 12 h, the
toclave was cooled naturally to room temperature. The obtained
ack magnetic particles were separated with a permanent
agnet, washed with ethanol six times, and dried in vacuum at

 8C for 24 h.
The obtained Fe3O4 particles (0.1 g) were dispersed in an

uminum isopropoxide (AIP) ethanol solution (60 mL, 0.016 mol/
 under ultrasonication. After 30 min, the solution was transferred

 a three-neck flask (250 mL) and stirred for 12 h at 45 8C to obtain
e Fe3O4 particles whose surface was saturated with AIP.
bsequently, 50 mL of ethanol/water (5/1, V/V) was added into
e solution, and the mixture was allowed to stir for another 1 h to
mplete the hydrolysis of AIP. Then the mixture was transferred

 a Teflon-sealed autoclave and heated at 80 8C for 20 h. The
tained particles were separated with a permanent magnet,

ashed several times with deionized water and ethanol, and
en dried in vacuum at 50 8C for 12 h. After that the products were
t into a tube furnace and the system was purged with N2.
en the tube furnace was heated from room temperature to
0 8C (1 8C/min) under the N2 (5 mL/min) ambience, and kept at
0 8C for 4 h. After cooling to room temperature naturally, the

3O4@g-Al2O3 was collected.

2. Preparation of Pd/Fe3O4@g-Al2O3

0.1 g of the obtained Fe3O4@g-Al2O3 particles was dispersed in
2.5 mL PdCl2 aqueous solution (0.6 mg/mL) under ultrasonica-
n. After 30 min, the solution was diluted to 100 mL and

ansferred to a three-neck flask, stirred for 12 h under 25 8C,
parated by a permanent magnet, and finally dried in vacuum at
0 8C for 12 h. The obtained products were put into a tube
rnace, which was purged with H2. Then the tube furnace was
ated from room temperature to 200 8C (1 8C/min) under the H2

 mL/min) ambience, and kept at 200 8C for 3 h. After cooling to
om temperature, Pd/Fe3O4@g-Al2O3 (1.5 wt%) was collected.

 changing the volume of PdCl2 added, we synthesized a series of
/Fe3O4@g-Al2O3 catalysts with different Pd loadings in 1.5%,

0%, 4.5%, 6.0%, respectively. They were marked as Pd-1, Pd-2,
-3, Pd-4, respectively.

3. Catalytic reaction

For the Heck reactions, 10 mg of Pd/Fe3O4@g-Al2O3 catalyst,
ylhalide, olefin, dodecane (as an internal standard substance),
d base were added to the solvent. The reaction was carried out
der reflux condition. The effects of Pd content, solvents,
Please cite this article in press as: H. Yang, et al., Nanosized Pd asse
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substrates, and time were investigated individually. The catalyst
was collected by an external permanent magnet, and the product
was analyzed by gas chromatography (GC). For recycling, the
collected catalyst was washed with tetrahydrofuran and separated
by an external permanent magnet, then dried under vacuum at
60 8C for 12 h. Then the catalysts were utilized for another run of
catalytic testing. Each time, catalyst loss was measured by
precision electronic balance.

2.4. Characterizations

The X-ray diffraction (XRD) pattern was collected on a D/Max
2500 VB 2+/PC diffractometer (Rigaku, Japan) with Cu–Ka
irradiation (l = 1.5418 Å, 200 kV, 50 mA) with 2u values between
108 and 808. Transmission electron microscopy (TEM) was
performed with a JEOL (JEM-2100) transmission electron micro-
scope (JEOL, Japan) operated at 200 kV accelerating voltage. The N2

adsorption–desorption analysis was conducted with an ASAP
2020 M automatic specific surface area and aperture analyzer
(MICROMERITICS, USA). Magnetic properties of the samples were
measured using a vibrating sample magnetometer (VSM; Lake
Shore Model 7400, USA) under magnetic fields up to 18 kOe. The Pd
loading amount was determined by inductively coupled plasma
mass spectrometry (ICP-MS, SPECTRO ARCOS EOP; SPECTRO
Analytical Instruments GmbH, Germany).

3. Results and discussion

3.1. The structure of the catalyst

Fig. 1 shows the crystallinity and phase composition of the
samples by X-ray powder diffraction (XRD). The peaks of all
samples could be indexed to face center cubic magnetite phase
(Fe3O4; JCPDS No. 19-0629). The extra weak diffraction peaks at
45.98, 66.78 could be indexed to the characteristic diffraction peaks
of g-Al2O3 (2u = 37.68, 45.78, 66.68; PDF No. 10-425), which
indicates that both Fe3O4 and g-Al2O3 had been obtained [24].
Since the peak at 2u = 37.68 was so close to the Fe3O4 characteristic
diffraction peak that they could not be distinguished by the XRD.
Fig. 1 shows that the Pd/Fe3O4@g-Al2O3 nanocomposites displayed
the characteristic diffraction peaks indexed to the Pd (0), which
suggested the presence of Pd (0) on Pd/Fe3O4@g-Al2O3 composites.
The intensity became stronger as the concentration of Pd
increased.
mbled on superparamagnetic core–shell microspheres: Synthesis,
 reaction, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/
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Fig. 2. SEM images of Fe3O4 (a) and Fe3O4@g-Al2O3 (b); TEM images of Fe3O4@g-Al2O3 (c, d); TEM images of Pd-1 (e), Pd-2 (f), Pd-3 (g), Pd-4 (h).
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Fig. 2 shows typical SEM and TEM images of Fe3O4@g-Al2O3 and
Pd/Fe3O4@g-Al2O3. It was easily observed, as in Fig. 2a–d, that the
diameters of the as-synthesized Fe3O4 nanoparticles were about
300 nm with a narrow size distribution, and that the thickness of
the g-Al2O3 shell was about 40 nm. If observed carefully we could
find some porous structures, which resulted from the stacking of
smaller g-Al2O3 particles on the outer space of the g-Al2O3 shell.
Fig. 2e–f illustrated the TEM images of different loading of Pd/
Fe3O4@g-Al2O3 (Pd-1, Pd-2, Pd-3, Pd-4). One could see from the
figure that there were some small Pd clusters, which stacked by
smaller Pd nano-particles with the average diameter of 3–4 nm on
the surface of Fe3O4@g-Al2O3. As the Pd loading increases, the
clusters tend to increase. However, excess Pd loading may lead to
Pd cluster agglomerating.

Nitrogen adsorption–desorption isotherms of all the samples
are illustrated in Fig. 3, and the textural and structural
175
176
177
178

179

180
181

Fig. 3. N2 adsorption–desorption isotherms of Pd/Fe3O4@g-Al2O3 with different Pd

loading.
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characteristics of Pd/Fe3O4@g-Al2O3 with different Pd loading
were shown in Table 1. The isotherms of all the samples are type III
(definition by IUPAC). The appearance of type 3-H hysteresis loops
in isotherms was indicated because there was no presence of
orderly mesoporous structures in Fe3O4@g-Al2O3 magnetic
particles. After Pd was loaded, the BET surface area decreased
compared with Fe3O4@g-Al2O3 magnetic particles. As the Pd
loading increased, the decrease of BET surface area became more
significant. However, the pore volume remained constant,
indicating that the Pd clusters were loaded on the surface of the
Fe3O4@g-Al2O3 [25], which was consistent with the TEM results.

Magnetic properties of the samples were investigated by a
vibrating sample magnetometer (VSM) at room temperature with
the applied magnetic field ranging from �18,000 to 18,000 Oe. As
illustrated in Fig. 4, all samples were superparamagnetic nano-
particles. Compared with Fe3O4, the saturation magnetization (MS)
intensity of the g-Al2O3@ Fe3O4 and Pd-1, Pd-2, Pd-3, Pd-4
successively decreased. Even so, the MS of the Pd/g-Al2O3@Fe3O4

was adequately high to allow its easy separation from the reaction
system.

3.2. Catalytic performance of Pd/Fe3O4@g-Al2O3

The Heck reaction of bromobenzene with styrene was carried
out as a model reaction to evaluate the catalytic ability of the
Table 1
Textural and structural characteristics of Pd/Fe3O4@g-Al2O3 with different Pd

loading.

Catalyst Palladium (wt%) Textural and structural

characteristics

SBET

(m2/g)

VBJH

(cm3/g)

Dv

(nm)

Fe3O4 – 468.6 0.35 2.3

Fe3O4@g-Al2O3 – 179.3 0.26 5.9

Pd-1 1.5 166.8 0.24 5.7

Pd-2 3.0 153.9 0.23 5.8

Pd-3 4.5 138.6 0.23 5.8

Pd-4 6.0 124.5 0.25 5.7

bled on superparamagnetic core–shell microspheres: Synthesis,
 reaction, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.cclet.2014.05.003
http://dx.doi.org/10.1016/j.cclet.2014.05.003


182 Pd
183 Pd
184 de
185 ca
186 re
187 be
188 in
189 2-
190 be
191 in
192 di

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

238
239

240
241
242
243
244

Fig. 4. Magnetization curves of Pd/Fe3O4@g-Al2O3 with different Pd loading. (a)

Fe3O4, (b) Fe3O4@g-Al2O3, (c) Pd-1, (d) Pd-2, (e) Pd-3, (f) Pd-4.

Fig. 5. Time-dependent Heck activities of Pd/Fe3O4@g-Al2O3 catalysts with

different Pd loading.

Ta
He

E

1

2

3

4

5

6

a

b

H. Yang et al. / Chinese Chemical Letters xxx (2014) xxx–xxx4

G Model

CCLET 2981 1–6
/Fe3O4@g-Al2O3. We systematically investigated the effects of
 content, temperature, base, and solvent on the reaction. Time-
pendent Heck reaction activity of the Pd/Fe3O4@g-Al2O3

talysts with different Pd loadings is shown in Fig. 5, with
action conditions: 10 mg of Pd/Fe3O4@g-Al2O3 catalyst, bromo-
nzene (20 mmol), styrene (30 mmol), dodecane (10 mmol, as
ternal standard substance), Na2CO3 (24 mmol), NMP (N-methyl-
pyrrolidone, 40 mL), and reaction temperature (120 8C). It can

 observed from Fig. 5 that the conversion of bromobenzene
creased to as much as 100% given sufficient reaction time. The
fference is that with the increase of Pd content, the conversion
ble 2
ck reaction activities of Pd-3 catalysts under different reaction conditionsa

ntry Temperature (8C) Base 

 90 Na2CO3

 100 Na2CO3

 110 Na2CO3

 120 Na2CO3

 120 Et3Nb

 120 NaOAc 

Reaction system: 20 mmol bromobenzene, 30 mmol styrene, 24 mmol base, 10 m

Et3N: triethylamine.
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rate of bromobenzene became faster. The conversion of bromo-
benzene increased slowly with a low Pd/bromobenzene molar
ratio (Fig. 5a, 0.007%) and needed 24 h to finish the reaction,
whereas a higher Pd/bromobenzene molar ratio (Fig. 5c, 0.021%)
needed 14 h to finish the reaction. Furthermore, an increase in the
Pd/bromobenzene molar ratio could not help to decrease the
reaction time (Fig. 5d). For the Pd atom utilization, the conversion
of Pd-1–Pd-4 was 60.5%, 81.7%, 96.8%, 99.3% in 14 h, respectively.
The conversion of bromobenzene rose to about 18% when the Pd
content increased 1.5 wt%, and it decreased with the increased Pd
content, which means that the dominant factor was changed from
the number of active sites to the mass transfer rate of the
substrates [26]. In addition, increasing the Pd content led to serious
Pd clusters agglomerating (Pd-4) judged by the TEM image, which
suggests that the a Pd content of Pd-3 (4.5 wt%) was adequate to
catalyze the reaction.

Table 2 show the Heck activity of bromobenzene and styrene
catalyzed by Pd-3 catalysts under different reaction conditions. As
we can see from entry 1 to entry 4, temperature was a key factor for
the Heck reaction. As the temperature rose, the conversion of
bromobenzene increased; when the temperature reached to
120 8C, a 96.8% conversion of bromobenzene was achieved
with a high yield of 91.2%. High temperature enabled more
molecule activated, thus increasing the reaction rate. For the
purposes of energy saving and prolonging the life of the catalyst,
lower reaction temperatures are more desirable, thus 120 8C was
the best reaction temperature for the Pd-3 catalyst. It was also
found that inorganic base was more effective than organic base,
and Na2CO3 was the ideal base among Na2CO3, NaOAc, and Et3N
tested (entry 4 to entry 6)

Table 3 shows a comparison of the activity and reaction
conditions of supported Pd catalysts in the Heck reaction of
bromobenzene with styrene that had been published in the
literature. As we can see from the table, the diameter of Pd was
the key factor. Decreasing the diameter of the catalyst means
more active sites can be exposed to the reaction system.
Comparison with the TOF value of different catalyst revealed that
the Pd-3 catalyst had a higher TOF value at a lower reaction
temperature (120 8C), shorter reaction times (14 h), and lower Pd
molar content (0.021 mol%) as compared to other supported
Pd-based catalysts such as Pd loaded on mesoporous silica or TiO2

[5]. The activity of Pd on carbon nanofiber [27] was higher than
that of the Pd-3 catalyst, but carbon nanofiber was not as effective
as Fe3O4@g-Al2O3 in terms of the separation from the reaction
systems, stability, and recyclability.

3.3. Relationship between the solvents, substrates and the catalytic

performance of the catalyst

The condition of Heck reaction was rigorous, requiring an
argon atmosphere to avoid the Pd leaching while maintaining
the high activity in an anhydrous environment, and phosphine
ligands to stabilize the catalyst, but the phosphine ligands are
toxic and should be avoided. The solvents were often DMF
Conversion (%) Yield (%) Selectivity (%)

19.7 17.2 87.3

47.7 43.9 92.0

75.2 70.5 93.8

96.8 91.2 94.2

82.6 76.9 93.1

94.6 88.2 93.2

mol dodecane, 40 mL NMP; reaction time: 14 h; catalyst: 0.01 g Pd-3 (4.5 wt%).

mbled on superparamagnetic core–shell microspheres: Synthesis,
 reaction, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/
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Table 3
Comparison of the activity and reaction conditions of supported Pd catalysts in the Heck reaction of bromobenzene with styrene published in the literature.

Catalyst Pd diameter (nm) Catalyst (mol% Pd)a Temperature (8C) Time (h) Yield (%) TOFb Reference

Pd/mesoporous silica �10 0.1 170 48 82 17.1 [28]

Pd/TiO2 5 0.5 140 24 92 7.7 [5]

Pd/carbon nanofiber 2–3 0.01 120 10 95 950.0 [27]

Fe3O4–NH2–Pd 8.9 5 130 24 96 0.8 [29]

Pd-3 3–4 0.021 120 14 91.2 310.2 This paper

a Moles of Pd/moles of bromobenzene.
b molproduct mol�1

Catalyst h�1.

Table 4
Heck reaction activities of Pd-3 catalysts under different reaction conditions.a

Entry Solvent Conversion (%) Selectivity (%) Yield (%)

1 NMP 96.8 94.2 91.2

2 DMF 98.7 92.1 90.9

3 DMSO 100.0 94.2 94.2

4 DMAc 100.0 94.4 94.4

a Reaction system: 20 mmol bromobenzene, 30 mmol styrene, 24 mmol base,

10 mmol dodecane, 40 mL solvent; reaction time:12 h; catalyst: 0.01 g Pd-3

(4.5 wt%).

Fig. 6. Recycling of the Pd-3 catalyst in Heck reaction.
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(N,N-dimethylformamide), DMAc (dimethylacetamide), NMP
(N-methyl-2-pyrrolidone), DMSO (dimethyl sulfoxide), etc. In
the coupling reaction, the organic groups of the substrates varied
from hydrophilic groups to hydrophobic groups or from electron-
withdrawing groups to electron donating groups. So the nature of
the solvents and substrates can influence the catalytic perfor-
mance of the catalyst. Commonly, a catalyst had a high activity
only in a specific solvent [5,30]. In contrast, our Pd-3 catalyst was
suitable for most of the common solvents with a high conversion
and yield, as shown in Table 4.

The effects of substituted groups in substrates were also
examined. As illustrated in Table 5, the conversion of substrates
with electron withdrawing groups in the para-position, at entry 1
to entry 2, was much higher than the substrates with electron
donating groups, at entry 4 to entry 5. This result was the same as
the other supported Pd catalysts result, which could be explained
by the fact that the electron-withdrawing groups facilitate the
oxidative addition during the Heck reaction [31]. When the olefin
changed from styrene to straight-chain olefins, such as butyl
acrylate or methyl acrylate, the conversion of bromobenzene
decreased under the same reaction conditions, as shown at entry 6
to entry 7.

3.4. Stability and reusability of Pd/Fe3O4@g-Al2O3

For practical application in the Heck reaction, the shelf life of
the heterogeneous catalysts and their reusability are very
287
288Table 5

Heck reaction of various aryl bromides with different olefins catalyzed by Pd-3.a

Br

R

+
R1

R

R1

+ HBr
Catalyst Base

Solvent

.

Entry R R1 Conversion (%) Yield (%)

1 COCH3 C6H6 100.0 95.8

2 NO2 C6H6 100.0 96.1

3 H C6H6 88.8 82.4

4 OCH3 C6H6 67.2 65.5

5 NH2 C6H6 60.2 58.6

6 H COOi-Bu 79.7 75.5

7 H COOCH3 83.6 78.5

a Reaction system: 20 mmol halohydrocarbon, 30 mmol olefin, 24 mmol base,

10 mmol dodecane, 40 mL NMP; reaction time:12 h; catalyst: 0.01 g Pd-3 (4.5 wt%).
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important factors. Here our Pd-3 catalyst was reused for six times,
each time after reaction the catalyst was separated from the
reaction system by a permanent magnet, and the collected catalyst
was washed with tetrahydrofuran and dried under vacuum at
60 8C for 12 h; catalyst loss was measured by precision electronic
balance, then the catalyst was used in the next cycling under the
same reaction conditions and giving 94.2%, 89.4%, 89.1%, 84.7% and
78.6% isolated yield for the second, third, fourth, fifth and sixth
runs, respectively, as shown in Fig. 6.

Fig. 6 also shows that the weight loss of the catalyst was only 2%
or less in each regeneration process, and the total weight loss of the
catalyst was only 10% after six cycles. A baseline loss may be
unavoidable in the regenerate process and the Pd leaching, which
is the reason that the catalyst activity dropped each cycle. The
conversion of bromobenzene decreased as the catalyst weight
decreased, but remained above 80% with selectivity remaining at
100% after being used for six times. After use, the catalyst was
dissolved in concentrated nitric acid and analyzed by inductively
coupled plasma mass spectrometry (ICP-MS) to determine the
Fig. 7. TEM images of the Pd-3 catalyst recycled for six times in Heck reaction.
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ntent of Pd (0.301 mmol/g). After being used six times, the core–
ell structure and the g-Al2O3 were retained. These were
aracterized by TEM as shown in Fig. 7. Parts of the Pd clusters
ere aggregated, maybe that was one of the reasons that the
talytic activity decreased compared to the fresh catalyst [27,32].
wever, during the six runs of reusing process the Pd-3 catalyst

tained the high activity and magnetic reusability.

 Conclusion

In summary, we had synthesized magnetic Fe3O4@g-Al2O3

icrospheres with core–shell structures by a coating and calcining
ocess on inorganic magnetic core (Fe3O4) followed by loading Pd
tive component on the surface of the Fe3O4@g-Al2O3 micro-
heres by reducing PdCl2. The catalyst of Pd was highly dispersed

 the surface of the Fe3O4@g-Al2O3 microspheres with a diameter
 3–4 nm. Using the Pd/Fe3O4@g-Al2O3 (4.5 wt%) catalyst, the
nversion of bromobenzene and the yield of product of about
.8% and 91.2%, respectively, were obtained at 120 8C in 14 h.
ter being recycled for six times, the catalyst gave a conversion of
omobenzene of above 80% and the recovery of the catalyst was
ove 90%. The nano-Pd particles were kept well dispersed in the
ed Pd/Fe3O4@g-Al2O3 catalyst, which show a good applicability

 industry.
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