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ABSTRACT 

The novel vinylogous aldol-lactonization cascade of alkylidene oxindole with 

trifluoromethylketones is presented. The reaction, catalyzed by a bifunctional tertiary amine, 

provides an efficient application of the vinylogous reactivity of alkylidene oxindoles for the 

preparation of enantioenriched trifluoromethylated α,β-unsaturated-δ-lactones.  

INTRODUCTION 

Alkylidene oxindoles are suitable substrates for vinylogous processes.
1
 They have been 

successfully employed as nucleophiles in many reactions with different electrophilic partners.
2
 

Among these, the recent works by Han on the reaction of oxindoles with 2,3-indolinediones, 

extended their vinylogous reactivity to cascade processes for the first time.
3
 The excellent yields 

and the high stereoselectivity obtained, also with alkylidene oxindoles bearing prochiral site at the 

γ-position, showed the potentiality of these reactions as promising tools for synthetic protocols. 

Organofluorine compounds find many applications in agrochemical industry and in medicinal 

chemistry.
4
 In particular, chiral compounds containing the trifluoromethyl group (CF3) bonded to a 

stereogenic center, showed potent activity against various diseases (Figure 1).
5
 

 

Figure 1. Examples of biologically active trifluoromethyl compounds 

The search of novel and always more efficient methodologies for the synthesis of fluorinated 

compounds is an actual and challenging research field which has constantly seen the commitment 

of many research groups to the development of innovative reactions.
6
 Recently, organocatalytic 

Henry and cross-aldol reactions of trifluoromethyl aryl ketones,
7
 emerged as a valid alternative to 

the classical Ruppert-Prakash reaction.
6c-e

 With the aim to pursue our studies on the vinylogous 

reactions of oxindoles, we wondered if it was possible to realize the unprecedented vinylogous 
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aldol-lactonization cascade using trifluoromethyl ketones (Scheme 1a).
1f, 4

 This vinylogous aldol-

lactonization represents an alternative strategy to the methods reported by Chi and Connon based 

on NHC/Lewis Acid and base catalyzed cycloadditions, for the synthesis of α,β-unsaturated-δ-

lactones bearing a CF3-group as part of a tetrasubstituted stereocenter (Scheme 1b-d).
8
 The α,β-

unsaturated-δ-lactone core is responsible for the activity of many natural and unnatural 

compounds against cancer, HIV and artery diseases. Considering that the catalytic synthesis of 

optically active 5,6-dihydropyran-2-ones is limited to few examples, new methods for their 

preparation are highly desirable.
9
 

Scheme 1. Access to enantioenriched CF3-containing α,β-unsaturated-δ-lactone 

 

We believe that for the realization of the cascade reaction, the use of a bifunctional catalyst
10

 is 

fundamental to activate the two reagents and direct the reaction through the desired double 

synthetic sequence (Scheme 2a). It is furthermore essential that the catalyst controls the 

regiochemistry of the addition, that should occur mainly at the γ-site rather than the γ'-site of the 

oxindole since the resulting (Z)-aldol adduct intermediate would cyclize easily onto the amidic 

carbonyl group than the (E)-aldol adduct (Scheme 2b). 
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Scheme 2. Vinylogous aldol/lactonization process 

 

RESULTS AND DISCUSSION 

We started our investigation exploring the reactivity of diverse thiourea and squaramide 

derivatives of Cinchona alkaloids organocatalysts (Table 1). This class of catalysts has been 

successfully applied to vinylogous processes
2a-c, h

 and demonstrated to be effective for the 

generation of an s-cis enolate after selective deprotonation at the γ-site.
2d

  

Table 1. Screening of reaction conditions
a 

 

entry cat solvent 3aa/4aa
b
 yield (%) 3aa

c
 ee (%) 3aa

e
 

1 I DCM 9:1 70 >99 

2 II DCM 2:1 48 -99 

3 III DCM 4:1 56 97 

4 IV DCM 1:3 21 -91 

5 I CHCl3 3:1 52 nd 

6 I Tol 6:1 82 nd 

7 I THF 1:2 20 nd 

8 I Et2O 7:1 70 nd 

9 I MeOH -- n.r. -- 

10 I MeCN >19:1 96
d
 95 
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11 I PhCF3 >19:1 96
d
 99 

a
The reactions were performed on a 0.1 mmol scale using a 1:1 ratio of 1a and 2a and 0.5 ml of 

solvent. 
b
Determined via 

1
H-NMR on the crude mixture. 

c
Determined via 

1
H-NMR with 1,3,5-

trimethoxybenzene as internal standard. 
d
Isolated yield. 

e
Determined by HPLC on chiral stationary 

phase. 

In general these catalysts were able to promote the formation of compound 3aa in moderate to 

good yields and excellent enantioselectivity together with variable amounts of aldol adduct 4aa 

(entries 1-4). The first attempt using the thiourea derivatives of 9-NH2-9-(epi)dihydroquinine I gave 

3aa in a 70% yield and >99% ee. Catalyst II, the pseudoenantiomer of catalyst I, gave 3aa in 48% 

yield and 99% ee, whilst squaramide derivatives 9-NH2-9-(epi)quinine III and quinidine IV furnished 

worst results (entries 2-4). The solvents have a strong influence on the product selectivity since 

variable ratios between 3aa and 4aa were observed (entries 5-12). Only using MeCN and CF3Ph a 

complete selectivity in favor of lactone 3aa was realized. In particular in this last case, 3aa was 

isolated in 96% yield and 99% ee after 72 hours of reaction at 25 °C. 

With the optimized condition the scope of the reaction was performed (Table 2).  

Table 2. Scope of the reaction
a
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(R)

O

O

CF3

NH

Boc Cl

3ac: 92% yieldb, >99% eec
  

(R)

O

O

CF3

NH

Boc

3ae: 84% yieldb, 96.5% eec
Br

 

   

 

a
The reactions were performed on a 0.2 mmol scale using a 1:1 ratio of 1 and 2 in 1.0 ml of PhCF3. 

b
Isolated yield. 

c
Determined by HPLC on chiral stationary phase. 

In general catalyst I gave high control on the stereochemistry with both electron-withdrawing and 

releasing substituents at the C(5) and C(7) of the oxindole core (3ba-3ea). Excellent yields and ee’s 

were also obtained with oxindoles having different aromatic substituents at the double bond (3fa-

3ha). However with great surprise the reaction failed to give the desired lactons or even traces of 

aldol adduct when 1-t-butoxycarbonyl-3-(pentan-3-ylidene)indolin- 2-one or 3-cyclohexylidene-1-

t-butoxycarbonylindolin-2-one were employed. Various aromatic trifluoromethylketones 2b-i were 

then prepared and used for the vinylogous aldol-cascade process in combination with oxindole 1a. 

In almost all cases the corresponding cyclic esters were the sole products obtained after 72 hours 

in excellent yields and remarkable enantioselectivities (3ab-3ai). Moderate yields were however 

obtained with 2-chloro-trifluoroacetophenone 2d and 4-methoxy trifluoroacetophenone 2f. In 

these two cases the overall reaction rate is probably influenced negatively by steric and electron-

donating effects. It is furthermore important to underline that in the case of compound 3ah the 

reaction was performed using the hydrate form of 2,2,2-trifluoro-1-(4-nitrophenyl)ethan-1-one 2h. 

It should be outlined that the reaction failed to give any products when alkyl 

trifluoromethylketones were employed. However, it is important to underline that these 

trifluoromethylated lactones were isolated as mixture of conformers due to the slow rotation of 

the C-C single bond between the aryl substituent and the α-carbon of the double bond. In the case 

of compound 3aa the anti/syn ratio was 58:42 in CDCl3 and the energy barrier to rotation was 

determined to be ΔG���
‡

= 19.0 ± 0.5 kcal/mol in CD3CN by means of 1D-EXSY experiments (Figure 

2). 

 

Figure 2. Conformational equilibrium observed 
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The absolute configuration of compound 3aa was determined to be R by means of TD-DFT 

calculations of the electronic circular dichroism (ECD) spectra, as described in the Supporting 

Information. The R absolute configuration is the result of a vinylogous addition of the oxindole to 

the prochiral Si face of the trifluoromethyl ketone. In order to elucidate the reaction mechanism, 

we decide to analyze the reaction in DCM at regular interval of time. After 24 hours, 3aa was 

obtained in a 30% and >99% ee and compound 4aa was obtained in a 19% yield and 93% ee. After 

48 hours, compound 3aa was obtained as single enantiomer but in a 60% yield whilst 4aa was 

recovered in a 11% yield and 88% ee. Finally after 72 hours of reaction 3aa and 4aa were obtained 

in a 70% and 7.8% yield and >99% and 90% ee respectively. These results would suggest that the 

present cascade proceeds by forming a stable aldol adduct which undergoes the ring-closing 

lactonization in a stepwise fashion (Scheme 3).  

Scheme 3. Proposed mechanism for the cascade sequence 

 

Finally by treating compound 3ca with 2 equivalents of pyrrolidine in anhydrous THF the 

tetrasubstituted alkene 5ca can be obtained in a 86% yield and with complete retention of the 

configuration of the stereocenter (Scheme 4).  

Scheme 4. Derivatization of the enantioenriched trifluoromethylated lactone 3ca 

 

CONCLUSION 

In conclusion we realized the enantioselective synthesis of novel trifluoromethyl-α,β-unsaturated-

δ-lactones through the first vinylogous aldol-lactonization
11

 cascade of 3-alkylidene oxindoles and 

unsaturated trifluoromethyl ketones. The reaction proceeded with high enantiocontrol and 

represents a valuable strategy to access fluorinated lactones, a moiety often present in important 

biological active compounds. Experiments are ongoing to elucidate the reaction mechanism. 

EXPERIMENTAL 

All the NMR spectra were recorded on Inova 300 MHz, Gemini 400 MHz or Mercury 600 MHz 

Varian spectrometers for 
1
H, 75 MHz, 100 MHz and 150 MHz for 

13
C and 282 MHz, 376 MHz, 564 

MHz for 
19

F respectively. The chemical shifts (δ) for 
1
H, 

19
F and 

13
C are given in ppm relative to 

internal standard TMS (0.0 ppm) or residual signals of CHCl3 (7.26 ppm). Coupling constants are 
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given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; 

t, triplet; q, quartet; m, multiplet; bs, broad signal. Concerning the 
13

C spectra of the products, we 

were never able to see the signal (quartet) of the fluorinated carbon regardless of the delay and 

the acquisition time we employed (not even a 5 days-acquisition with a 60 seconds delay at 150 

MHz showed any signal). It is likely that, due to the splitting of the signal and the very high 

relaxation time of this particular carbon, the corresponding signal is lost in the baseline. 

Purification of reaction products was carried out by flash chromatography (FC) on silica gel (230-

400 mesh). Organic solutions were concentrated under reduced pressure on a Büchi rotary 

evaporator. High Resolution Mass spectra were obtained from the Mass Facility of the Department 

of Chemistry and Drug Technology of the University of Rome on a Orbitrap Exactive, source: ESI 

(+): capillary temp: 250°C, spray voltage: 4.0 (kV), capillary voltage: 65 V, tube lens: 125 V. Chiral 

HPLC analysis was performed on an Agilent 1100-series instrumentation. HPLC traces for all 

compounds were compared to racemic sample prepared using DABCO as catalyst except for 

compound 3ea-3ai, 5ca where a quasi racemic samples was prepared by mixing the two product 

antipodes obtained performing the reactions with catalyst I and the pseudo-enantiomer II 

separately. Optical rotations are reported as follows: [α]�
�
 (c in g per 100 mL, CHCl3) and the 

numerical values are relative to the products obtained from catalyst I. All reactions were carried 

out in air. Chiral catalyst I, II, III, IV and V were prepared following literature procedures.
12

 

General procedure for the synthesis of N-Boc-alkylidene oxindoles 

The appropriate isatin (15 mmol, 1 equiv) was placed in a 100 mL round flask and suspended in 

MeOH (37.5 mL, 0.4 M) before adding hydrazine (30.15 mmol, 2.6 ml of 55% solution in water, 2 

equiv). The solution was left refluxing (2 to 3 hours) under magnetic stirring until the formation of 

a precipitate is observed, then cooled to room temperature. The precipitate was filtered on a 

gooch funnel, washed with water, cold MeOH and cold Et2O to afford the pure hydrazone that was 

added to a freshly prepared solution of EtONa in EtOH (3.7 equiv of metallic Na dissolved in EtOH 

so that the hydrazone is 0.4 M). This new solution was heated to reflux until the reagent 

disappeared (TLC monitoring), then it was cooled and quenched with 10% HCl. The crude was now 

extracted with DCM, made anhydrous over MgSO4 and purified by either flash column 

chromatography or crystallization to obtain the pure oxindole. The oxindole was then dissolved in 

a mixture of EtOH:Acetone 1:1 (0.5 M) before adding piperidine (4.0 equiv). After one night of 

reflux the temperature was allowed to go down and the crude was flushed through a plug of silica 

(50 mL of DCM:EtOAc 1:1 as eluent) to remove piperidine and the Knoevenagel adduct was 

purified by precipitation from Et2O. The nitrogen protection was carried out dissolving the 

alkylidene oxindole in DCM (0.5 M) freshly filtered on basic alumina with Boc2O (1.2 equiv) and a 

catalytic amount of DMAP (5% molar). The reaction was monitored via TLC and, when over, the 

crude was concentrated and the final product was purified by flash column chromatography. NMR 

spectra of oxindoles 1a,
13

 1b,
14

 1d,
13 

1e,
14

 1f,
14

 were consistent with those previously reported. 

tert-Butyl 7-fluoro-2-oxo-3-(propan-2-ylidene)indoline-1-carboxylate (1c) 

The title compound was synthesized following the literature procedure on a 2 mmol scale. The 

product was purified by flash column chromatography (hexane:EtOAc = 95:5 and then 90:10) with 

Page 7 of 20

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



an overall yield of 77% (91% for the Knoevenagel reaction and 85% for the protection) and a total 

of 450 mg of 1c that presented itself as an amorphous solid. HRMS-ESI-ORBITRAP (+): calculated 

for [C16H18FNNaO3]
+
 314.1163, found 314.1159 [M+Na]

+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.36 (d, J = 

7.7 Hz, 1H), 7.15 – 6.97 (m, 2H), 2.62 (s, 3H), 2.40 (s, 3H), 1.61 (s, 8H). 
19

F-NMR (376 MHz, CDCl3) δ 

-121.52. 
13

C-NMR (150 MHz, CDCl3) δ 165.4, 158.8, 149.8, 148.1, 147.3, 127.0 (d, J = 2.9 Hz), 124.3 

(d, J = 7.1 Hz), 121.6 (d, J = 2.9 Hz), 119.1 (d, J = 3.7 Hz), 115.7 (d, J = 20.0 Hz), 84.5, 27.7, 25.8, 

24.0. 

tert-Butyl (E)-3-(1-(4-fluorophenyl)ethylidene)-2-oxoindoline-1-carboxylate (1g) 

The title compound was synthesized following the literature procedure on a 5 mmol scale. The 

product was purified by flash column chromatography (hexane:EtOAc = 90:10) with an overall 

yield of 73% (85% for the Knoevenagel reaction and 86% for the protection) and a total of 1.29 g of 

1g that presented itself as an amorphous solid. HRMS-ESI-ORBITRAP (+): calculated for 

[C21H20FNNaO3]
+
 376.1319, found 376.1322 [M+Na]

+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.82 (ddd, J = 

8.3, 1.1, 0.6 Hz, 1H), 7.31 – 7.09 (m, 5H), 6.76 (ddd, J = 7.7, 1.1 Hz, 1H), 6.28 – 6.19 (m, 1H), 2.76 (s, 

3H), 1.68 (s, 9H). 
19

F-NMR (376 MHz, CDCl3) δ -121.54. 
13

C-NMR (150 MHz, CDCl3) δ 166.0, 164.0, 

161.5, 155.1, 149.5, 138.8 (d, J = 3.8 Hz), 138.3, 128.5,  128.4 (d, J = 8.1 Hz), 123.3, 122.9 (d, J = 3.6 

Hz), 122.5, 116.5 (d, J = 21.9 Hz), 114.5, 84.1, 28.2, 23.8. 

tert-Butyl (E)-2-oxo-3-(1-(4-(piperidin-1-yl)phenyl)ethylidene)indoline-1-carboxylate (1h) 

The title compound was synthesized following the literature procedure on a 1 mmol scale. The 

product was purified by flash column chromatography (hexane:EtOAc = 85:15) with an overall 

yield of 56% (75% for the Knoevenagel reaction and 75% for the protection) and a total of 210 mg 

of 1h that presented itself as an amorphous solid. HRMS-ESI-ORBITRAP (+): calculated for 

[C26H30N2NaO3]
+
 441.2149, found 441.2143 [M+Na]

+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.7 

Hz, 2H), 7.26 – 7.07 (m, 3H), 6.97 (d, J = 8.7 Hz, 2H), 6.77 (ddd, J = 7.7, 1.1 Hz, 1H), 6.69 – 6.58 (m, 

1H), 3.32 – 3.24 (m, 4H), 2.76 (s, 3H), 1.67 (m, 15H). 
13

C-NMR (150 MHz, CDCl3) δ 166.3, 157.6, 

152.2, 149.6, 137.8, 132.1, 128.3, 127.7, 123.6, 123.0, 122.3, 121.4, 115.6, 114.2, 83.7, 49.6, 28.1, 

25.6, 24.2, 23.8. 

General procedure for the synthesis of trifluoromethylketones 

K2CO3 is added at room temperature to a DMSO (15 mL) solution of the appropriate aromatic 

aldehyde (5 mmol, 1.0 equiv.) and trifluoromethyl trimethylsilane (6.5 mmol, 1.3 equiv.). The 

reaction is completed, (check by TLC) the mixture is poured to ice/water mixture and extracted 

with ethyl acetate (3 x 30 ml). The collected organic phases are washed with water (2 x 50 ml) then 

threated with MgSO4 and filtered. The crude alcohol is purified by column chromatography using 

10-15% of acetone or ethyl acetate in hexane as eluent mixture and directly added to a suspension 

of IBX in ethyl acetate. The resulting suspension is refluxed overnight. The crude mixture is filtered 

and trifluoroketone was purified by column chromatography using 5-10% of Et2O in hexane as the 

eluent mixture. All trifluoromethylketones prepared were consistent with those previously 

reported: 2c,
15

 2f,
15

 2g,
16

 2h.
17 

Trifluoroketones 2a, 2b, 2e, 2d and 2i were commercially available 

and used as is. 
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General procedure for the vinylogous aldol reaction 

In an ordinary vial equipped with a teflon-coated magnetic stir bar, catalyst I (12 mg, 0.02 mmol, 

0.1 equiv), oxindole (0.2 mmol, 1 equiv) and trifluoromethylketone (0.2 mmol, 1 equiv) were 

dissolved in 1 mL of PhCF3. After 72 hours of stirring at 25 °C, the reaction was flushed through a 

short silica plug with a 1:1 mixture of DCM:EtOAc to remove the catalyst and the crude product 

was concentrated to perform a 
1
H-NMR analysis to measure the yield (1,3,5-trimethoxybenzene 

was used as internal standard) and determine the ratio between aldol and cascade product. At this 

point the product was purified with flash column chromatography and the ee% was determined 

through HPLC on a chiral stationary phase. Yield after chromatography are all cases identical to 

those determined via NMR analysis. 

tert-Butyl (R)-(2-(4-methyl-2-oxo-6-phenyl-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3aa) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 80:20) and the title compound was obtained as a 

yellowish oil in a 0.72/1.00 mixture of conformers in 96% yield (85.8 mg) and 99% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralcel OD-H column: hexane/i-

PrOH 95:5, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 8.5 min, τII = 11.9 min. [α]�
�
 -37.5 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C24H24F3NNaO4]
+
 470.1550, found 470.1544 

[M+Na]
+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.82 (m, 1.10 H), 7.64 – 7.40 (m, 5.14 H), 7.34 – 7.22 (m, 1.00 

H), 7.17 – 7.03 (m, 0.84 H), 6.89 (td, J = 7.5, 1.2 Hz, 0.58 H), 6.53 (s, 0.56 H), 6.18 (dd, J = 7.6, 1.6 

Hz, 0.57 H), 5.20 (s, 0.43 H), 3.44 (m, 1.00 H), 3.19 (m, 1.00H), 1.80 (s, 1.27 H), 1.74 (s, 1.73 H), 1.50 

(s, 5.05 H), 1.43 (s, 3.70 H). 
19

F-NMR (376 MHz, CDCl3) δ -79.32, -79.54. 
13

C-NMR (150 MHz, CDCl3) 

δ 161.7, 160.9, 153.2, 152.8, 151.8, 151.7, 136.6, 135.9, 134.0, 133.9, 131.0, 130.1, 129.9, 129.8, 

129.4, 129.3, 129.2, 128.9, 126.5, 126.3, 126.1, 125.9, 125.0, 124.1, 123.7, 123.4, 123.3, 122.2, 

81.9 (q, J = 30.9 Hz), 81.4 (q, J = 30.9 Hz), 80.5, 80.4, 34.0, 33.6, 28.4, 28.3, 22.1, 22.0. 

tert-Butyl (R)-(4-chloro-2-(4-methyl-2-oxo-6-phenyl-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3ba) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 85:15) and the title compound was obtained as a 

yellowish oil in a 0.76/1.00 mixture of conformers in 97% yield (93.5 mg) and 95% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralcel OD-H column: hexane/i-

PrOH 95:5, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 5.8 min, τII = 7.9 min. [α]�
�
-24.3 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C24H23ClF3NNaO4]
+
 504.1160, found 504.1154 

[M+Na]
+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.81 (m, 1.09 H), 7.66 – 7.41 (m, 5.22 H), 7.30 – 7.20 (m, 1.20 

H), 7.11 (d, J = 2.5 Hz, 0.40 H), 6.46 (s, 0.56 H), 6.17 (d, J = 2.5 Hz, 0.54 H), 5.16 (s, 0.42 H), 3.44 (m, 

1.00 H), 3.20 (m, 1.00 H), 1.82 (s, 1.28 H), 1.77 (s, 1.70 H), 1.49 (s, 5.00 H), 1.42 (s, 4.00 H). 
19

F-NMR 

(376 MHz, CDCl3) δ -79.31, -79.55. 
13

C-NMR (150 MHz, CDCl3) δ 161.3, 160.5, 153.0, 152.8, 152.7, 

152.6, 135.5, 134.7, 133.8, 133.6, 130.7, 130.2, 130.0, 129.6, 129.4, 129.3, 129.2, 129.1, 128.5, 

128.4, 126.2, 126.0, 125.3, 124.7, 124.1, 124.0, 122.2, 122.1, 82.0 (q, J = 30.8 Hz), 81.5 (q, J = 30.6 

Hz), 80.9, 80.8, 34.0, 33.7, 28.3, 28.2, 22.1, 22.0. 
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tert-Butyl (R)-(2-fluoro-6-(4-methyl-2-oxo-6-phenyl-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3ca) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 80:20) and the title compound was obtained as a 

yellowish oil in a 0.60/1.00 mixture of conformers in 96% yield (80.0 mg) and 94% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralcel OD-H column: hexane/i-

PrOH 95:5, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 5.9 min, τII = 7.1 min. [α]�
�
-198.6 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C24H23F4NNaO4]
+
 488.1455, found 488.1449 

[M+Na]
+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.69 – 7.35 (m, 5.21 H), 7.22 (td, J = 8.0, 5.2 Hz, 0.43 H), 7.15 

– 6.99 (m, 1.68 H), 6.99 – 6.91 (m, 0.40 H), 6.20 – 5.97 (m, 1.26 H), 4.85 (s, 0.40 H), 3.48 – 3.30 (m, 

1 H), 3.17 (m, 1.00 H), 1.83 (s, 1.08 H), 1.77 (s, 1.97 H), 1.45 (s, 5.79 H), 1.37 (s, 3.58 H). 
19

F-NMR 

(376 MHz, CDCl3) δ -79.41, -79.56. 
13

C-NMR (150 MHz, CDCl3) δ 161.3, 161.0, 159.4, 159.1, 157.7, 

157.5, 153.5, 153.0, 151.5 (double), 134.2, 133.9, 133.4, 132.0, 130.0, 129.8, 129.2, 128.9, 127.5 

(d, J = 27.7 Hz), 127.4 (d, J = 27.7 Hz), 126.3, 126.1, 125.3 (d, J = 3.7 Hz), 124.8 (d, J = 3.7 Hz), 124.6 

(bs), 124.5 (bs), 124.2, 123.2 (q, J = 284.0 Hz), 123.1 (q, J = 284.0 Hz), 116.5, 116.4 (d, J = 11.0 Hz), 

116.3 (d, J = 11.0 Hz), 81.9 (q, J = 31.0 Hz), 81.5 (q, J = 30.0 Hz), 80.4 (double), 34.1, 33.5, 28.1, 

28.0, 22.1, 22.0. 

tert-Butyl (R)-(2-(4-methyl-2-oxo-6-phenyl-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-yl)-4-

nitrophenyl)carbamate (3da) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 9:1) and the title compound was obtained as a 

yellowish oil in a 0.79:1.00 mixture of conformers in 92% yield (90.7 mg) and 95% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralcel OD-H column: hexane/i-

PrOH 90:10, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 7.6 min, τII = 11.9 min. [α]�
�
 -98.5 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C24H23F3N2NaO6]
+
 515.1400, found 515.1393 

[M+Na]
+
. 

1
H-NMR (300 MHz, CDCl3) δ 8.27 (m, 2.36 H), 8.19 – 8.12 (m, 2H), 8.01 (d, J = 2.6 Hz, 

1.00H), 7.66 – 7.45 (m, 12.33 H), 7.11 (d, J = 2.6 Hz, 1.22 H), 6.80 (bs, 1.24 H), 5.53 (bs, 0.97 H), 

3.54 (dd, J = 7.0, 1.2 Hz, 0.98 H), 3.48 (dd, J = 7.1, 1.2 Hz, 1.40 H), 3.30-3.24 (m, 2.37 H), 1.86 (s, 

3.29 H), 1.81 (s, 4.04 H), 1.52 (s, 11.90 H), 1.45 (s, 9.45 H). 
19

F-NMR (282 MHz, CDCl3) δ -79.12, -

79.62. 
13

C-NMR (75 MHz, CDCl3) δ 161.1, 160.2, 154.4, 154.3, 152.0, 151.7, 143.1, 142.4, 142.3, 

142.3, 133.6, 133.6, 130.4, 130.3, 129.5, 129.2, 127.0, 126.2, 126.1, 125.9, 125.2, 124.9, 124.4, 

123.3, 123.1, 122.2, 119.8, 119.7, 82.2, 82.1 (q, J = 30.8 Hz), 81.6 (q, J=30.8 Hz) , 34.0, 31.6, 28.3, 

28.2, 25.4, 22.7, 22.2, 14.1. 

tert-Butyl (R)-(4-methoxy-2-(4-methyl-2-oxo-6-phenyl-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-

3-yl)phenyl)carbamate (3ea) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 19:1) and the title compound was obtained as a 

yellowish oil in a 0.70:1.00 mixture of conformers in 84% yield (80.3 mg) and 92% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralcel OD-H column: hexane/i-

PrOH 95:5, flow rate 0.8 mL/min, 50 °C, λ = 254 nm: τI = 9.9 min, τII = 11.8 min. [α]�
�
-113.7 (c 1.0, 
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CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C25H26F3NNaO5]
+
 500.1655, found 500.1647 

[M+Na]
+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.67 – 7.38 (m, 10.48 H), 6.85-6.82 (dd, J = 8.9, 3.0 Hz, 1.78 

H), 6.67 (d, J = 3.0 Hz, 0.71 H), 6.33 (bs, 0.98 H), 5.73 (d, J = 2.9 Hz, 1.00 H), 5.02 (bs, 0.60 H), 3.76 

(s, 2.04 H), 3.61 (s, 3.13 H), 3.47 – 3.36 (m, 1.79 H), 3.17 (m, 1.87 H), 1.81 (d, J = 0.9 Hz, 2.12 H), 

1.76 (d, J = 0.9 Hz, 3.17 H), 1.47 (s, 8.98 H), 1.41 (s, 6.11 H). 
19

F-NMR (376 MHz, CDCl3) δ -79.38, -

79.51. 
13

C-NMR (100 MHz, CDCl3) δ 161.6, 160.9, 156.1, 155.8, 153.9, 153.4, 151.8, 151.7, 134.1, 

133.9, 130.1, 129.8, 129.6, 129.3, 129.0, 128.9, 126.5, 126.4, 126.1, 125.1, 116.1, 115.6, 114.7, 

114.0, 82.5, 82.0 (q, J=30.8 Hz), 81.5 (q, J=30.5 Hz), 80.2, 80.2, 55.5, 55.3, 34.0, 33.6, 31.6, 28.4, 

28.3, 22.7, 22.1, 22.1, 14.1. 

tert-Butyl (R)-(2-(2-oxo-4,6-diphenyl-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3fa) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 85:15) and the title compound was obtained as a 

yellowish oil in a 0.42/1.00 mixture of conformers in 83% yield (84.8 mg) and >99% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralcel OD-H column: hexane/i-

PrOH 85:15, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 4.4 min, τII = 7.9 min. [α]�
�
-187.9 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C29H26F3NNaO4]
+
 532.1706, found 532.1700 

[M+Na]
+
. 

1
H-NMR (300 MHz, CDCl3) δ 7.79 – 7.38 (m, 8.56 H), 7.25 – 7.09 (m, 5.76 H), 7.04 (dd, J = 

7.8, 1.7 Hz, 0.63 H), 7.00 – 6.85 (m, 3.57 H), 6.78 – 6.58 (m, 1.63 H), 6.02 (dd, J = 7.7, 1.6 Hz, 0.77 

H), 5.27 (s, 0.54 H), 3.80 (d, J = 8.5 Hz, 0.42 H), 3.74 (d, J = 8.6 Hz, 0.98 H), 3.65 (d, J = 6.3 Hz, 

1.00H), 3.59 (d, J = 6.3 Hz, 0.42 H), 1.49 (s, 7.50 H), 1.39 (s, 5.66 H). 
19

F-NMR (282 MHz, CDCl3) δ -

79.01, -79.22. 
13

C-NMR (75 MHz, CDCl3) δ 162.8, 161.8, 153.2, 152.5, 151.3, 151.0, 137.1, 136.9, 

136.7, 135.9, 133.7 (double), 131.9, 130.5, 130.2, 129.9, 129.7 (double), 129.4, 129.1, 129.0, 

128.5, 127.6, 127.5, 126.9, 126.5, 126.3, 125.4, 125.1 (double), 124.1 (bs), 123.8, 123.4, 123.1 (bs), 

122.3, 121.3, 82.3 (q, J = 30.9 Hz), 81.9 (q, J = 30.5 Hz), 80.4, 80.2, 34.3, 34.0, 28.4, 28.3. 

tert-Butyl (R)-(2-(4-(4-fluorophenyl)-2-oxo-6-phenyl-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3ga) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 19:1) and the title compound was obtained as a 

yellowish oil in a 0.70:1.00 mixture of conformers in 99% yield (105 mg) and >99% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralcel OD-H column: hexane/i-

PrOH 95:5, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 6.8 min, τII = 9.8 min. [α]�
�
 -218.0 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C29H25F4NNaO4]
+
 550.1612, found 550.1603 

[M+Na]
+
. 

1
H-NMR (300 MHz, CDCl3) δ 7.71 – 7.44 (m, 10.52 H), 7.18 (qd, J = 8.5, 1.7 Hz, 1.84 H), 

7.07 – 6.80 (m, 8.42 H), 6.71 (td, J = 7.5, 1.2 Hz, 1.88 H), 5.99 (dd, J = 7.7, 1.6 Hz, 0.94 H), 5.27 (bs, 

0.63 H), 3.81 – 3.68 (m, 1.74 H), 3.61 (d, J = 7.4 Hz, 1-16 H), 3.55 (d, J = 7.3 Hz, 0.54 H), 1.49 (s, 9.04 

H), 1.39 (s, 6.54 H). 
19

F-NMR (282 MHz, CDCl3) δ -79.03, -79.22. 
13

C-NMR (75 MHz, CDCl3) δ 164.8, 

162.7, 161.7, 161.4, 153.3, 152.5, 150.0, 149.7, 137.1, 135.9, 133.7, 133.7, 132.9, 132.9, 132.7, 

132.7, 131.8, 130.5, 130.2, 130.0, 129.9, 129.8, 129.8, 129.7, 129.5, 129.3, 129.1, 127.1, 126.4, 
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126.3, 125.6, 124.1, 123.7, 115.9, 115.6, 82.2 (q, J = 34.5 Hz), 81.8 (q, J = 30.6 Hz), 80.5, 80.4, 34.2, 

34.0, 28.4, 28.3, 25.4. 

tert-Butyl (R)-(2-(2-oxo-6-phenyl-4-(4-(piperidin-1-yl)phenyl)-6-(trifluoromethyl)-5,6-dihydro-2H-

pyran-3-yl)phenyl)carbamate (3ha) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 82:18) and the title compound was obtained as a 

yellowish oil in a 0.66:1.00 mixture of conformers in 82% yield (97 mg) and 99% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralpak AD-H column: hexane/i-

PrOH 90:10, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 11.0 min, τII = 12.0 min. [α]�
�
 -281.0 (c 

0.2, CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C34H35F3N2NaO4]
+
 615.2432, found 615.2430 

[M+Na]
+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.85 – 7.54 (m, 3.10 H), 7.53 – 7.39 (m, 3.07 H), 7.18 (dddd, J 

= 9.9, 8.6, 7.4, 1.6 Hz, 1.01 H), 7.10 (dd, J = 7.8, 1.6 Hz, 0.39 H), 7.02 – 6.85 (m, 2.48 H), 6.80 (s, 

0.59 H), 6.71 (dd, J = 7.5, 1.2 Hz, 0.82 H), 6.62 (s, 1.80 H), 6.00 (dd, J = 7.7, 1.6 Hz, 0.62 H), 5.31 (s, 

0.44 H), 3.75 – 3.56 (m, 2.00 H), 3.17 (d, J = 5.5 Hz, 3.94 H), 1.76 – 1.51 (m, 6.65 H), 1.47 (s, 5.31 H), 

1.37 (s, 3.68 H). 
19

F-NMR (376 MHz, CDCl3) δ -79.05, -79.32. 
13

C-NMR (100 MHz, CDCl3) δ 163.4, 

162.3, 153.3, 152.6, 152.2, 150.5, 150.1, 137.3, 136.0, 133.9, 131.9, 130.6, 129.9, 129.7 (double), 

129.6, 129.3, 128.9, 128.8, 128.7, 126.5, 126.3, 124.7, 123.9, 123.4, 121.9, 113.9, 81.9 (q, J = 30.3 

Hz), 81.5 (q, J = 30.3 Hz), 80.2, 80.0, 48.6, 33.3, 32.8, 28.4, 28.3, 25.3, 24.2. 

tert-butyl (R)-(2-(4-methyl-6-(naphthalen-2-yl)-2-oxo-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-

3-yl)phenyl)carbamate (3ab) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 19:1) and the title compound was obtained as a 

yellowish oil in a 0.66:1.00 mixture of conformers in 99% yield (98.6 mg) and 95% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralcel OD-H column: hexane/i-

PrOH 90:10, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 5.5 min, τII = 6.1 min. [α]�
�
 -42.0 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C28H26F3NNaO4]
+
 520.1706, found 520.1692 

[M+Na]
+
. 

1
H-NMR (400 MHz, CDCl3) δ 8.13 (d, J = 2.0 Hz, 0.62 H), 8.06 – 8.05 (m, 1.05 H), 7.97 – 

7.95  (m,  1.04 H), 7.94 – 7.93 (m, 0.62 H), 7.90 – 7.86 (m, 4.09 H), 7.77 (d, J = 8.3 Hz, 0.63H), 7.66 

(dd, J = 8.7, 2.0 Hz, 0.1.3 H), 7.61 – 7.55 (m, 4.15 H), 7.28 (ddd, J = 8.6, 7.3, 1.7 Hz, 0.63 H), 7.25 – 

7.23 (m, 0.83 H), 7.16 – 7.15 (m, 0.59 H), 7.14 – 7.11 (m, 0.69 H), 6.80 (td, J = 7.5, 1.2 Hz, 1.0 H), 

6.52 (bs, 1.02 H), 6.14 (dd, J = 7.6, 1.6 Hz, 1.08 H), 5.33 (bs, 0.69 H), 3.55 – 3.50 (m, 1.60 H), 3,38-

3,35 (m, 0.62 H), 3.32 – 3.29 (m, 1.04 H), 1.84 (s, 1.61 H), 1.76 (s, 2.81 H), 1.50 (s, 8.18 H), 1.18 (s, 

4.51 H). 
19

F-NMR (282 MHz, CDCl3) δ -78.99, -79.09. 
13

C-NMR (150 MHz, CDCl3) δ 160.7, 160.0, 

152.3, 151.7, 150.7, 150.7, 135.6, 135.0, 132.5, 132.5, 131.8, 131.7, 130.3, 130.2, 129.9, 129.0, 

128.3, 128.3, 128.3, 127.9, 127.7, 127.6, 126.7, 126.6, 126.5, 126.5, 126.1, 126.1, 125.6, 125.5, 

125.4, 123.9, 122.7, 122.5, 121.9, 121.4, 81.2, 81.0 (q, J = 30.6 Hz) 80.6 (q, J = 30.4 Hz), 80.4, 79.5, 

79.2, 33.2, 32.8, 30.6, 27.3, 27.0, 21.6, 21.1, 21.0. 

tert-Butyl (R)-(2-(6-(4-chlorophenyl)-4-methyl-2-oxo-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3ac). 
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The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 19:1) and the title compound was obtained as a 

yellowish oil in a 0.75:1.00 mixture of conformers in 92% yield (88.7 mg) and >99% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 

90:10, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 7.9 min, τII = 9.5 min. [α]�
�
 -87.6 (c 1.0, CHCl3). 

HRMS-ESI-ORBITRAP (+): calculated for [C24H23ClF3NNaO4]
+
 504.1160, found 504.1156 [M+Na]

+
. 

1
H-

NMR (600 MHz, CDCl3) δ 7.89 – 7.77 (m, 1.97 H), 7.56 (d, J = 8.6 Hz, 1.63 H), 7.51 – 7.43 (m, 5.62 

H), 7.34 – 7.28 (m, 1.96 H), 7.14 – 7.06 (m, 1.69 H), 6.97 – 6.93 (m, 1.33 H), 6.48 (bs, 1.13 H), 6.29 

(dd, J = 7.6, 1.4 Hz, 1.24 H), 5.32 (bs, 0.79 H), 3.50 – 3.39 (m, 1.98 H), 3.21 – 3.07 (m, 2.11 H), 1.83 

(s, 2.27 H), 1.76 (s, 3.00 H), 1.50 (s, 9.01 H), 1.45 (s, 6.25 H). 
19

F-NMR (282 MHz, CDCl3) δ -79.38, -

79.58. 
13

C-NMR (150 MHz, CDCl3) δ 161.3, 160.7, 153.3, 152.8, 151.7, 151.6, 136.6, 136.3, 136.2, 

136.0, 132.7, 132.6, 131.0, 130.0, 129.6, 129.5, 129.4, 129.3, 127.8, 127.6, 126.5, 125.1, 124.8, 

124.0, 123.9, 123.6, 122.2, 122.1, 81.5 (q, J = 30.8 Hz), 81.1 (q, J = 30.8 Hz), 80.7, 80.6, 33.9, 33.6, 

28.3, 22.2, 22.2. 

tert-Butyl (R)-(2-(6-(2-chlorophenyl)-4-methyl-2-oxo-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3ad) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 85:15) and the title compound was obtained as a 

yellowish oil in a 0.72:1.00 mixture of conformers in 60% yield (57.8 mg) and 96% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralpak AD-H column: hexane/i-

PrOH 90:10, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 8.8 min, τII = 12.7 min. [α]�
�
-45.9 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C24H23ClF3NNaO4]
+
 504.1160, found 504.1153 

[M+Na]
+
. 

1
H-NMR (300 MHz, CDCl3) δ 7.91 – 7.74 (m, 3.34 H), 7.55 – 7.47 (m, 1.65 H), 7.44 – 7.27 

(m, 5.07 H), 7.18 – 7.07 (m, 1.57 H), 6.92 (td, J = 7.5, 1.2 Hz, 1.00 H), 6.50 (bs, 0.87 H), 6.25 (dd, J = 

7.6, 1.5 Hz, 0.97 H), 5.36 (bs, 0.60 H), 4.18 (d, J = 11.4 Hz, 0.79 H), 4.11 (d, J = 11.8 Hz, 0.96 H), 3.49 

(dd, J = 10.2, 1.1 Hz, 0.93 H), 3.43 (dd, J = 10.6, 1.1 Hz, 0.79 H), 1.87 (s, 2.21 H), 1.84 (s, 3.08 H), 

1.50 (s, 8.87 H), 1.47 (s, 7.10 H). 
19

F-NMR (282 MHz, CDCl3) δ -77.34, -77.36. 
13

C-NMR (75 MHz, 

CDCl3) δ 161.6, 160.9, 153.2, 153.0, 152.9, 136.7, 135.9, 133.2, 132.8, 132.2, 132.1, 131.4, 131.2, 

131.2, 130.9, 130.8, 130.4, 130.0, 129.4, 129.3, 127.7, 127.5, 125.9, 124.5, 124.4, 123.8, 123.7, 

123.7, 122.5, 122.5, 83.4, 82.7 (q, J =31.5 Hz), 82.3 (q, J = 31.1 Hz), 80.6, 80.5, 33.1, 32.8, 28.4, 

28.3, 21.5. 

tert-Butyl (R)-(2-(6-(4-bromophenyl)-4-methyl-2-oxo-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-

3-yl)phenyl)carbamate (3ae) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 80:20) and the title compound was obtained as a 

yellowish oil in a 0.66:1.00 mixture of conformers in 84% yield (88.2 mg) and 96.5% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralpak AD-H column: hexane/i-

PrOH 80:20, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 8.6 min, τII = 5.9 min. [α]�
�
 -54.6 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C24H23BrF3NNaO4]
+
 548.0655, found 548.0649 

[M+Na]
+
. 

1
H-NMR (300 MHz, CDCl3) δ 7.82 (dd, J = 11.0, 8.3 Hz, 0.94 H), 7.67 – 7.54 (m, 2.07 H), 
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7.45 (m, 2.16 H), 7.36 – 7.26 (m, 1.07 H), 7.14 – 7.06 (m, 0.79 H), 6.94 (td, J = 7.5, 1.2 Hz, 0.61 H), 

6.46 (s, 0.56 H), 6.29 (dd, J = 7.6, 1.6 Hz, 0.59 H), 5.33 (s, 0.36 H), 3.50 – 3.40 (m, 1.00 H), 3.13 (m, 

1.00 H), 1.82 (s, 1.16 H), 1.75 (s, 1.78 H), 1.48 (s, 5.51 H), 1.45 (s, 3.85 H). 
19

F-NMR (282 MHz, 

CDCl3) δ -79.36, -79.54. 
13

C-NMR (75 MHz, CDCl3) δ 161.3, 160.6, 153.2, 152.8, 151.6, 151.5, 136.6, 

135.9, 133.2, 133.1, 132.5, 132.2, 131.0, 129.9, 129.5, 129.4, 128.0, 127.8, 126.4, 125.1, 124.8, 

124.6, 124.4, 123.9, 123.6, 123.4, 122.8, 122.3, 81.55 (double, q, J = 31.0 Hz), 80.7, 80.5, 33.8, 

33.5, 28.3 (double), 22.2 (double). 

tert-butyl (R)-(2-(6-(4-methoxyphenyl)-4-methyl-2-oxo-6-(trifluoromethyl)-5,6-dihydro-2H-

pyran-3-yl)phenyl)carbamate (3af) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 80:20) and the title compound was obtained as a 

yellowish oil in a 0.61:1.00 mixture of conformers in 66% yield (63.0 mg) and 98% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralpak AD-H column: hexane/i-

PrOH 75:25, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 7.2 min, τII = 4.9 min. [α]�
�
 -123.2 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C25H26F3NNaO5]
+
 500.1655, found 500.1649 

[M+Na]
+
. 

1
H-NMR (300 MHz, CDCl3) δ 7.83 (m, 0.96 H), 7.48 (m, 2.16 H), 7.35 – 7.23 (m, 1.80 H), 

7.17 – 7.04 (m, 0.86 H), 7.03 – 6.86 (m, 2.77 H), 6.53 (s, 0.50 H), 6.27 (dd, J = 7.6, 1.6 Hz, 0.55H), 

5.30 (s, 0.32 H), 3.85 (s, 1.58), 3.83 (s, 1.21 H), 3.41 (m, 1.00 H), 3.15 (m, 1.00 H), 1.81 (s, 1.28 H), 

1.75 (s, 1.87 H), 1.50 (s, 5.78 H), 1.43 (s, 4.11 H). 
19

F-NMR (282 MHz, CDCl3) δ -79.70, -79.90. 
13

C-

NMR (75 MHz, CDCl3) δ 161.8, 161.0, 160.5, 153.3, 152.9, 151.8, 136.6, 135.9, 131.1, 130.0, 129.4, 

129.2, 127.8, 127.5, 126.4, 125.5, 125.0, 124.9, 123.7, 123.4, 123.3, 121.9, 114.7, 114.2, 81.8 (q, J 

= 30.6 Hz), 81.3 (q, J = 30.5 Hz), 80.7 (double), 55.4, 55.2, 33.9, 33.5, 38.3, 28.2, 22.2, 22.1. 

tert-Butyl (R)-(2-(6-(3-methoxyphenyl)-4-methyl-2-oxo-6-(trifluoromethyl)-5,6-dihydro-2H-

pyran-3-yl)phenyl)carbamate (3ag). 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 80:20) and the title compound was obtained as a 

yellowish oil in a 0.66:1.00 mixture of conformers in 88% yield (84 mg) and 94% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralpak AD-H column: hexane/i-

PrOH 75:25, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 9.3 min, τII = 4.6 min. [α]�
�
 -211.4 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C25H26F3NNaO5]
+
 500.1655, found 500.1650 

[M+Na]
+
. 

1
H-NMR (400 MHz, CDCl3) δ 7.83 (m, 0.96 H), 7.48 (m, 2.16 H), 7.35 – 7.23 (m, 1.80 H), 

7.17 – 7.04 (m, 0.86 H), 7.03 – 6.86 (m, 2.77 H), 6.53 (s, 0.50 H), 6.27 (dd, J = 7.6, 1.6 Hz, 0.55H), 

5.30 (s, 0.32 H), 3.85 (s, 1.58), 3.83 (s, 1.21 H), 3.41 (m, 1.00 H), 3.15 (m, 1.00 H), 1.81 (s, 1.28 H), 

1.75 (s, 1.87 H), 1.50 (s, 5.78 H), 1.43 (s, 4.11 H). 
19

F-NMR (376 MHz, CDCl3) δ -79.20, -79.40. 
13

C-

NMR (150 MHz, CDCl3) δ 161.7, 160.9, 160.1, 159.9, 153.2, 152.8, 151.9, 151.8, 136.6, 136.0, 

135.6, 135.4, 131.0, 130.3, 130.0, 129.9, 129.4, 129.2, 126.4, 125.9, 124.9, 124.1, 124.0, 123.7, 

123.4, 123.2, 122.2, 122.1, 121.9, 118.5, 118.0, 115.7, 115.0, 112.7, 112.2, 81.8 (q, J = 30.8 Hz), 

81.3 (q, J = 30.8 Hz), 80.5, 80.4, 55.4, 55.3, 34.0, 33.7, 28.3 (double), 22.1, 22.0. 

tert-Butyl (R)-(2-(4-methyl-6-(4-nitrophenyl)-2-oxo-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3ah) 
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The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 80:20) and the title compound was obtained as a 

yellowish oil in a 0.63:1.00 mixture of conformers in 86% yield (84.8 mg) and 90% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralpak AD-H column: hexane/i-

PrOH 70:30, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 6.6 min, τII = 10.4 min. [α]�
�
 -97.2 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C24H23F3N2NaO6]
+
 515.1400, found 515.1391 

[M+Na]
+
. 

1
H-NMR (600 MHz, CDCl3) δ 8.39 – 8.33 (m, 3.42 H), 7.85 (d, J = 8.6 Hz, 1.83 H), 7.79 (d, J 

= 8.7 Hz, 2.02 H), 7.39 – 7.29 (m, 2.56 H), 7.16 – 7.07 (m, 1.41H), 6.96 (td, J = 7.5, 1.2 Hz, 1.02 H), 

6.42 (bs, 0.96 H), 6.29 (dd, J = 7.5, 1.5 Hz, 1.00 H), 5.36 (bs, 0.77 H), 3.52 (m, 1.65 H), 3.22 (m, 1.64 

H), 1.86 (s, 1.74 H), 1.81 (s, 2.77 H), 1.50 (s, 8.50 H), 1.40 (s, 5.25 H). 
19

F-NMR (282 MHz, CDCl3) δ -

78.80, -78.82. 
13

C-NMR (75 MHz, CDCl3) δ 161.1, 160.2, 154.4, 154.3, 152.0, 151.7, 143.1, 142.4, 

142.3, 142.3, 133.6, 133.6, 130.4, 130.3, 129.5, 129.2, 127.0, 126.2, 126.1, 125.9, 125.2, 124.9, 

124.4, 123.3, 123.1, 122.2, 119.8, 119.7, 82.2, 82.1 (q, J = 30.8 Hz), 81.6 (q, J = 30.8 Hz) , 34.0, 31.6, 

28.3, 28.2, 25.4, 22.7, 22.2, 14.1. 

tert-Butyl (S)-(2-(4-methyl-2-oxo-6-(thiophen-2-yl)-6-(trifluoromethyl)-5,6-dihydro-2H-pyran-3-

yl)phenyl)carbamate (3ai) 

The reaction was carried out following the general procedure. The crude mixture was purified by 

flash column chromatography (hexane:EtOAc = 85:15) and the title compound was obtained as a 

yellowish oil in a 0.99:1.00 mixture of conformers in 89% yield (87.7 mg) and 87% enantiomeric 

excess. The ee was determined by HPLC analysis on a Daicel Chiralpak AD-H column: hexane/i-

PrOH 90:10, flow rate 1.0 mL/min, 50 °C, λ = 254 nm: τI = 8.3 min, τII = 14.6 min. [α]�
�
 -43.3 (c 1.0, 

CHCl3). HRMS-ESI-ORBITRAP (+): calculated for [C22H22F3NNaO4S]
+
 476.1114, found 476.1108 

[M+Na]
+
. 

1
H-NMR (600 MHz, CDCl3) δ 7.84 (d, J = 8.1 Hz, 1.43 H), 7.44 (td, J = 5.0, 1.2 Hz, 2.16 H), 

7.36 – 7.27 (m, 4.51 H), 7.13 – 7.07 (m, 4.32 H), 6.95 (td, J = 7.5, 1.0 Hz, 1.22 H), 6.49 (bs, 1.18 H) 

6.34 (dd, J = 7.6, 1.4 Hz, 1.18 H), 5.31 (bs, 0.87 H), 3.45 (m, 2.28 H), 3.09 (m, 2.32 H), 1.86 (s, 3.00 

H), 1.81 (s, 3.03 H), 1.50 (s, 8.93 H), 1.48 (s, 9.56 H). 
19

F-NMR (282 MHz, CDCl3) δ -80.17, -80.49. 
13

C-NMR (150 MHz, CDCl3) δ 161.1, 160.2, 153.3, 152.8, 151.8, 151.6, 137.0, 136.9, 136.7, 136.0, 

131.0, 130.0, 129.4, 129.3, 128.5, 128.4, 128.1, 127.7, 127.6, 127.4, 126.3, 124.9, 123.8, 123.5, 

123.5, 123.4, 122.9, 121.6, 121.6, 80.8 (q, J = 31.8 Hz), 80.5, 80.3 (q, J = 31.9 Hz), 77.2, 77.0, 76.8, 

35.3, 35.0, 31.6, 28.4, 28.3, 22.6, 22.1, 22.0. 

tert-Butyl (R,Z)-(2-fluoro-6-(6,6,6-trifluoro-5-hydroxy-3-methyl-1-oxo-5-phenyl-1-(pyrrolidin-1-

yl)hex-2-en-2-yl)phenyl)carbamate (5ca) 

Product 3ca (40.5 mg, 0.09 mmol, 1 equiv) was dissolved in 225 µL of anhydrous THF before 

addition of pirrolidine (15 µL, 0.18 mmol, 2 equiv) and the solution was allowed to stir at room 

temperature for 24 hours. After this time a control TLC (hexane:EtOAc 70:30) showed the reaction 

was complete so the crude mixture was purified directly by flash column chromatography 

(hexane:EtOAc = 70:30) and the title compound was obtained with an isolated yield of 86% (41.5 

mg of white amorphous solid). HRMS-ESI-ORBITRAP (+): calculated for [C28H32F4N2NaO4]
+
 

559.2190, found 559.2193 [M+Na]
+
. 

1
H-NMR (300 MHz, CDCl3) δ 7.72 (d, J = 7.4 Hz, 2H), 7.42 – 

7.28 (m, 3H), 7.18 – 7.00 (m, 2H), 6.91 (d, J = 7.5 Hz, 1H), 6.55 (s, 1H), 3.65 – 3.37 (m, 2H), 3.37 – 
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3.13 (m, 2H), 3.02 – 2.74 (m, 2H), 2.03 – 1.63 (m, 4H), 1.52 (s, 9H), 1.04 (s, 3H). 
19

F-NMR (286 MHz, 

CDCl3) δ -79.93, -116.6. 
13

C-NMR (75 MHz, CDCl3) δ 169.1, 156.2, 153.0, 138.9, 138.4, 134.5, 133.1, 

128.2, 128.1, 126.5, 126.3, 126.2, 126.1, 124.8, 124.7, 116.1, 115.8, 80.6, 74.7 (q, J = 28.0 Hz), 

47.6, 46.67, 41.3, 28.2, 26.2, 23.9, 20.1. 
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