Reaction of a Zwitterionic Pyridinium Ylide with *N*,*N***-Dimethylaniline**

Kamal Sweidan^a, Norbert Kuhn^b, Cäcilia Maichle-Mößmer^b, and Manfred Steimann^b

- ^a Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P. O. Box 130, Amman, Jordan
- ^b Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

Reprint requests to Dr. K. Sweidan. E-mail: kamal_sweidan@hotmail.com, or Prof. Dr. N. Kuhn. E-mail: norbert.kuhn@uni-tuebingen.de

Z. Naturforsch. **2010**, *65b*, 99–100; received August 13, 2009

1,3-Dimethyl-2,4,6-trioxo-5-pyridinomethyl-1,3-perhydrodiazin-5-ylpyridinium ylide (**3**) reacts with *N*,*N*-dimethylaniline to give $5-((1,3-\text{dimethyl-2},4,6-\text{trioxo-hexahydropyr$ imidin-5-yl)methyl)-5-(4-(dimethylamino)benzyl)-1,3-dimethylpyrimidine-2,4,6(1*H*3*H*5*H*)-trione (**6**) in good yield. Thecrystal structure of**6**is reported.

Key words: Heterocycles, Barbituric Acid, Crystal Structure

There has been much interest in barbituric acid derivatives (1) in the past years owing to their potential application as drugs [1, 2]. Catalytic hydrogenation of 5-methylenebarbituric acid derivatives (2) seems to offer a useful access to 1 [3] in addition to methods mentioned formerly [1, 4]. Recently, we reported on the synthesis of the zwitterionic pyridinium compound **3** and its substitution reactions [5].

Surprisingly, it has now been found that the reaction of **3** with N,N-dimethylaniline does not stop with the formation of the zwitterionic compound **4** and its anion **5**. Apparently, the enolate **5** is sufficiently nucleophilic to attack a second molecule of **3** to give the final product **6** in good yield (Scheme 1).

The crystal structure analysis of **6** (Table 1, Fig. 1) reveals the presence of a central barbituric ring connected to both an aniline and an additional barbituric ring by methylene bridges. Interestingly, the "terminal" barbituric ring also adopts a diketo structure which underlines the C-basicity of the enolate fragment. Bond lengths and angles are in the expected range (see Table 2).

In summary, our results confirm the suitability of the easily prepared pyridine adduct 3 as starting com-

pound for the synthesis of barbituric acid derivatives 1. We will continue our investigations about pyridine substitution in 3 and report on our results in due course.

Experimental Section

All experiments were performed in purified solvents under argon. The pyridine adduct **3** was obtained according to a published procedure [5].

0932–0776 / 10 / 0100–0099 \$ 06.00 © 2010 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Table 1. Crystal data and structure refinement for $C_{22}H_{27}N_5O_6\ (\textbf{6}).$

Empirical formula	C ₂₂ H ₂₇ N ₅ O ₆
Formula weight, g mol ⁻¹	457.49
Temperature, K	173(2)
Wavelength; λ, Å	$MoK_{\alpha}; 0.71073$
Crystal system	monoclinic
Space group	$P2_1/n$
<i>a</i> , Å	12.1221(9)
<i>b</i> , Å	9.287(1)
<i>c</i> , Å	20.090(2)
β , deg	101.787(6)
$V, Å^3$	2214.1(3)
Z	4
Density, g cm ⁻³	1.37
μ (Mo K_{α}), mm ⁻¹	0.1
<i>F</i> (000), e	968
Θ range for data collection, deg	3.09-26.36
hkl ranges	$\pm 15, \pm 11, \pm 25$
Reflections collect. / indep. / Rint	30767/4515/0.098
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4515/0/407
$R1/wR2 [I \ge 2 \sigma(I)]$	0.0520/0.1048
R1/wR2 (all data)	0.0677/0.1111
Goodness-of-fit on F^2	1.151
Δho (max / min), e Å ⁻³	+0.267/-0.207

$C_{22}H_{27}N_5O_6(\mathbf{6})$

To a solution of 3 (2.2 g, 8.9 mmol) in dichloromethane (20 mL) N,N-dimethylaniline (0.62 g, 4.9 mmol) was added. The mixture was stirred at r. t. for 24 h. The solvent was removed in vacuo to give 0.79 g (70%) 6 after recrystallization from dichloromethane/diethyl ether. – ¹H NMR (CDCl₃): $\delta = 2.75$ (s, 2 H, 4_{Ph}-CH₂), 2.83 (s, 6 H, NMe₂), 2.95 (s, 2 H, 5'-CH₂), 3.01 (s, 6 H, 1',3'-CH₃), 3.15 (s, 6 H, 1,3-CH₃), 3.65 (s, 1 H, 5'-H), 6.48–6.69 (m, 4 H, C_6H_4). – ¹³C NMR (CDCl₃): $\delta = 28.2$ (1,3-CH₃), 28.5 (1',3'-CH₃), 33.7 (4_{Ar}-CH₂), 40.3 (NMe₂), 44.6 (C^{5'}), 49.5 C⁵), 56.1 (5'-CH₂), 111.8 ($C^{2,6}_{Ar}$), 119.9 (C^{4}_{Ar}), 129.7 ($C^{3,5}_{Ar}$), 150.3 $(C^{1}_{Ph}), 150.6 (C^{2}), 151.2 (C^{2'}), 168.3 (C^{4',6'}), 170.9 (C^{4,6}). -$ MS (FAB): m/z (%) = 457 (11) [M-H]⁺, 288 (15) [M- BCH_3]⁺. – Elemental analysis for $C_{22}H_{27}N_5O_6$ (457.48): calcd. C 57.76, H 5.95, N 15.31; found C 57.41, H 6.19, N 15.12.

- J. T. Bojarski, J. L. Mokrocz, H. J. Barton, M. H. Paluchowska, Advan. Heterocycl. Chem. 1985, 38, 229;
 K. Undheim, T. Bennecke, A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Comprehensive Heterocyclic Chemistry II, Vol. 6, Elsevier Pergamon, Oxford, 1996, p. 93;
 S. von Angerer, Science of Synthesis 2004, 16, 379.
- R. G. Sans, M. G. Chosaz, *Pharmazie* 1988, 43, 827;
 J. B. Taylor, *Modern Medical Chemistry*, Prentice Hall, New York, 1994.

Table 2. Selected bond lengths (Å) and angles (deg) for $C_{22}H_{27}N_5O_6$ (6).

C(1)–C(6)	1.503(3)	C(14)–N(15)	1.382(2)
C(1)-C(2)	1.505(3)	N(15)-C(16)	1.381(3)
C(1)-C(12)	1.556(3)	C(16)-O(21)	1.208(2)
C(2)–O(7)	1.209(2)	C(16)–N(17)	1.393(3)
C(2)–N(3)	1.379(2)	N(17)-C(18)	1.371(2)
N(3)-C(4)	1.390(2)	C(18)-O(23)	1.215(2)
C(4)–O(9)	1.205(2)	C(24)-C(25)	1.507(3)
C(4)–N(5)	1.394(2)	C(25)-C(26)	1.390(3)
N(5)–C(6)	1.372(2)	C(25)-C(30)	1.391(3)
C(6)–O(11)	1.216(2)	C(26)-C(27)	1.383(3)
C(12)-C(13)	1.537(2)	C(27)-C(28)	1.404(3)
C(13)-C(18)	1.512(3)	C(28)–N(31)	1.377(3)
C(13)-C(14)	1.514(3)	C(28)–C(29)	1.402(3)
C(13)-C(24)	1.589(3)	C(29)-C(30)	1.384(3)
C(14)–O(19)	1.210(2)		
C(13)-C(12)-C(1)	116.4(2)	C(6)-C(1)-C(2)	115.1(2)
C(12)-C(13)-C(24)	106.8(2)	C(6)-C(1)-C(12)	111.6(2)
C(25)-C(24)-C(13)	115.1(2)	C(2)-C(1)-C(12)	106.1(2)
C(33)–N(31)–C(32)	117.6(2)		

Fig. 1. Molecular structure of C₂₂H₂₇N₅O₆ (6) in the crystal.

CCDC 743774 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgement

Financial support by the Deutsche Forschungsgemeinschaft and the Higher Council of Science and Technology of Jordan is gratefully acknowledged.

- [3] B. S. Jursic, D. M. Neumann, *Tetrahedron Lett.* 2001, 42, 4103; B. S. Jursic, E. D. Stevens, *Tetrahedron Lett.* 2003, 44, 2203.
- [4] For more recent results, see C. Löfberg, R. Grigg, A. Keep, A. Derrick, V. Sridharan, C. Kilner, *J. Chem. Soc., Chem. Commun.* 2006, 5000, and refs. cited therein.
- [5] N. Kuhn, A. Kuhn, E. Niquet, M. Steimann, K. Sweidan, Z. Naturforsch. 2005, 60b, 924.