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Abstract: An enantioselective organocatalytic addi-
tion of nitroalkanes to oxindolylideneindolenines in
the presence of bifunctional organocatalysts has
been established to provide an efficient entry to
3,3-disubstituted oxindole derivatives in high yields
and with excellent enantioselectivities. The transfor-
mation has been applied to the preparation of the
key intermediate for a formal total synthesis of
(+)-gliocladin C.

Keywords: arylsulfonyloxindoles; asymmetric syn-
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The 3,3-disubstituted oxindole skeleton, containing
all-carbon quaternary stereogenic centers, is prevalent

R = Me, (+)-gliocladine C
R = H, (+)-bionectin A
R = CH,OH, (+)-T988A

(+)-gliocladin C
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in a wide array of biologically and pharmacologically
relevant natural products (Figure 1).!"! Of particular
interest are 3-functionalized 3-indolyloxindole skele-
tons I, which are commonly existing in alkaloids.!"™!
Furthermore, these building blocks have been exten-
sively used as key intermediates in the total synthesis
of natural products.'"™ Due to the importance of the
structural motif and the challenge in the construction
of all-carbon quaternary stereogenic centers,? various
methodologies leading to the preparation of 3,3-dis-
ubstituted oxindoles in an asymmetric fashion have
been developed in recent decades.*”!

In terms of synthetic efficiency in the production of
3-functionalized 3-indolyloxindoles IV, structurally
similar to I, the enantioselective substitution with II
via a 3-(3H-indol-3-ylidene)indolin-2-one intermedi-
ate of type III represents the most straightforward ap-
proach (Figure 2a). Very recently, we found that the
3-hydroxy-3-indolyloxindole V was able to undergo

N H

R
R = H, (+)-chimonanthine
R = Me, (+)-folicanthine

R = CH(OH)Me, (+)-bionectin B
R = j-Pr; leptosin D

Figure 1. Natural products containing the 3,3-disubstituted oxindole scaffold.
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(a) General strategy to access I-like structures IV

e

(b) Brensted acid-catalyzed asymmetric substitution: only worked
well with nucleophiles limited to enolizable ketones and
enamides!>®]
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Figure 2. Alkylideneindolenine intermediates and their pre-
Cursors.

asymmetric substitution via sequential dehydration
and enantioselective conjugate addition in the pres-
ence of chiral Brgnsted acids (Figure 2b).”) Independ-
ently, Guo and Peng established an enantioselective
alkylation of ketones with 3-hydroxyoxindole via the
intermediate VI catalyzed by chiral phosphoric acids
(Figure 2b).1! However, these two Brgnsted acid-cata-
lyzed asymmetric protocols only worked well with
enolizable ketones or enamides. This inherent limita-
tion to some degree inhibits their synthetic applica-
tion. Thus, alternative enantioselective reactions
based on the intermediate III are undoubtedly a valua-
ble desire.>!

Petrini and co-workers found that the reactive in-
dolenine intermediates could be readily generated by
the elimination of the leaving group from 3-(1-arylsul-
fonylalkyl)indoles under basic conditions,”! allowing
the realization of a large variety of nucleophilic sub-
stitution reactions to produce functionalized indole
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derivatives.”! Johnston established an enantioselective
Brgnsted base-catalyzed alkylation of nitroalkanes
with arylsulfonylindoles, which proceeded via the con-
jugate addition to the eneindolenine, in high yields
and with fairly good enantiomeric excesses.l”’ Petrini,
Bernardi and co-workers found that the Cinchona al-
kaloids-derived bifunctional catalysts showed excel-
lent catalytic activity and provided high levels of
enantioselectivity for the similar reaction under sol-
vent-free conditions."”! Very recently, Arai established
an enantioselective addition of indoles to isatin-de-
rived nitroalkenes for the synthesis of 3-nitromethyl
3-indolyloxindoles.*! Inspired by these fundamental
achievements, we proposed that in the presence of
a bifunctional catalyst, 3-(1H-indol-3-yl)-3-tosylindo-
lin-2-ones of type 1 would be converted into oxindoly-
lideneindolenine intermediate III, which might partic-
ipate in an enantioselective conjugate addition with
nitroalkanes, to furnish 3-alkyl-3-indolyloxindole 3
(Figure 2¢). Herein, we report our efforts directed
toward this reaction and its application to a catalytic
enantioselective formal total synthesis of (+)-gliocla-
din C.

A variety of structurally different chiral organocata-
lysts 4 were first investigated in the reaction between
nitromethane 2a and the 3-(1H-indol-3-yl)-3-tosylin-
dolin-2-one 1a in the presence of K;PO, as an inor-
ganic base in dichloromethane (Table 1, entries 1-5).
Chiral ammonium salt 4al"!! and bifunctional thiourea
4b!" were able to catalyze the alkylation reaction
but in lower yield and with moderate ee (entries 1 and
2). In comparison with the thiourea, bifunctional
urea-based organocatalysts 4c—4el'>"*! proved to be
much more enantioselective (entries 3-5). In particu-
lar, the organocatalyst 4¢ afforded the product with
the highest level of enantioselectivity (entries 1-5).
Subsequently, different solvents were also surveyed
for the reaction catalyzed by 4¢ and it was found that
toluene was the most suitable medium (entries 3, 6—
8). The variation of bases exerted a considerable
impact on the reaction (entries 9-13). In addition, the
N-substituents in the oxindole moieties had salutary
effects on both the yield and enantioselectivity (en-
tries 14-17). Notably, the introduction of a benzyl
group gave a much higher yield (90%) and excellent
enantioselectivity (95%) (entry 15). However, no re-
action occurred when the nitrogen of the indole ring
was methylated, as shown for 1f (entry 18), suggesting
that reaction proceeds via the proposed pathway
rather than the indol-2-one (Figure2). Notably,
a scale-up procedure also afforded the product in
good yield with retained enantiomeric excess
(entry 19).

The optimized reaction conditions were then uti-
lized to the substitution reaction of nitroalkanes with
a variety of substituted 3-(arylsulfonylalkyl)oxindoles
(Table 2). Either the indole or oxindole moiety substi-
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Table 1. Catalysts screening and optimization of the reaction conditions.™
PG p
. CHaNO, 4, base, solvent ‘,, NO,
r.t., 3 days o
N
PG’
2a 3
1aPG'=H, PG?=H 3aPG'=H, PG2=H
1b PG = Me, PG? = H 3b PG’ = Me, PG = H
1c PG’ =Bn, PG?=H 3¢ PG' =Bn, PG2 = H
1d PG' = PMB, PG? = H 3d PG' = PMB, PG? = H
1e PG = Boc, PG? = H 3e PG' = Boc, PG2 = H
1f PG" =Bn, PG% = Me 3f PG'=Bn, PG? = Me
> |
o} ., /23 N
!
“NH
| N NH )\
N~ O)\NH 0”7 "NH
| Ar
Ar
4d 4e
4cX=0 Ar = 3,5-(CF3),CeHs
Entry 4 1 Base Solvent Yield [% ]® ee [%]@
1 4a 1a K;PO, CH,CI, 15 55
2 4b 1a K,PO, CH,Cl, 16 36
3 4c 1a K;PO, CH,Cl, 22 56
4 4d 1a K;PO, CH,Cl, 25 52
5 4e 1a K;PO, CH,Cl, 5 52
6 4c 1a K;PO, CHCl, 19 58
7 4c 1a K;PO, DCE 23 66
8 4c 1a K;PO, toluene 24 82
9 4c 1a Et;N toluene - -
10 4c 1a KHCO;, toluene - -
11 4c 1a K,HPO, toluene - -
12 4c 1a K,CO;, toluene 78 32
13 4c 1a Cs,CO, toluene 63 30
14 4c 1b K;PO, toluene 77 94
15 4c 1c K;PO, toluene 90 95
16 4c 1d K;PO, toluene 95 92
17 4c le K;PO, toluene 79 95t
18 4c 1f K;PO, toluene - -
19 4c 1le K,PO, toluene 64 95l

[l Reaction conditions: 1 (0.1 mmol), 2a (0.5 mmol), base(0.101 mmol), 10 mol% catalyst 4, with 1 mL solvent.

] Tsolated yield.

[l The ee value was determined by HPLC analysis using a chiral stationary phase.
4] The reaction was carried out under argon in the presence of 50 mg Na,SO,.

1 0.5 g of 1 was used.

tuted with either electron-donating or electron-with-
drawing substituents was well tolerated and afforded
products in good to excellent yields (79-98%) and
with excellent enantioselectivities (89-98% ee) (en-
tries 1-16). Notably, the a-branched nitroalkanes 2b
and 2¢ were also able to participate in the substitution
reaction and, respectively, furnished the correspond-
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ing products 3w and 3x in good yields (83% and 78%,
respectively) and high levels of enantioselectivity (en-
tries 17 and 18).

More significantly, the reaction conditions were
also amenable to asymmetric substitution reactions
with acidic methylene nucleophiles. For example, the
dibenzyl malonate 2d smoothly underwent a highly
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These are not the final page numbers! 77


http://asc.wiley-vch.de

COMMUNICATIONS

Jian-Zhou Huang et al.

Table 2. The scope of 3-(1-arylsulfonylalkyl)oxindoles.!"
1

HNY 5 4c, KsPO, HNTY / 5
— R N02 — 4
SO,(p-Tol)  + he — L LR
AN R* toluene, r.t., 3 days X NO,
R24- 0 R2-
Z N 2 ¥z
Bn 2aR3=H,RY=H 5 Bn
1 2bR3®=Me, R*=H
2¢ R®=R*=(CH,),

Entry 1 (R}, R?) 2 3 Yield [%]®! ee [%]1
1 1g (5-Cl, H) 2a 3g 80 89
2 1h (5-Br, H) 2a 3h 98 90
3 1i (5-Me, H) 2a 3i 97 97
4 1j (5-OMe, H) 2a 3j 85 92
5 1k (6-F, H) 2a 3k 90 93
6 11 (6-C1, H) 2a 3l 77 92
7 1m (7-Me, H) 2a 3m 95 94
8 1n (2-Me, H) 2a 3n 97 90
9 1o (H, 5-F) 2a 30 76 93
10 1p (H, 5-Cl) 2a 3p 97 99
11 1q (H, 5-Br) 2a 3q 92 93
12 Ir (H, 5-Me) 2a 3r 96 98
13 1s (H, 5-OMe) 2a 3s 84 90
14 1t (H, 6-Br) 2a 3t 95 95
15 1u (H, 7-Br) 2a 3u 79 96
16 1v (H, 7-CF;) 2a 3v 88 93
17 1p (H, 5-Cl) 2b 3w 83 920
18 1c (H, H) 2c 3x 78 78

&l Reaction conditions: 1 (0.1 mmol), 2 (0.5 mmol), K;PO, (0.101 mmol), 10 mol% catalyst 4¢, with 1 mL toluene.

] Isolated yield.

[l The ee value was determined by HPLC analysis using a chiral stationary phase.
[ The values refer to the main diastereoisomer’s ee; the other diastereoisomer’s ee=90%; dr=1.2/1, determined by

"H NMR spectroscopy.

enantioselective substitution reaction with 1e, to pro-
duce 3y in 60% yield and with 87% ee under the opti-
mized conditions [Eq. (1)].

CO,Bn 10 mol% 4c, K3PO,

SOx(p-Tol) 4 [

o CO,Bn tolune, r.t., 3 days
60% yield,
\ 87% ee
1c Bn d

(+)-Gliocladin C is a typical member of the alka-
loid family containing the 3-alkyl-3-indolyloxindole
skeleton, exhibiting significant cytotoxic activity
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against the murine P388 lymphocytic leukemia
cells."¥! Thus, great efforts have been directed toward
the development of synthetic approaches for the total
synthesis of natural products of this family and indeed
led to several elegant total synthesis.”* > However,
new synthetic routes to access this molecule are still
of great importance.

Thus, we finally investigated the feasibility to apply
the asymmetric reaction to the catalytic enantioselec-
tive formal total synthesis of (4)-gliocladin C
(Scheme 1). The reduction of the compound 3e!™ af-
forded the corresponding hemiaminal 5 in 95% yield
with a single diastereomer. Then, the TMS group and
Boc group were respectively introduced to protect the
hydroxy and nitrogen atom of hemiaminal § in the
indole ring. Afterwards, the TMS group was removed
with TBAF, providing the hemiaminal 6 in a 90%
yield over 3 steps. The obtained hemiaminal 6 was ex-
posed to a solution of trimethyl orthoformate and
BF;Et,O at room temperature, to generate 7 as a 2/
1 (7a/7b) diastereomeric mixture in 70% overall yield.
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Scheme 1. Application in the synthesis of the intermediate towards (+)-gliocladin C. Reaction conditions: (a) NaBH,,
MeOH/THF, room temperature (95% ee, >99% ee after a single recrystallization); (b) TMSCI, imidazole, CH,Cl, room
temperature; (c) (Boc),O, DMAP, CH,Cl,, room temperature; (d) TBAF, THF, room temperature; (e) BF;Et,O,
CH(CH,0);, Et,0, room temperature; (f) NaNO,, AcOH, DMSO, 35°C; (g) CICOOMe, Et;N, THF, room temperature; (h)

NaBH,, MeOH, room temperature.

Basically, the completion of the synthesis required
conversion of the primary nitro group of 7a to an al-
dehyde via the Nef reaction."! However, the alde-
hyde could not be generated although a variety of hy-
drolytic or oxidative conditions were examined. For-
tunately, an acid 8 could be generated from com-
pound 7a by a protocol developed by Mioskowski.!'”!
By sequential protection and reduction, the acid 8
was transformed into an alcohol 9, which was in
agreement with the data reported by Overman. Final-
ly, with the key intermediate 9 in hand, (+)-gliocladin
C could undoubtedly be accessed by following the
synthetic route developed by Overman.*!

In conclusion, we have developed a highly enantio-
selective organocatalytic addition of nitroalkanes to
oxindolylideneindolenines catalyzed by a Cinchona-
derived urea catalyst under basic reaction conditions.
The protocol represents a new approach to access
polyfunctionalized 3,3-disubstituted oxindoles with
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the generation of a quaternary all-carbon stereogenic
center at C-3. More importantly, this method could be
applied to the enantioselective formal total synthesis
of (4)-gliocladin C.

Experimental Section

General Procedure for the Addition of Nitroalkanes
to Oxindolylideneindolenines

To a solution of 3-(1-arylsulfonylalkyl)oxindole 1 (0.1 mmol)
in toluene (1 mL) were added catalyst 4¢ (10 mol%, 5.8 mg)
and K;PO, (0.101 mmol, 21.4 mg). The reaction mixture was
stirred at room temperature for 15 min. Nitroalkane 2
(0.5 mmol) was then added to the mixture. The resulting
suspension was stirred at room temperature for 3 days, then
was diluted with EtOAc (15 mL), followed by washing with
H,O (10 mL). The organic phase was dried over anhydrous
Na,SO, and concentrated under vacuum. The residue was fi-
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nally purified by flash chromatography (petroleum ether:-
ethyl acetate=2: 1) on silica gel to give product 3.
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