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Chiral Brønsted Acid Catalyzed Highly Enantioselective Mannich-

type Reaction of αααα-Diazo Esters with in Situ Generated N-Acyl 

Ketimines 

Rajshekhar A. Unhale,a,ǂ Milon M. Sadhu,a,ǂ Sumit K. Ray,a Rayhan G. Biswasa and Vinod K. Singh*a,b 

Dedicated to Professor Goverdhan Mehta on the occasion of his 75th birthday 

A chiral phosphoric acid catalyzed asymmetric Mannich-type 

reaction of αααα-diazo esters with in situ generated N-acyl ketimines, 

derived from 3- hydroxyisoindolinones, has been demonstrated in 

this communication. A variety of isoindolinone based α-amino 

diazo esters bearing a quaternary stereogenic center were 

afforded in high yields (up to 99%) with excellent 

enantioselectivities (up to 99% ee). Furthermore, the synthetic 

utility of the products has been depicted by hydrogenation of the 

diazo moiety of adducts. 

α-Diazocarbonyl compounds are quite valuable precursors in 

synthetic organic chemistry due to their versatile reactivity and 

remarkable synthetic value.1,2 Consequently, they have been 

widely used in various organic transformations. For instance, 

transition-metal-catalyzed decomposition of diazo compounds 

generates highly reactive metal carbene intermediates which 

undergo a large variety of reactions including X-H insertions 

(X= C, N, O, Si, S, etc.),3 cyclopropanations,4 1,2-shift,5 ylide 

formations6 and cycloadditions.7 Among various diazo 

compounds, α-diazo esters can serve as important 

nucleophiles for the construction of enantioselective C-C bond 

under various conditions with the retention of diazo 

functionality.8 Elegant studies have been reported by Wang,9 

Feng,10 Cozzi,11 and Trost12 for the chiral Lewis acid catalyzed  

enantioselective aldol reaction of carbonyl compound with 

diazo ester to afford enantioenriched β-hydroxy-α-

diazocarbonyl compounds (Scheme 1a). Furthermore, diazo 

esters as nucleophiles were extensively investigated by the 

groups of Terada,13 Maruoka14 and Peng15 for the catalytic 

enantioselective Mannich-type reaction with activated 

aldimine bearing strong electron withdrawing group at the 

nitrogen atom (Scheme 1b). Diazo esters have been used as 

potential nucleophiles in asymmetric allylic substitution 

reaction of Morita−Baylis−Hillman carbonates under the 

influence of chiral Lewis base (Scheme 1c).16 Recently, α-diazo 

phosphonates have been successfully employed in asymmetric 

Mannich reaction of isatin-based ketimines.17 There are few 

elegant strategies in the literature for the enantioselective 

decarboxylative Mannich reaction18 as well as direct Mannich 

reaction19 of ketimines with enolate equivalents. However, to 

the best of our knowledge, there is no report in the literature 

for the enantioselective nucleophilic addition of diazo esters to 

functionalized cyclic ketimines. 
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Scheme 1 Asymmetric reactions using diazo esters as nucleophiles. 

 
Figure 1 Selected drugs containing isoindolinones 

On the other hand, isoindolinone scaffolds are omnipresent in 

many complex natural products and drug molecules (Figure 1). 

Their diverse array of pharmaceutical properties are evident 

from observed antihypertensive,20 antifungal,21 antitumor,22 

antileukemic,23 and antiviral24 activities. Therefore, 

development of new synthetic routes for the enantioselective 
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synthesis of this fascinating N-heterocyclic scaffold is highly 

appealing. 3-Aryl-3-hydroxyisoindolinones have been used as 

excellent substrates for the synthesis of enantioenriched 

isoindolinone derivatives through various asymmetric 

strategies, such as Friedel-Craft,25 arylation,26 hydrogenolysis,27 

hydrophosponylation,28 and asymmetric addition of thiols29 

involving organometallic catalysis as well as organocatalysis. 

Very recently, these substrates have been used for 

enantioselective three-component reaction via trapping of 

oxonium ylides in presence of Rh(II)/chiral phosphoric acid.30 

Inspired by aforementioned studies, we hypothesized that α-

diazo esters can serve as nucleophile to the in situ generated 

N-acyl ketimines derived from 3-aryl-3-hydroxyisoindolinones 

in a Mannich-type fashion. In this communication, we report a 

enantioselective chiral Brønsted acid catalyzed 

enantioselective synthesis of isoindolinone based α-amino 

diazo esters via Mannich-type reaction of α-diazo esters with 

in situ generated ketimines of 3-aryl-3-hydroxyisoindolinone 

(Scheme 1d).  
Table 1 Optimization of  reaction conditions a 

 
Entry catalyst solvent Time (h) yield (%)b 

 
ee (%)c 

 
1 rac-BA1 CH2Cl2 1 81 racemic 

2 (S)-BA1 CH2Cl2 2 99 0 

3 (S)-BA2 CH2Cl2 20 60 90 

4 (S)-BA3 CH2Cl2 20 86 63 

5 (S)-BA4 CH2Cl2 5 97 19 

6 (S)-BA5 CH2Cl2 5 96 90 

7d (S)-BA5 CH2Cl2 72 trace ND 

8e (R)-BA5 CH2Cl2 5 94 90 

9 (S)-BA6 CH2Cl2 20 53 86 

10 (S)-BA7 CH2Cl2 20 78 5 

11 (S)-BA5 CHCl3 20 98 84 

12 (S)-BA5 DCE 12 99 90 

13 (S)-BA5 Toluene 20 83 95 

14 (S)-BA5 Et2O 24 32 92 

15 (S)-BA5 EtOAc 36 31 93 

16f (S)-BA5 Toluene 22 98 96 

17g (S)-BA5 Toluene 22 98 96 

18f,h (S)-BA5 Toluene 96 38 95 
aReactions conditions: 0.2 mmol of 1a and 0.24 mmol of 2a in 1 mL of solvent 

with 0.02 mmol of Brønsted acid at rt with 4Å MS (50 mg), unless noted 

otherwise. bIsolated yield of 3aa. cDetermined by HPLC using chiralpak ID column. 
dWithout MS, eProduct having (R) configuration, f0.4 mmol of 2a was used. g0.6 

mmol of 2a was used. hReaction was conducted at 0 °C. ND = Not determined 

At the outset, the model reaction was conducted using 3-

hydroxy-3-phenylisoindolinone 1a and ethyl diazoacetate 

(EDA) 2a in presence of 10 mol % rac-BINOL-derived 

phosphoric acid (rac-BA1) in dichloromethane at room 

temperature. To our delight, the reaction worked efficiently, 

affording the desired racemic product 3aa in 81% yield (Table 

1, entry 1). Encouraged by this preliminary outcome, an array 

of chiral phosphoric acids BA1-BA7 were screened for the 

reaction (Table 1, entries 3-10). Among them, BA5 was found 

to be the best Brønsted acid catalyst to afford 3aa in 96% yield 

and 90% enantioselectivity (Table 1, entry 6). It is noteworthy 

to mention that the use of 4Å molecular sieves as a water 

scavenger was essential to promote the reaction (Table 1, 

entry 7). Interestingly, (R)-BINOL-derived phosphoric acid (R)-

BA5 afforded the opposite enantiomer of 3aa (R) in the same 

level of yield and enantioselectivity (Table 1, entry 8). 

Subsequently, the influence of solvent on enantioselectivity 

was examined. Among various solvents screened, CHCl3 and 

1,2-dichloroethane afforded the product 3aa in comparable 

yields and enantioselectivities (Table 1, entries 11-12). Toluene 

was found to be the choice of solvent as the enantioselectivity 

of the product 3aa was improved to 95% albeit with lower 

yield (Table 1, entry 13). Importantly, the use of two equiv of 

EDA 2a was found to be the best way to achieve higher yield 

(98%) (Table 1, entry 16). To further improve the 

enantioselectivity of the product, the reaction was conducted 

at 0 °C. Although the product 3aa was afforded with similar 

level of enantioselectivity (95% ee), the chemical yield 

dropped to 38% (Table 1, entry 18)  

Having established optimal reaction condition, the substrate 

scope was explored.  

 
Scheme 2 Scope of various α-diazo esters in Mannich-type reaction. 

First, differently substituted α-diazo esters (2a-2h) were 

subjected to the optimized reaction conditions. To our delight, 

a variety of chiral diazo compounds (3aa-3ah) with delicate 

functionalities were afforded in synthetically viable yields (up 

to 98%) and excellent enantioselectivities (up to 96% ee) 

(Scheme 2). Interestingly, t-butyl diazoacetate 2b having a 

bulky ester group was equally efficient to this reaction, 

furnished the product 3ab with excellent yield (98%) and 

enantioselectivity (94% ee). In contrast, 2,2,2-trifluroethyl 

diazoacetate 2c having a comparable lower pKa value took 

longer time to complete the reaction, affording the product 

3ac with similar level of enantioselectivity (93% ee) but with 

lower yield (52%). This probably indicates that electronic 

factors in the diazo esters play a pivotal role in the reactivity of 

Mannich-type process. Afterward, differently substituted 

benzyl diazo acetates (2e-2h) were examined affording the 

chiral diazo compounds (3ae-3ah) in synthetically viable yields 

(up to 98%) and excellent enantioselectivities (up to 96% ee). 

Noticeable, benzyl diazoacetate having electron donating 

group took comparable longer time to complete the reaction 

than benzyl diazoacetate having electron withdrawing group 

(3af vs 3ag-ah). 
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Next, the scope of the reaction was further investigated by the 

reaction of  EDA 2a with a variety of 3-aryl-3-

hydroxyisoindolinones (3a-3u) under optimized conditions.  

 
Scheme 3 Scope of various 3-hydroxy-3-arylisoindolinones in Mannich-type reaction  
Gratifyingly, the corresponding chiral diazo compounds 3aa-

3ua were afforded in good to excellent yields (up to 99%) and 

enantioselectivities (up to 99% ee) (Scheme 3). Notable, the 

electronic nature of substituent on the aromatic ring at the C-3 

position of 3-aryl-3-hydroxyisoindolinones had a very little 

effect on the enantioselectivities of the product formation. 

However, the rate of the reaction was considerably faster with 

electron donating substituents at the 3-aryl ring than bearing 

electron withdrawing groups (3ba-ca vs 3ga-ha). Moreover, 

the position on the substituent on the aromatic ring at the C-3 

position of 3-aryl-3-hydroxyisoindolinones had no significant 

effect in enantioinduction. However, substrate with ortho 

substituent at 3-aryl ring took longer reaction time for 

completion and afforded albeit lower yield than with the meta 

and para substituents at 3-aryl ring (3da vs 3ea-fa). 

Rewardingly, heteroaromatic substrates 1n-o having a furan 

and thiophene moiety furnished corresponding products 3na-

oa with excellent yields and enantioselectivities ( up to 95% 

ee). Additionally, 3,5-dimethyl, 3,4-dimethoxy and 3,4,5-

trimethoxy groups on the 3-aryl substituent were well 

tolerated, affording products 3ak-am in excellent yields and 

enantioselectivities (up to 96% ee). Surprisingly, the substrates 

containing naphthyl ring took six days to complete the 

reaction, affording the corresponding product 3pa in 75% yield 

and 92% ee. Moreover, isoindolinone motifs having different 

substituent on the phthalimide aromatic ring were tested. A 

5,6-dimethyl or 5,6-dichloro substituent on the phthalimide 

aromatic ring responded well to this protocol, furnished 

products 3ra-sa in good yields (up to 98%) and 

enantioselectivities (up to 98% ee). Unfortunately, the 

substrate 1v bearing alkyl side chain at C-3 position and acyclic 

ketimines such as 1-Phenylethan-1-imine and 4-Methoxy-N-

(2,2,2-trifluro-1-phenylethylidene)benzamine failed to react 

with EDA under our optimized reaction conditions. 

To illustrate the practical efficacy of our methodology, a higher 

mmol scale reaction of 3-hydroxy-3-phenylisoindolinone 1a (2 

mmol, 0.45 g) and ethyl diazoacetate (EDA) 2a (4 mmol) was 

carried out under optimized reaction conditions, furnishing 

3aa in 99% yield and 96% ee (Scheme 4).  

 
Scheme 4 Higher mmol scale reaction and synthetic transformation of 3aa 

To demonstrate the potential utility of this protocol in organic 

synthesis, we converted the isoindolinones 3aa into 

corresponding benzylated analogue 4 in the presence of benzyl 

bromide and sodium hydride with the retention of optical 

purity. Compound 4 was crystallized from the mixture of 

CH2Cl2/hexane solvent. The absolute configuration of 

compound 4 was unambiguously determined by single crystal 

X-ray structure analysis. The absolute configuration of the 

chiral diazo compounds 3 were assigned by analogy. We have 

also proposed a transition state to rationalize the observed 

stereochemical outcome of the products (Fig. 3, ESI). The diazo 

functionality of the adduct 3aa was subjected to 

hydrogenation by PtO2 under hydrogen atmosphere. The 

hydrogenated product 5 was obtained in 40% yield without 

compromising the enantiopurity. To our surprise, the 

treatment of compound 3aa with LiOH.H2O, afforded the 2-

quinolinone derivative 6 in 52% yield via a decarboxylative 

rearrangement reaction. Although during this transformation 

chiral center was lost, the newly formed 2-quinolinone 

derivative is a very important skeleton present in many 

bioactive natural products.31 

In summary, we have established a process for asymmetric 

Mannich-type reaction of α-diazo esters with in situ generated N-

acyl ketimines in the presence of chiral Brønsted acid under 

ambient conditions for the first time, to the best of our knowledge. 

A variety of diazo esters were utilized to access biologically 

interesting chiral isoindolinone based α-amino diazo esters with 

remarkably high enantioselectivities (up to 99% ee). 

Enantioselective construction of chiral diazo compounds comprising 

a quaternary stereogenic center is one of the salient features of this 

exciting chemistry. The utility of this protocol has also been 

demonstrated by hydrogenation of diazo moiety of the product.  
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The chiral phosphoric acid catalyzed asymmetric Mannich-type 

reaction of α-diazo esters with in situ generated N-acyl ketimines, 
derived from 3-aryl-3-hydroxyisoindolinones, has been 
demonstrated. The reaction proceeds smoothly under mild reaction 
conditions affording a variety of enantioenriched isoindolinone 

based α-amino diazo esters with a quaternary stereogenic center in 
high yields (up to 99%) with excellent enantioselectivities (up to 
99% ee).  
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