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Abstract: The readily available methyl 6-ethoxy-5,6-dihydro-4H-
1,2-oxazine-4-carboxylate (1) was alkylated at C-4 and acylated at
the nitrogen atom. 1,2-Oxazine 1 and the resulting new substituted
1,2-oxazines 2 and 3 were suitable precursors for the preparation of
derivatives of �-proline, nipecotic acid, as well as indolizine-6- and
quinolizine-3-carboxylic acids.
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Silylation of methyl 3-nitropropionate1 provided highly
reactive methyl �-nitroso acrylate which can efficiently be
trapped by ethyl vinyl ether affording 4-methoxycarbon-
yl-1,2-oxazine 1 in good yield (Scheme 1).2 This demon-
strates that commercially available nitro alkanes can
easily be converted into interesting building blocks.3 The
preparation of 1 is particularly valuable since the alterna-
tive route for generation of nitrosoalkenes usually pro-
vides compounds with substituents at C-3 of the 1,2-
oxazine ring.4

The presence of the methoxycarbonyl group at C-4 of het-
erocycle 1 allows its use as very convenient intermediate
for the synthesis of cyclic �-amino acid derivatives. It has
been previously shown, that differently substituted 1,2-
oxazines are suitable precursors for preparation of pyrro-
lidines.5 Moreover, 5,6-dihydro-4H-1,2-oxazines can be
transformed into 2-substituted 2H-1,2-oxazines under the
influence of hard electrophiles6 and these easily undergo
a [4+2]-cycloreversion to give 1-aza-1,3-butadienes
which serve as very reactive 4�-components in Diels–Al-
der reactions.7

We first studied the reactivity of 1,2-oxazine 1 towards
electrophiles. The alkylations of 1 with methyl and allyl
iodide required preceding deprotonation with strong bases
and occurred with high preference at 4-position (soft cen-
ter) furnishing C-4-disubstituted 1,2-oxazines 2a and 2b
in good to excellent yield, but with low diastereoselectiv-
ity (Scheme 2, Table 1, entries 1 and 2).8

Scheme 2  (for conditions and yields see Table 1)

Acylation of deprotonated 1,2-oxazine 1 with acetyl chlo-
ride proceeded exclusively at nitrogen to afford product
3a in high yield (Table 1, entry 3).8 This transformation
can also be performed without employing a strong base
for deprotonation. Thus, treatment of 1 with different acyl
chlorides in the presence of triethylamine or Na2CO3 pro-
vided N-acylated 1,2-oxazines 3b–e in very good yields
(Table 1, entries 4–7).9

Reductions of 1,2-oxazines 1 and 2a,b with hydrogen and
Raney-nickel in the presence of Boc2O gave the desired �-
proline derivatives 4a–c in good yields (Scheme 3, Table
2).10 Interestingly, the use of Pd/C as catalyst under simi-
lar conditions converted 1,2-oxazine 1 into methyl pyrrol-
3-carboxylate as the single product in 47% yield.

Scheme 1
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Scheme 3

The weakness of the N–O bond of 1,2-oxazines 3 decrease
the activation barrier for the thermal [4+2]-cycloreversion
which furnishes ethyl formate along with highly reactive
conjugated 1-aza-1,3-butadienes A as illustrated in
Scheme 4.11 The intermolecular trapping of these interme-
diates was accomplished by use of an excess of n-butyl vi-
nyl ether to furnish nipecotic acid derivatives 6a and 6b in
good yields.12

The intramolecular trapping mode was successfully ap-
plied to 1,2-oxazines 3c and 3d leading to bicyclic com-
pounds 7a and 7b.13 However, preparation of the
corresponding 6/7-membered bicyclic product 7c starting
from 3e turned out to be impossible, this reaction provided
only decomposition products.14 Indolizine 7a and quino-
lizine 7b are of interest as they contain a common sub-
structure of certain alkaloids.15,16

In conclusion, we have demonstrated the synthetic poten-
tial of the readily available 1,2-oxazine derivative 1 by its
transformation into several cyclic �-amino acids such as
�-proline, nipecotic acid, indolizine- and quinolizinecar-
boxylate derivatives. Further investigations of the pre-
sented reactions and application of the synthesized
building blocks for the preparation of unnatural �-amino
acids and natural products are in progress.

Table 2 Raney-nickel Reduction of 1,2-Oxazines 1 and 2a,b to �-
Proline Derivatives 4a–c

1,2-Oxazine R Product R1 Yield (%)

1 H 4a H 57a

2a Me 4b Me 68

2b CH2=CHCH2 4c Me(CH2)2 65

a The crude product contained 4% of methyl pyrrol-3-carboxylate.

Table 1 Alkylation and Acylation of 1,2-Oxazine 1 to Compounds 
2 and 3

En-
try

Base R–X Conditions Prod-
uct

Yield 
(%)

 Iso-
meric

Temp 
(°C)

Time 
(h)

ratio

1 LiHMDS MeI 1. –78 � 0
2. 0

1
2

2a 61a 1:1.2

2 KHMDS Allyl iodide 1. –78 � 0
2. 0

1
0.5

2b 92 1:1.3

3 LiHMDS AcCl 1. –78
2. –78 � 0

1
1

3a 85 –

4 Et3N 2-Iodobenzoyl 
chloride

20 3 3b 97 –

5 Na2CO3 4-Pentenoyl 
chloride

20 0.5 3c 86 –

6 Na2CO3 5-Hexenoyl 
chloride

20 0.5 3d 86 –

7 Na2CO3 6-Heptenoyl 
chloride

20 0.5 3e 81 –

a The crude product contained 14% of N-alkylation product 3 (R = 
Me).

Scheme 4
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