Accepted Manuscript

Facile one-pot synthesis of novel *ortho*-aminocarbonitriles and dicyanoanilines fused to heterocycles via *pseudo* four-component reactions

Mohammad M. Mojtahedi, Ladan Pourabdi, M. Saeed Abaee, Hamed Jami, Masoud Dini, Mohammad R. Halvagar

PII: S0040-4020(16)30086-2

DOI: 10.1016/j.tet.2016.02.023

Reference: TET 27493

To appear in: *Tetrahedron*

Received Date: 4 January 2016

Revised Date: 25 January 2016

Accepted Date: 8 February 2016

Please cite this article as: Mojtahedi MM, Pourabdi L, Abaee MS, Jami H, Dini M, Halvagar MR, Facile one-pot synthesis of novel *ortho*-aminocarbonitriles and dicyanoanilines fused to heterocycles via *pseudo* four-component reactions, *Tetrahedron* (2016), doi: 10.1016/j.tet.2016.02.023.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron journal homepage: www.elsevier.com

Facile one-pot synthesis of novel *ortho*-aminocarbonitriles and dicyanoanilines fused to heterocycles via *pseudo* four-component reactions

Mohammad M. Mojtahedi *, Ladan Pourabdi, M. Saeed Abaee, Hamed Jami, Masoud Dini and Mohammad R. Halvagar

Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O.Box 14335-186, Tehran, Iran

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Dicyanoanilines *ortho*-Aminocarbonitriles Piperidin-4-one Thiopyran-4-one Pyran-4-one Sonochemistry

ABSTRACT

1-Methylpiperidin-4-one and its sulfur and oxygen analogues undergo individual facile *pseudo* four-component reactions with two folds of malononitrile and various aldehydes by using ultrasonic irradiation and deficient quantities of pyrrolidine. As a consequence, *ortho*-aminocarbonitrile products are formed efficiently in the mixture within 1-2 minutes of irradiation. Alternatively, the same mixtures of the reactants would lead to direct high-yield formation of dicyanoanilines, a group of products which are also attainable in a stepwise manner starting from the respective *ortho*-aminocarbonitriles.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Derivatives of *ortho*-aminocarbonitrile are considered as an important group of organic intermediates¹ due to having many applications in the synthesis of heterocyclic compounds.² Moreover, these compounds are useful precursors for the preparation of their respective dicyanoanilines³ which are important for their optical properties.⁴ These features make the preparation of *ortho*-aminocarbonitriles very attractive to synthetic chemists and consequently several methods are introduced in recent years for their synthesis.⁵

Despite these developments, still many of these methods have limitations such as the use of commercially unavailable reactants or catalysts,⁶ involve relatively harsh conditions,⁷ go through multistep procedures,⁸ or require specific solvents or workup precausions.⁹ In addition, this chemistry is mainly limited to the synthesis of the products with cyclohexanone **1a** and its homologues as the central ring, and only scattered reports are available for the same processes for heterocyclic analogues.^{2a}

1-Methylpiperidin-4-one **1b** is a key six-membered ring among the nitrogen containing heterocyclic structures,¹⁰ and is highly utilized as an intermediate in the synthesis of other heterocycles¹¹ and more complex molecules.¹² Alternatively, the sulfur and oxygen analogues of **1b** (e.g., thiopyran-4-one **1c** and

pyran-4-one **1d**, respectively) are also useful substrates for the synthesis of various compounds¹³ having unique biological properties¹⁴ and being part of the structure of several natural products.¹⁵ Therefore, it is always of great demand to develop new methods for the synthesis of molecules involving these three heterocyclic ketones **1b-d**.

We are interested in heterocyclic chemistry¹⁶ and so far have used ketones **1b-d** as building blocks in aldol condensations, Diels-Alder cycloadditions,¹⁸ and Baylis-Hillman reactions.¹⁹ In continuation, here we report a general and convenient procedure for the one-pot combination of ketones 1b-d with various aldehydes 2a-j and malononitrile 3 under aqueous/sonochemical conditions.²⁰ Thus, we succeeded to conveniently access novel ortho-aminocarbonitrile derivatives of tetrahydroisoquinoline, isothiochromene, and isochromene skeletons via a pseudo fourcomponent approach. The study is further developed by both direct and indirect synthesis of the dicyanoanilines of the tetrahydroisoquinoline system which are fluorescent due to having strong conjugated acceptor-donor-acceptor (A-D-A) functionalities (Figure 1).²¹ As far as we know, there are very limited procedures on the synthesis of ortho-aminocarbonitrile compounds having the tetrahydroisoquinoline, isothiochromene, and isochromene units as the core rings in their structure,²² which proceed via the stepwise treatment of the respective Knoevenagel intermediates at high temperature.

^{*} Corresponding author. Tel.: +0-98-21-44787749; fax: +0-98-21-44787785; e-mail: mojtahedi@ccerci.ac.ir

First, we found optimized conditions by studying a model reaction between cyclohexanone **1a**, benzaldehyde **2a**, and malononitrile **3** (Table 1). A 1.0:1.0:2.0 mixture of the reactants and 10 mol% of pyrrolidine in EtOH gave **4a** after 90 seconds of ultrasound irradiation (US) (entry 1). The product precipitated spontaneously in the mixture allowing an easy separation by a simple filtration. The use of no base led to complete recovery of the reactants (entry 2), while with other bases (entries 3-6) or other solvents (7-8) lower yields of the same product were obtained. The use of greater amounts of pyrrolidine (entries 9-10) or prolonged reaction time under conventional heating did not cause any improvement (entry 11).

ArCHO (2)

NCCH₂CN (3)

(2 equive)

pyrrolidine

EtOH,)))

Table 1	1. O	ptimi	zation	of	the	conditio	n
---------	-------------	-------	--------	----	-----	----------	---

 $1a(X = CH_2)$

1b (X = NMe)

1c(X = S)

1d(X = O)

2. Results and discussion

Entry	Base (mol%)/solvent	Yield (%) ^a
1	pyrrolidine (10)/EtOH	78
2	none/EtOH	0
3	DABCO (10)/EtOH	38
4	Et ₂ NH (10)/EtOH	47
5	Et ₃ N (10)/EtOH	23
6	NaOH (10)/EtOH	20
7	pyrrolidine (30)/MeOH	48
8	pyrrolidine (30)/H ₂ O	31
9	pyrrolidine (20)/EtOH	78
10	pyrrolidine (30)/EtOH	69
11	pyrrolidine (10)/EtOH ^b	65
^a Isolated y	rields.	

^bReflux (no US), 2 h.

The applicability of the optimum conditions (US, EtOH, and 10 mol% of pyrrolidine) to other starting ketones was examined by evaluating the reactions of 1-methylpiperidin-4-one **1b** with **3** and several derivatives of **2** (Table 2). Thus, the reaction of **1b** with **2a** and malononitrile gave 76% of **5a** after 120 seconds (entry 1). Similarly electron releasing- (entries 2) and electron withdrawing substituted aldehydes (entries 3-6) gave their respective products in high yields and comparable time periods.

Table 2. Synthesis of derivatives of 5

Entry	Aldehyde	Product	Ar	Time (s)	Yield (%) ^a
1	2a	5a	C ₆ H ₅	120	76

2	2b	5b	$4-MeOC_6H_4$	60	78
3	2c	5c	3,4,5- (MeO) ₃ C ₆ H ₂	90	82
4	2d	5d	$4-ClC_6H_4$	90	86
5	2e	5e	$4-NO_2C_6H_4$	60	77
6	2f	5f	$4-NCC_6H_4$	120	81

 NH_2

CN

NC

А

8-9

NaOH/H₂O,)))

^a Isolated yields.

Tetrahedron

Fig. 1. One-pot synthesis of 4-7 and stepwise synthesis of 8-9.

CN

NC

NC

Ar

 $4 (X = CH_2)$

5 (X = NMe)

6 (X = S)

7 (X = O)

The generality of the method was further expanded by replacing **1b** with thiopyran-4-one**1c** (Table 3), a very important six-membered heterocyclic compound in organic synthesis. Consequently, **1c** reacted conveniently with various aldehydes in 60-90 seconds to produce the respective tricarbonitrile compounds efficiently (entries 1-10).

Table 3. Synthesis of derivatives of 6

Entry	Aldehyde	Product	Ar	Time (s)	Yield $(\%)^{a}$
1	2a	6a	C ₆ H ₅	90	89
2	2g	6g	$4-\text{MeC}_6\text{H}_4$	90	75
3	2b	6b	4-MeOC ₆ H ₄	60	80
4	2c	6c	3,4,5- (MeO) ₃ C ₆ H ₂	90	79
5	2d	6d	$4\text{-}ClC_6H_4$	60	81
6	2h	6h	$4-BrC_6H_4$	90	73
7	2e	6e	$4-NO_2C_6H_4$	90	85
8	2f	6f	4-NCC ₆ H ₄	60	77
9	2i	6i	2-furanyl	90	80
10	2ј	6j	2-thienyl	90	81

^a Isolated yields.

Similarly, pyran-4-one **1d** (Figure 2) behaved equally well under the optimized conditions. Therefore, three representative products **7a**, **7b**, and **7d** were synthesized using the procedure in 89, 92, and 87%, respectively within 90 s.

								3
	ACCEPTED N	/ANU	SC ₆ H ₅ IPT	CH_2	8a	90	90 ^c	
	Fig. 2. Synthesis of derivatives of 7.	3	$4-ClC_6H_4$	CH_2	8d	120	93 ^b	
]	In all cases, products precipitated in the reaction mixtures	4	$4-ClC_6H_4$	CH_2	8d	60	98 ^c	
spo	ntaneously. This allowed easy purification of the products by	5	C_6H_5	NMe	9a	150	88 ^b	
a s colu	simple filtration to avoid time consuming and expensive umn chromatography separations. The structure of the	6	C_6H_5	NMe	9a	90	90 ^c	
pro	ducts was assigned based on their spectral properties. In the	7	4-ClC ₆ H ₄	NMe	9d	120	89 ^b	

4-ClC₆H₄

^a Isolated yields.

IR spectra, the peaks at about 2200 and 3330 cm⁻¹ were indicative of the presence of the nitrile and the NH₂ moieties, respectively. More importantly, in the ¹H NMR spectra, the dd signal at about 5.9 ppm suggested that the C=C band in the heterocyclic ring is *exo* and is adjacent to the CH_2X (X = S, O, NMe) group, while the doublet peak with a large ${}^{3}J_{\text{H-H}}$ at around 3.5 ppm showed that the two neighboring stereogenic centers exist in a trans relationship. To further confirm this, a single crystal of 6e was prepared and subjected to X-ray analysis (Figure 3), where the outcome is clearly in agreement with the proposed structure.

Fig. 3. (top) Structure of the formula unit of 6e (thermal ellipsoids set at the 40% probability level).

The study was further developed by converting 4-5 to 8-9 to prepare the respective dicyanoanilines which are important for their fluorescence activities. As shown in Table 4, this conversion could be achieved in both indirect and direct manners starting from either a derivative of 4 or a mixture of 1, 2, and 3, respectively. In practice, the respective products could be obtained efficiently by treating 4 with a NaOH solution under US conditions. Alternatively, the same products were synthesized via a one-pot operation starting from a 1.0:1.0:2.0 mixture of the three reactants under NaOH/H2O/US conditions.

Table 4. Stepwise and one-pot synthesis of	8-9
--	-----

Entry	Ar	Х	Product	Time (s)	Yield (%) ^a
1	C_6H_5	CH ₂	8a	150	87 ^b

(ii) NaOH/H₂O/US. ^cNaOH/H₂O/US. 3. Conclusion

^bStepwise reaction: (i) Pyrrolidine (10 mol%)/EtOH/US,

9d

90

95°

NMe

In summary, we presented a facile one-pot method for high yield and rapid synthesis of various series of orthoaminocarbonitrile derivatives. The method is useful for the preparation of both carbocyclic and heterocyclic analogues and is particularly interesting from environmental point of view since products are directly obtained at the end of the reactions due to spontaneous precipitation. This helped us avoid cumbersome and expensive chromatographic separations and obtain pure products by a simple filtration and recrystallization of the precipitated solids. A comparison of the present method with some other related reports is summarized in the Table 5.

Based on the comparison of the one-pot and stepwise routes, we propose a mechanism in which both the starting ketones and the aldehyde undergo separate Knoevenagel condensations with 3, as exemplified in Figure 4 (route A) for the synthesis of 4a. In the first step, the respective olefinic intermediates 13 and 23 are formed. Apparently, nucleophilic addition of 13 to 23 proceeds highly stereoselectively so that sole formation of exo 4a' occurs. The intermediate 4a' further isomerizes in situ to the more stable product 4a. Although similar hypothesis is suggested by Zhang et al,^{6a} an alternative pathway with different order of addition of the reactants is also possible (route B). In this way, initial formation of aldol condensation intermediate 12 is followed by Michael addition and Knoevenagel condensation steps to form 123'.²⁵ This intermediate can continue the process to rich to the same product 4a. In control experiments, we prepared Knoevenagel (13 and 23) and aldol condensation (12) intermediates and separately subjected them to the reaction conditions. In practice, both experiments led to efficient synthesis of 4a within the expected time period. However, TLC observations of the reaction mixtures are in favor of route A, where formation of 13 and 23 is clearly spotted. Ultimately, 4a itself would aromatize conveniently under mild basic conditions to form the expected product 8a. This difference in the behavior of the reactants under the two sets of conditions would be attributed to the basic strength of pyrrolidine and sodium hydroxide, where with the latter base the final aromatization step does also occur.

Table 5. Comparison of the present method with previous studies

Product	Conditions	Time/Yield (%)	Reference

4	Te	etrahedron	
4a	pyrrolidine (10 mol%)/EtOH/US ACCEPTE	D90\\$/78\NUS(This work
4 a	[BPy]BF ₄ , 60 °C	5 h/83	Wan et al., ^{6b}
6h	pyrrolidine (10 mol%)/EtOH/US	90 s/85	This work
6h	[Bmim]BF4, 90 °C (2-step process)	9 h/89	Wang et al., ^{22a}
7a	pyrrolidine (10 mol%)/EtOH/US	90 s/89	This work
7a	piperidine (cat.), US (2-step process)	45 min/82	Saleh et al., ^{22c}
8a	NaOH/H ₂ O/US	90 s/90	This work
8a	MW, Et ₃ N	2 min/54	Cui et al., ^{4b}
8a	(i) pyrrolidine (10 mol%)/EtOH/US, (ii) NaOH/H ₂ O/US	150 s/87	This work
8 a	(i) piperidine/EtOH (ii) morpholine, EtOH, reflux	not given /85	Sharanin et al., ²⁴
9a	(i) pyrrolidine (10 mol%)/EtOH/US, (ii) NaOH/H ₂ O/US	150 s/88	This work
9a	(i) MeOH, (ii) MeOH/KOH, heat	not given/33	Andresen et al., ^{22d}

Fig. 4. The proposed mechanism.

4. Experimental

4.1. General information

Reactions were monitored by TLC using a mixture of petroleum ether/EtOAc (4:1) as the eluent. FT-IR spectra were recorded using KBr disks on a Bruker Vector-22 infrared spectrometer and absorptions were reported as wave numbers (cm⁻¹). NMR spectra were obtained on a FT-NMR Bruker Ultra ShieldTM (500 MHz for ¹H and 125 MHz for ¹³C) or Bruker DRX-400 AVANCE (400 MHz for ¹H and 100 MHz for ¹³C) instruments as CDCl₃ or DMSO-d₆ solutions and the chemical shifts were expressed as δ units with Me₄Si as the internal standard. Mass spectra were obtained on a Finnigan Mat 8430 apparatus at ionization potential of 70 eV. Elemental analyses were performed by a Thermo Finnigan Flash EA 1112 instrument. All chemicals and reagents were purchased from commercial sources and were purified by standard procedures prior to use. Sonication was performed using a Sartorius LABSONIC®P Ultrasonic-homogenizer 230V/50 Hz instrument with a frequency of 24 KHz and nominal power of 460 W/cm². The intensity level of irradiation was adjusted at 80% level for the synthesis of the products. In all reactions the

tip of the sonotrode was located in the same position just under the liquid surface in order to obtain optimal sonication and reproducible results.

4.2. General procedure for one-pot synthesis of orthoaminocarbonitriles

A mixture of ketone 1c (116 mg, 1.0 mmol), malononitrile (132 mg, 2.0 mmol), and pyrrolidine (8.5 µL, 10 mol%) in EtOH (2.0 mL) was sonicated in a 10 mL test tube for 30 s. At this point, 4-nitrobenzaldehyde (151 mg, 1.0 mmol) was added to the mixture and sonication was continued for another 60 s until TLC showed completion of the reaction. The product which precipitated in the mixture was filtered and recrystallized from MeCN to obtain the final product 6e (309 mg, 85%) as a white solid.

4.2.1. 6-Amino-2-methyl-8-(3,4,5-trimethoxyphenyl)-2,3,8,8atetrahydroisoquinoline-5,7,7(1H)-tricarbonitrile 5c. White solid, 82%; m.p. 205-207 °C: [Found: C, 65.27; H, 5.79; N, 16.99. $C_{22}H_{23}N_5O_3$ requires C, 65.17; H, 5.72; N, 17.27%]; v_{max} (KBr) 3338, 2211, 1672, 1596 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 7.45 (2H, s, NH₂), 6.83 (1H, s, Ar), 6.78 (1H, s, Ar), 5.62-5.61 (1H, m, =CH), 3.77 (3H, s, OMe), 3.71 (3H, s, OMe), 3.67 (3H, s, OMe), M 3.49 (1H, d, J 12.5 Hz, CHAr), 3.31 (1H, dd, J 18.0, 2.0 Hz, =CHC<u>H</u>_aH_bN), 3.00–2.97 (1H, m, C<u>H</u>CH₂N), 2.60 (1H, ddd, J 18.0, 2.0, 2.0 Hz, =CHCH_a<u>H</u>_bN), 2.49 (1H, dd, J 11.0, 5.0 Hz, CHC<u>H</u>_aH_bN), 2.11 (3H, s, NMe), 1.65 (1H, dd, J 10.5, 10.5 Hz, CHCH<u>a</u><u>H</u>_bN); δ_{C} (125 MHz, DMSO-d₆) 154.0, 153.4, 145.1, 138.8, 130.1, 128.0, 118.5, 116.8, 113.5, 113.0, 110.8, 104.7, 81.1, 60.9, 57.0, 56.9, 55.6, 55.0, 49.7, 46.0, 43.8, 35.2; MS (EI) m/z (%) 405 (100, M⁺), 390 (20), 340 (41), 305 (24), 181 (78).

4.2.2. 6-Amino-2-methyl-8-(4-nitrophenyl)-2,3,8,8atetrahydroisoquinoline-5,7,7(1H)-tricarbonitrile 5e. White solid, 77%; m.p. 181-184 °C: [Found: C, 63.51; H, 4.58; N, 23.39. $C_{19}H_{16}N_6O_2$ requires C, 63.32; H, 4.48; N, 23.32%]; v_{max} (KBr) 3354, 3084, 2212, 1726 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 8.34 (1H, d, J 8.0 Hz, Ar), 8.30 (1H, d, J 8.0 Hz, Ar), 7.92 (1H, d, J 8.0 Hz, Ar), 7.70 (1H, d, J 8.0 Hz, Ar), 7.53 (2H, s, NH₂), 5.66–5.65 (1H, m, =CH), 3.94 (1H, d, J 12.5 Hz, CHAr), 3.33-3.29 (1H, m, =CHCH₂H_bN), 3.06-3.03 (1H, m, CHCH₂N), 2.61 (1H, ddd, J 18.0, 3.0, 3.0 Hz, =CHCH_aH_bN), 2.35 (1H, dd, J 11.0, 5.0 Hz, CHCH_aH_bN), 2.09 (3H, s, NMe), 1.62 (1H, dd, J 10.5, 10.5 Hz, CHCH_a<u>H</u>_bN); δ_C (125 MHz, DMSO-d₆) 148.9, 144.6, 141.9, 134.5, 129.3, 127.5, 124.8, 124.6, 118.9, 116.6, 112.8, 112.7, 81.3, 55.5, 54.9, 48.4, 45.8, 43.0, 34.9; MS (EI) m/z (%) 360 (72, M⁺), 332 (100), 201 (39), 159 (60), 136 (89).

4.2.3. 6-Amino-8-(4-cyanophenyl)-2-methyl-2,3,8,8atetrahydroisoquinoline-5,7,7(1H)-tricarbonitrile 5f. White solid, 77%; m.p. 211-214 °C: [Found: C, 70.68; H, 4.68; N, 24.52. $C_{20}H_{16}N_6$ requires C, 70.57; H, 4.74; N, 24.69%]; v_{max} (KBr) 3383, 3127, 2244, 2206, 1661 cm⁻¹; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.02 (1H, d, J 8.0 Hz, Ar), 7.96 (1H, d, J 8.0 Hz, Ar), 7.85 (1H, d, J 8.0 Hz, Ar), 7.65 (1H, d, J 8.0 Hz, Ar), 7.56 (2H, s, NH₂), 5.68-5.67 (1H, m, =CH), 3.86 (1H, d, J 12.0 Hz, CHAr), 3.33–3.29 (1H, m, =CHCH_aH_bN), 3.09–3.04 (1H, m, CHCH₂N), 2.64 (1H, ddd, J 18.5, 3.0, 3.0 Hz, =CHCH_aH_bN), 2.35 (1H, dd, J 11.0, 5.0 Hz, CHCH_aH_bN), 2.12 (3H, s, NMe), 1.63 (1H, dd, J 10.5, 10.5 Hz, CHCH_a<u>H</u>_bN); δ_{C} (100 MHz, DMSO-d₆) 144.2, 139.7, 133.6, 133.3, 133.1, 128.5, 127.1, 118.8, 118.4, 116.3, 112.7, 112.5, 112.3, 80.8, 55.1, 54.5, 48.2, 45.5, 42.6, 34.4; MS (EI) m/z (%) 342 (100), 340 (16, M⁺), 307 (42), 279 (57), 244 (37).

4.2.4. 6-Amino-8-phenyl-8,8a-dihydro-1H-isothiochromene-5,7,7(3H)-tricarbonitrile **6a**. White solid, 78%; m.p. 281–283 °C: [C, 67.81; H, 4.52; N, 17.81; S, 9.93. C₁₈H₁₄N₄S requires C, 67.90; H, 4.43; N, 17.60; S, 10.07%]; v_{max} (KBr) 3331, 3164, 2208, 1668, 1604 cm⁻¹; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 7.66–7.44 (7H, m, Ph, NH₂), 5.96–5.93 (1H, m, =CH), 3.66 (1H, d, *J* 12.0 Hz, CHPh), 3.44 (1H, ddd, *J* 18.0, 3.0, 3.0 Hz, =CHC<u>H_aH_bS</u>), 3.17 (1H, ddd, *J* 18.0, 6.0, 1.0 Hz, =CHCH_a<u>H_bS</u>), 3.02–3.00 (1H, m, C<u>H</u>CH₂S), 2.27–2.25 (2H, m, CH₂S); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 144.6, 134.3, 130.1, 129.7, 129.4, 118.1, 116.5, 112.7, 112.5, 82.0, 49.9, 43.3, 35.6, 28.2, 25.5; MS (EI) *m*/*z* (%) 318 (22, M⁺), 314 (32), 300 (21), 273 (8), 210 (28), 105 (100).

4.2.5. 6-Amino-8-(p-tolyl)-8,8a-dihydro-1H-isothiochromene-5,7,7(3H)-tricarbonitrile **6g**. White solid, 75%; m.p. 272–273 °C: [Found: C, 68.49; H, 4.78; N, 17.09; S, 9.90. C₁₉H₁₆N₄S requires C, 68.65; H, 4.85; N, 16.85; S, 9.65%]; v_{max} (KBr) 3340, 3230, 2211, 1642 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 7.48 (4H, ap s, Ar), 7.26 (2H, s, NH₂), 5.90 (1H, ap s, =CH), 3.57 (1H, d, *J* 12.0 Hz, CHAr), 3.42–3.38 (1H, m, =CHC<u>H</u>_aH_bS), 3.14–3.11 (1H, m, =CHCH_a<u>H</u>_bS), 2.95–2.91 (1H, m, C<u>H</u>CH₂S), 2.31 (3H, s, Me), 2.23–2.20 (2H, m, CH₂S); $\delta_{\rm C}$ (125 MHz, DMSO-d₆) 145.1, 139.6, 131.7, 130.6, 130.4, 118.9, 118.4, 116.9, 113.2, 113.0, 82.4, 50.1, 43.9, 36.1, 28.6, 25.9, 21.6; MS (EI) *m*/*z* (%) 332 (100, M⁺), 299 (20), 274 (40), 131 (57), 105 (82). 4.2.6. JS CR16-Amino-8-(4-methoxyphenyl)-8,8a-dihydro-1Hisothiochromene-5,7,7(3H)-tricarbonitrile **6b**. White solid, 80%; m.p. 252–254 °C: [Found: C, 65.39; H, 4.72; N, 16.22; S, 9.34. C₁₉H₁₆N₄OS requires C, 65.50; H, 4.63; N, 16.08; S, 9.20%]; v_{max} (KBr) 3344, 2214, 1640, 1597 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 7.51 (2H, ap s, Ar), 7.37 (2H, br s, NH₂), 7.04 (2H, ap s, Ar), 5.95–5.93 (1H, m, =CH), 3.80 (3H, s, OMe), 3.61 (1H, d, *J* 12.0 Hz, CHAr), 3.45 (1H, ddd, *J* 18.0, 3.0, 3.0 Hz, =CHC<u>H</u>₄H_bS), 3.16 (1H, dd, *J* 18.5, 5.5 Hz, =CHCH₄<u>H</u>_bS), 2.97 (1H, ddd, *J* 12.0, 10.5, 4.5 Hz, C<u>H</u>CH₂S), 2.31 (1H, dd, *J* 13.5, 4.5 Hz, C<u>H</u>₄H_bS), 2.22 (1H, dd, *J* 13.5, 10.5 Hz, CH₄<u>H</u>_bS); $\delta_{\rm C}$ (125 MHz, DMSO-d₆) 160.6, 144.9, 130.6, 126.4, 118.3, 116.9, 115.3, 113.2, 113.0, 82.4, 56.0, 49.8, 44.0, 36.2, 28.6, 25.9; MS (EI) *m*/z (%) 348 (6, M⁺), 301 (82), 161 (78), 146 (47), 118 (100).

6-Amino-8-(3,4,5-trimethoxyphenyl)-8,8a-dihydro-1H-4.2.7. isothiochromene-5,7,7(3H)-tricarbonitrile 6c. White solid, 79%; m.p. 232-233 °C: [Found: C, 61.79; H, 5.12; N, 13.91; S, 7.62. C₂₁H₂₀N₄O₃S requires C, 61.75; H, 4.94; N, 13.72; S, 7.85%]; v_{max} (KBr) 3338, 2211, 1650, 1594 cm⁻¹; δ_{H} (500 MHz, DMSOd₆) 7.50 (2H, s, NH₂), 6.87 (1H, s, Ar), 6.77 (1H, s, Ar), 5.92-5.91 (1H, m, =CH), 3.82 (3H, s, OMe), 3.78 (3H, s, OMe), 3.68 (3H, s, OMe), 3.52 (1H, d, J 12.0 Hz, CHAr), 3.38 (1H, ddd, J 18.5, 3.0, 3.0 Hz, =CHCH_aH_bS), 3.12 (1H, dd, J 18.5, 5.5 Hz, =CHCH_aH_bS), 2.97 (1H, ddd, J 12.0, 10.5, 3.0 Hz, CHCH₂S), 2.38 (1H, dd, J 13.5, 3.0 Hz, CHCH_aH_bS), 2.24 (1H, dd, J 13.5, 10.5 Hz, CHCH_aH_bS); δ_C (125 MHz, DMSO-d₆) 145.1, 138.8, 130.6, 130.2, 118.5, 116.9, 113.5, 112.9, 104.8, 82.3, 60.9, 56.9, 51.0, 43.8, 36.0, 28.6, 25.8; MS (EI) *m/z* (%) 408 (100, M⁺), 391 (16), 360 (17), 212 (79), 181 (34), 164 (18).

4.2.8. 6-Amino-8-(4-chlorophenyl)-8,8a-dihydro-1Hisothiochromene-5,7,7(3H)-tricarbonitrile **6d**. White solid, 81%; m.p. 289–292 °C: [Found: C, 61.39; H, 3.92; N, 16.01; S, 8.93. C₁₈H₁₃ClN₄S requires C, 61.27; H, 3.71; N, 15.88; S, 9.09%]; v_{max} (KBr) 3346, 2210, 1640, 1598 cm⁻¹; $\delta_{\rm H}$ (400 MHz, DMSOd₆) 7.68–7.47 (6H, m, Ar, NH₂), 5.96–5.94 (1H, m, =CH), 3.75 (1H, d, *J* 12.0 Hz, CHAr), 3.44 (1H, ddd, *J* 18.0, 3.0, 3.0 Hz, =CHC<u>H</u>_aH_bS), 3.15 (1H, dd, *J* 18.0, 6.0 Hz, =CHCH_aH_bS), 3.03–2.94 (1H, m, C<u>H</u>CH₂S), 2.31–2.23 (2H, m, CH₂S); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 144.4, 134.6, 133.3, 129.9, 129.5, 118.2, 116.4, 112.6, 112.4, 82.0, 49.2, 43.1, 35.4, 28.1, 25.4; (EI) *m/z* (%) 354 (30, M+2), 352 (93, M⁺), 294 (49), 227 (43), 151 (71), 125 (95).

4.2.9. 6-Amino-8-(4-bromophenyl)-8,8a-dihydro-1Hisothiochromene-5,7,7(3H)-tricarbonitrile **6h**. White solid, 73%; m.p. 294–297 °C: [Found: C, 54.55; H, 3.43; N, 14.01; S, 8.21. C₁₈H₁₃BrN₄S requires C, 54.42; H, 3.30; N, 14.10; S, 8.07%]; v_{max} (KBr) 3346, 2210, 1641, 1598 cm⁻¹; $\delta_{\rm H}$ (400 MHz, DMSOd₆) 7.70 (2H, d, J 8.0 Hz, Ar), 7.56 (2H, ap s, Ar), 7.41 (2H, br s, NH₂), 5.96–5.94 (1H, m, =CH), 3.76 (1H, d, J 12.0 Hz, CHAr), 3.45 (1H, ddd, J 18.0, 3.0, 3.0 Hz, =CHC<u>H</u>_aH_bS), 3.16 (1H, dd, J 18.0, 6.0 Hz, =CHCH_aH_bS), 3.02–2.99 (1H, m, C<u>H</u>CH₂S), 2.31–2.20 (2H, m, CH₂S); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 144.4, 133.7, 132.4, 129.9, 123.3, 118.2, 116.4, 112.6, 112.4, 82.0, 49.2, 43.1, 35.4, 28.1, 25.5; MS (EI) *m*/z (%) 398 (16, M+2), 396 (18, M⁺), 244 (29), 227 (18), 69 (100).

4.2.10. 6-Amino-8-(4-nitrophenyl)-8,8a-dihydro-1Hisothiochromene-5,7,7(3H)-tricarbonitrile **6e**. White solid, 85%; m.p. 255–258 °C: [Found: C, 59.61; H, 3.75; N, 19.40; S, 8.71. C₁₈H₁₃N₅O₂S requires C, 59.49; H, 3.61; N, 19.27; S, 8.82%]; v_{max} (KBr) 3341, 2212, 1600, 1515 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSOd₆) 8.32 (2H, d, J 8.5 Hz, Ar), 7.91 (1H, br s, Ar), 7.72 (1H, br s, Ar), 7.55 (2H, s, NH₂) 5.95–5.94 (1H, m, =CH), 3.96 (1H, d, J 12.0 Hz, CHAr), 3.40 (1H, ddd, J 18.5, 3.0, 3.0 Hz, =CHC<u>H</u>₄H_bS), 3.14 (1H, dd, J 18.5, 6.0 Hz, =CHCH₄<u>H</u>₅S), 3.06–3.05 (1H, m, C<u>H</u>CH₂S), 2.23–2.22 (2H, m, CH₂S); $\delta_{\rm C}$ (125 MHz, DMSO-d₆) 149.0, 144.6, 142.0, 130.0, 124.8, 118.9, M 116.8, 112.8, 112.6, 82.5, 49.6, 43.1, 35.7, 28.4, 25.8; MS (EI) m/z (%) 363 (100, M⁺), 336 (35), 305 (75), 115 (38), 91 (45).

4.2.11. 6-Amino-8-(4-cyanophenyl)-8,8a-dihydro-1Hisothiochromene-5,7,7(3H)-tricarbonitrile **6f**. White solid, 77%; m.p. 292–295 °C: [Found: C, 66.39; H, 3.92; N, 20.50; S, 9.27. C₁₉H₁₃N₅S requires C, 66.45; H, 3.82; N, 20.39; S, 9.34%]; v_{max} (KBr) 3394, 2231, 2210, 1655, 1601 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSOd₆) 7.96 (2H, d, J 8.5 Hz, Ar), 7.85 (1H, ap s, Ar), 7.65 (1H, ap s, Ar), 7.54 (2H, br s, NH₂), 5.94–5.93 (1H, m, =CH), 3.87 (1H, d, J 12.0 Hz, CHAr), 3.40 (1H, ddd, J 18.0, 3.0, 3.0 Hz, =CHC<u>H</u>_aH_bS), 3.13 (1H, dd, J 18.0, 6.0 Hz, =CHCH_aH_bS), 3.04–3.02 (1H, m, C<u>H</u>CH₂S), 2.22–2.20 (2H, m, CH₂S); $\delta_{\rm C}$ (125 MHz, DMSO-d₆) 144.6, 140.1, 133.7, 130.1, 119.2, 118.8, 116.8, 113.1, 112.8, 112.6, 82.5, 49.9, 43.1, 35.6, 28.4, 25.8; MS (EI) m/z (%) 343 (11, M⁺), 227 (10), 140 (18), 115 (33), 43 (100).

4.2.12. 6-Amino-8-(furan-2-yl)-8,8a-dihydro-1Hisothiochromene-5,7,7(3H)-tricarbonitrile 6i. White solid, 80%; m.p. 243–246 °C: [Found: C, 62.23; H, 3.99; N, 18.09; S, 10.55. C₁₆H₁₂N₄OS requires C, 62.32; H, 3.92; N, 18.17; S, 10.40%]; v_{max} (KBr) 3341, 2212, 1644, 1602 cm⁻¹; δ_{H} (500 MHz, DMSOd₆) 7.79 (1H, d, J 1.5 Hz, Ar), 7.50 (2H, s, NH₂), 6.58 (1H, d, J 3.0 Hz, Ar), 6.52 (1H, dd, J 3.0, 1.5 Hz, Ar), 5.87-5.85 (1H, m, =CH), 3.93 (1H, d, J 12.0 Hz, CHAr), 3.42 (1H, ddd, J 18.0, 3.0, 3.0 Hz, =CHC<u>H</u>_aH_bS), 3.12 (1H, dd, J 18.0, 6.0 Hz, =CHCH_aH_bS), 2.88-2.84 (1H, m, CHCH₂S), 2.35 (1H, dd, J 13.0, 11.0 Hz, CHCHaHbS), 2.10 (1H, dd, J 13.0, 4.0 Hz, CHCH_a<u>H</u>_bS); δ_{C} (125 MHz, DMSO-d₆) 148.4, 145.6, 144.7, 129.9, 118.2, 116.7, 113.0, 112.9, 112.8, 111.7, 82.2, 45.3, 42.0, 36.3, 28.0, 25.8; MS (EI) m/z (%) 308 (100, M⁺), 261 (36), 233 (44), 195 (20).

4.2.13. 6-Amino-8-(thiophen-2-yl)-8,8a-dihydro-1Hisothiochromene-5,7,7(3H)-tricarbonitrile 6j. White solid, 81%; m.p. 251–254 °C: [Found: C, 59.38; H, 3.89; N, 17.44; S, 19.92. C₁₆H₁₂N₄S₂ requires C, 59.23; H, 3.73; N, 17.27; S, 19.77%]; v_{max} (KBr) 3342, 2213, 1647, 1603 cm⁻¹ $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 7.65 (1H, d, J 5.0 Hz, Ar), 7.50 (2H, s, NH₂), 7.29 (1H, d, J 3.5 Hz, Ar), 7.13 (1H, dd, J 5.0, 3.5 Hz, Ar), 5.89-5.88 (1H, m, =CH), 4.12 (1H, d, J 12.0 Hz, CHAr), 3.43 (1H, ddd, J 18.0, 3.0, 3.0 Hz, =CHCH_aH_bS), 3.13 (1H, dd, J 18.0, 6.0 Hz, =CHCH_aH_bS), 2.80 (1H, ddd, J 11.0, 11.0, 1.0 Hz, CHCH₂S), 2.33 (1H, dd, J 13.0, 11.0 Hz, CHCH_aH_bS), 2.25 (1H, dd, J 4.0, 13.5 Hz, CHCH_a<u>H</u>_bS); δ_{C} (125 MHz, DMSO-d₆) 144.8, 136.8, 130.3, 130.1, 128.7, 128.2, 118.4, 116.8, 113.4, 112.8, 82.3, 46.7, 44.2, 38.4, 28.4, 25.9; MS (EI) *m/z* (%) 324 (100, M⁺), 291 (20), 277 (40), 123 (55), 97 (92).

6-Amino-8-(4-methoxyphenyl)-8,8a-dihydro-1H-4.2.14. isochromene-5,7,7(3H)-tricarbonitrile 7b. White solid, 87%; m.p. 248–252 °C: [Found: C, 68.81; H, 5.01; N, 16.73. C₁₉H₁₆N₄O₂ requires C, 68.66; H, 4.85; N, 16.86%]; v_{max} (KBr) 3339, 2217, 1645, 1515 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 7.54 (1H, d, J 8.0 Hz, Ar), 7.53 (2H, s, NH₂), 7.27 (1H, d, J 8.0 Hz, Ar), 7.02 (1H, d, J 8.0 Hz, Ar), 6.94 (1H, d, J 8.0 Hz, Ar), 5.65-5.64 (1H, m, =CH), 4.23 (1H, ddd, J 17.5, 1.5, 1.5 Hz, =CHCH_aH_bO), 4.07 (1H, ddd, J 17.5, 1.5, 1.5 Hz, =CHCH_aH_bO), 3.75 (3H, s, OMe), 3.55 (1H, d, J 12.0 Hz, CHAr), 3.45 (1H, dd, J 10.0, 4.0 Hz, CHCH_aH_bO), 2.98–2.94 (1H, m, CHCH₂O), 2.92 (1H, dd, J 10.0, 10.0 Hz, CHCH_aH_bO); δ_C (125 MHz, DMSO-d₆) 160.7, 145.4, 134.2, 128.7, 128.0, 125.8, 118.0, 116.6, 115.4, 114.7, 113.1, 113.0, 80.6, 66.8, 66.2, 56.0, 47.2, 43.9, 33.5; MS (EI) m/z (%) 332 (47, M⁺), 235 (24), 147 (64), 121 (100).

4.2.15. 6-Amino-8-(4-chlorophenyl)-8,8a-dihydro-1Hisochromene-5,7,7(3H)-tricarbonitrile 7d. White solid, 92%; mpl. 271–273 °C: [Found: C, 64.29; H, 3.97; N, 16.54. C₁₈H₁₃ClN₄O requires C, 64.19; H, 3.89; N, 16.64%]; v_{max} (KBr) 3234, 2233, 1631, 1596 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 7.69 (1H, d, J 7.0 Hz, Ar), 7.59 (2H, s, NH₂), 7.55 (1H, d, J 7.0 Hz, Ar), 7.50 (1H, d, J 7.0 Hz, Ar), 7.40 (1H, d, J 7.0 Hz, Ar), 5.71–5.68 (1H, m, =CH), 4.24 (1H, dd, J 17.5, 1.5 Hz, =CHC<u>H_a</u>H_bO), 4.09 (1H, dd, J 17.5, 1.5 Hz, =CHCH_a<u>H_b</u>O), 3.73 (1H, d, J 13.0 Hz, CHAr), 3.45 (1H, dd, J 5.0, 11.0 Hz, CHC<u>H_a</u>H_bO), 3.04–3.02 (1H, m, C<u>H</u>CH₂O), 2.94 (1H, dd, J 10.5, 9.5 Hz, CHCH_a<u>H_b</u>O); $\delta_{\rm C}$ (125 MHz, DMSO-d₆) 145.1, 135.1, 133.1, 129.7, 127.7, 118.2, 116.5, 112.9, 112.8, 80.7, 66.6, 66.2, 47.0, 43.4, 33.3; MS (EI) m/z (%) 336 (100, M⁺), 307 (28), 244 (50), 151 (75), 125 (93).

4.3. General procedure for indirect synthesis of dicyanoanilines

A mixture of **4a** (300 mg, 1.0 mmol) and aqueous NaOH (200 μ L, 10% w/v) was sonicated for 150 s until TLC showed completion of the reaction. The product precipitated in the mixture as a yellow solid by adding drops of water to the mixture. The solid was filtered and recrystallized from ethanol to obtain the final product (238 mg, 87%).

4.4. General procedure for direct synthesis of dicyanoanilines

A mixture of **1a** (103.5 μ L, 1.0 mmol), malononitrile (132 mg, 2.0 mmol), benzaldehyde (102 μ L, 1.0 mmol) and NaOH (200 μ L, 10% w/v) in water (2.0 mL) was sonicated for 90 s until TLC showed completion of the reaction. The product precipitated in the mixture as a yellow solid. The solid was filtered and recrystallized from ethanol to obtain the final product (246 mg, 90%).

4.5. Crystal structure of 6e

Single Crystals of compound 6e suitable for SCXRD measurement were grown by slow evaporation of an MeCN/MeOH solution. The unit cell dimensions were determined from 1500 reflections. The structure was solved by direct method and refined by full matrix least-squares calculations based on F^2 to final R1 = 0.032 and wR2 (all data) = 0.064, using SHELXL-2014 and WinGX-2013.3 programs.²⁶ Compound is crystallized at Monoclinic system and P21/c Space group. One independent molecules with molecular formula of C₂₀H₁₆N₆O₂S and a molecule of solvent (MeCN) were found in the asymmetric unit giving a total Z=4 for the unit cell; a =13.856(3), b = 9.059(1), c = 15.837(3), beta= 94.91(3), cell volume V= 1980.7(7)Å³, crystal dimensions: $0.6 \times 0.5 \times 0.2$ mm, measurement range: 2.58 <0<24.99, 3480 independent reflections and max/min residual electron density [e Å³].: 0.11/ -0.16. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. A view of the structure is depicted in Figure 2 (top). As it revealed by X-ray crystallography,²⁷ solid state structure of compound 6e exhibits an interesting twofold R2,2(12) intermolecular hydrogen-bonding motif [(N2- $H5...N1_{4} d(D...A = 3.084(3)Å and < DHA=162.4^{\circ}(5)$ locking two molecules of the compound around a lattice center of symmetry Figure 2 (bottom). The crystal structure of 6e reveals another hydrogen bonding between the nitrogen atom of a solvent molecule (acetonitrile) and the amino hydrogen atom $[(N2-H4...N6_\$3 d(D...A = 3.019(3) Å and < DHA = 159.4^{\circ}(5)]]$ in an intermolecular fashion.

Acknowledgments

The Research Council at CCERCI (Grant # 93-112) is acknowledged for financial support of this work.

References and notes

- (a) Milart, P.; Wilamowski, J.; Sepiol, J. J. *Tetrahedron* **1998**, *54*, 15643–15656. (b) Borate, H. B.; Kudale, A. S.; Agalave, S. G. Org. Prep. Proced. Int. **2012**, *44*, 467–521. (c) Shestopalov, A. M.; Shestopalov, A. A.; Rodinovskaya, L. A. Synthesis **2008**, 1–25. (d) Kurbatov, E.; Krasnikov, V.; Mezheritskii, V. Russ. J. Org. Chem. **2006**, *42*, 460–462.
- (a) Elinson, M. N.; Ilovaisky, A. I.; Merkulova, V. M.; Barba, F.; Batanero, B. *Tetrahedron* 2013, 69, 7125–7130. (b) Elgemeie, G. E. H.; Regaila, H. A.; Shehata, N. *J. Chem. Soc. Perkin Trans. 1.* 1990, 1267–1270. (c) Reddy Gajulapalli, V. P.; Vinayagam, P.; Kesavan, V. *RSC Adv.* 2015, *5*, 7370–7379.
- (a) Wang, X.-S.; Zhang, M.-M.; Li, Q.; Yao, C.-S.; Tu, S.-J. *Tetrahedron* 2007,63, 5265–5273. (b) Sawargave, S. P.; Kudale, A. S.; Deore, J. V.; Bhosale, D. S.; Divse, J. M.; Chavan, S. P.; Borate, H. B. *Tetrahedron Lett.* 2011, 52, 5491–5493. (c) Jiang, B.; Wang, X.; Shi, F.; Tu, S.-J.; Li, G. *Org. Biomol. Chem.* 2011, 9, 4025–4028.
- (a) Mirek, J.; Milart, P. Z. Naturforsch. B Chem. Sci. 1986, 41b. 1471–1478. (b) Cui, S.-L.; Lin, X.-F.; Wang, Y.-G. J. Org. Chem. 2005, 70, 2866–2869.
- (a) Molla, A.; Hussain, S. *RSC Adv.* 2014, *4*, 29750–29758. (b) Khan, M. N.; Pal, S.; Karamthulla, S.; Choudhury, L. H. *RSC Adv.* 2014, *4*, 3732–3741.
- (a) Zhang, L.-z.; Wan, Y.; Zhang, X.-x.; Cui, H.; Zou, H.; Zhou, Q.-j.; Wu, H. *Tetrahedron Lett.* **2015**, *56*, 4934–4937. (b) Wan, Y.; Zhang, X. X.; Zhao, L. L.; Wang, C.; Chen, L. F.; Liu, G. X.; Huang, S. Y.; Yue, S. N.; Zhang, W. L.; Wu, H. *J. Heterocycl. Chem.* **2015**, *52*, 623–627. (c) Khalil, K. D.; Al-Matar, H. M. *Molecules* **2013**, *18*, 5288–5305.
- Wang, J.; Li, Q.; Qi, C.; Liu, Y.; Ge, Z.; Li, R. Org. Biomol. Chem. 2010, 8, 4240–4242.
- (a) Frolov, K. A.; Dotsenko, V. V.; Krivokolysko, S. G.; Kostyrko, E. O. Chem. *Heterocycl. Compd.* **2013**, *49*, 1289–1300.
 (b) El-Sakka, I.; El-Kousy, S.; Kandil, Z. J. Prakt. Chem. **1991**, *333*, 345–350.
- (a) Huang, X. F.; Zhang, Y. F.; Qi, Z. H.; Li, N. K.; Geng, Z. C.; Li, K.; Wang, X. W. Org. Biomol. Chem. 2014, 12, 4372–4385.
 (b) Wang, X.-S.; Wu, J.-R.; Li, Q.; Zhang, M.-M. J. Heterocycl. Chem. 2009, 46, 1355–1363.
- (a) Bharkavi, C.; Kumar, S. V.; Perumal, S. Synlett 2015, 26, 1665–1670. (b) Mojtahedi, M. M.; Abaee, M. S.; Mahmoodi, P.; Adib, M. Synth. Commun. 2010, 40, 2067–2074. (c) Tu, S.-J.; Han, Z.-G.; Jiang, B.; Yan, S.; Zhang, X.-H.; Wu, S.-S.; Hao, W.-J.; Cao, X.-D.; Shi, F.; Zhang, G.; Ma, N. Synthesis 2009, 1639–1646.
- (a) Hu, Z.-P.; Lou, C.-L.; Wang, J.-J.; Chen, C.-X.; Yan, M. J. Org. Chem. 2011, 76, 3797–3804. (b) Kumar, R. R.; Perumal, S.; Menéndez, J. C.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. 2011, 19, 3444–3450. (c) Rong, L.; Gao, L.; Han, H.; Jiang, H.; Dai, Y.; Tu, S. Synth. Commun. 2009, 40, 289–294. (d) Siddiqui, I. R.; Shamim, S.; Waseem, M. A.; Srivastava, A.; Rahila, RSC Adv. 2013, 3, 14423–14427.
- (a) Hafez, N. A. A.; Farghaly, T. A.; Al-Omar, M. A.; Abdalla, M. M. *Eur. J. Med. Chem.* **2010**, *45*, 4838–4844. (b) Han, Z.-G.; Miao, C.-B.; Shi, F.; Ma, N.; Zhang, G.; Tu, S.-J. *J. Comb. Chem.* **2010**, *12*, 16–19. (c) Lakshmi, N. V.; Suganya Josephine, G. A.; Perumal, P. T. *Tetrahedron Lett.* **2012**, *53*, 1282–1286. (d) Wang, Z.; Miller, E. J.; Scalia, S. J. *Org. Lett.* **2011**, *13*, 6540–6543.
- (a) Mo, L.; Tang, H.; Yao, Z.-J. *Tetrahedron*, **2013**, *69*, 6897–6905. (b) Yang, F.; Ji, K.-G.; Zhao, S.-C.; Ali, S.; Ye, Y.-Y.; Liu, X.-Y.; Liang, Y.-M. *Chem. Eur. J.* **2012**, *18*, 6470–6474.
 Word, D. E. Chem. Chem. 2011, *17*, 11025, 11026.
- 14. Ward, D. E. Chem. Commun. **2011**, 47, 11375–11393.
- (a) Zhang, J.; Li, Y.; Wang, W.; She, X.; Pan, X. J. Org. Chem. 2006, 71, 2918–2921. (b) Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045–2053.
- (a) Mojtahedi, M. M.; Abaee, M. S.; Khakbaz, M.; Alishiri, T.; Samianifard, M.; Mesbah, A. W.; Harms, K. Synthesis 2011,

- 362(1-3826. (b) Mojtahedi, M. M.; Javadpour, M.; Abaee, M. S.
 Ultrason. Sonochem. 2008, 15, 828–832. (c) Azizian, J.; Mirza,
 B.; Mojtahedi, M. M.; Abaee, M. S.; Sargordan, M. J. Fluorine
 Chem. 2008, 129, 1083–1089.
- (a) Mojtahedi, M.; Abaee, M.; Samianifard, M.; Shamloo, A. Scientia Iran 2014, 21, 719–726. (b) Mojtahedi, M. M.; Abaee, M. S.; Samianifard, M.; Shamloo, A.; Padyab, M.; Mesbah, A. W.; Harms, K. Ultrason. Sonochem. 2013, 20, 924–930.
- 18. Ward, D. E.; Abaee, M. S. Org. Lett. 2000, 2, 3937-3940.
- Abaee, M. S.; Mojtahedi, M. M.; Pasha, G. F.; Akbarzadeh, E.; Shockravi, A.; Mesbah, A. W.; Massa, W. Org. let. 2011, 13, 5282–5285.
- For recent literature on the use of ultrasonic irradiation in synthesis, see Mojtahedi, M. M.; Abaee, M. S. In *Handbook on* applications of ultrasound sonochemistry for sustainability; Chen, D.; Sharma, S. K.; Mudhoo A., Eds.; CRC Press: New York, 2012.
- 21. Das, P.; Butcher, R. J.; Mukhopadhyay, C. *Green Chem.* **2012**, *14*, 1376–1387.
- (a) Wang, X.-S.; Wu, J.-R.; Zhou, J.; Tu, S.-J. J. Comb. Chem.
 2009, 11, 1011–1022. (b) Zhou, Y.-J.; Zhang, M.-M.; Wang, X.-S. J. Chem. Crystallogr. 2012, 43, 26-30. (c) Saleh, T. S.; Abd El-Rahman, N. M.; Elkateb, A. A.; Shaker, N. O.; Mahmoud, N. A.; Gabal, S. A. Ultrason. Sonochem. 2012, 19, 491–497. (d) Andresen, O. R.; Pedersen, E. B. Heterocycles 1982, 19, 1467–1471.
- Solvent molecule is omitted for clarity. Selected bond lengths [Å] and angles [°]:C5-S1 1.798(2), C1-S1 1.797(2), C11-N4 1.134(2), C9-C10 1.490(3), C2-C1-S1 112.77(14), N2-C8-C9 115.47(16). (bottom) Depiction of an intercellular R2,2(12) hydrogen-bonding with [(N2-H5...N1_\$4 d(D...A = 3.084(3)Å and < DHA = 162.4°(5)]. The dark spot in the middle of the motif indicates the location of a lattice center of symmetry. \$4 is generated by -x, -y, -z.
- Sharanin, Yu. A.; Baskakov, Yu. A.; Abramenko, Yu. T.; Putsykin, Yu. G.; Vasil'ev, A. F.; Nazarova, E. B. Cyclization reactions of nitriles. III. Synthesis of *o*-cyanoanilines by the Thorpe reaction. *Russ. J. Org. Chem.* **1980**, *16*, 1870–1879.
- 25. Victory, P.; Borrell, J. I.; Vidal-Ferran, A.; Seoane, C.; Soto, J. L. *Tetrahedron Lett.* **1991**, *32*, 5375–5378.
- (a) Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837–838. (b) Allen, F. H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M. J. Appl. Cryst. 2004, 37, 335–338. (c) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, ; van der Streek, J. J. Appl. Cryst. 2006, 39, 453–457. (d) Burnett, M. N.; Johnson, C. K. ORTEP-III Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA 1996. (e) Spek, A. L. J. Appl. Cryst. 2003, 36, 7–13. (f) Sheldrick, G. M. Acta Crystallogr, Sect. A 2008, 64, 112–122. (g) Coppens, P.; Leiserowitz, L.; Rabinovich, D. Acta Crystallogr. 1965, 18, 1035–1038.
- 27. CCDC-1431272 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supplementary Material

Supplementary data (copies of ¹H and ¹³C NMR spectra for all new products) associated with this article can be found in the online version, at ...

- *Ortho*-aminocarbonitriles are synthesized efficiently by ultrasound irradiation.
- Products based on various heterocyclic ketones are synthesized.
- Reactions rapidly give the corresponding products.
- Ortho-aminocarbonitriles give dicyanoanilines in direct or stepwise modes.