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Abstract: Background: Designing efficient methods for the synthesis of complex molecules with pre-

defined functionalities is a challenging task in modern organic chemistry. In this context, multi-

component reactions (MCRs), by virtue of their applications, constitute a central academic and indus-

trial investigation domain. Recently, MCRs involving vinylogous Michael addition have attracted increas-

ing interest as one of the most useful key reactions for the synthesis of poly substituted benzene deriva-

tives such as spiro[cyclohexanes-1,3’-indoline]-2’,3-diones, spiroacenaphthylene, benzo[α]cyclooctenes, 

etc. Therefore, development of an efficient method for a MCR which encompass vinylogous Michael 

addition as vital reaction is of current interest.  

Methods: We explored catalytic efficiency of DABCO in the multi-component reaction of cyclic ke-

tone, aldehyde and two moles of malononitrile for the synthesis of functionalized condensed bicyclic 

compounds viz tetrahydroindenes, tetrahydronaphthalenes, hexahydrobenzo[7] annulenes and hexahydro-

benzo[8]annulenes. 

Results: The reaction conditions were optimized by screening of catalyst and solvent. Employing op-

timized reaction conditions library of bicyclic compounds viz. tetrahydroindenes, tetrahydronaphthale-

nes, hexahydrobenzo[7]annulenes and hexahydrobenzo[8]annulenes were synthesized in short time du-

ration. The synthesized products were characterized by 
1
H, 

13
C, IR and MS. Spectral data obtained was 

in good agreement with the structure of products. 

Conclusion: We disclosed DABCO catalyzed multi-component reaction of aldehyde, cyclic ketone and 

malononitrile furnished corresponding tetrahydronaphthalenes, tetrahydroindalenes, hexahydrobenzo[7] 

annulenes and hexahydrobenzo[8]annulenes, with a high level of complexity. Notably, this methodol-

ogy provides a facile access to various multi-functional compounds. The operational simplicity and 

good yields, combined with step and atom-economic aspects, clean reactions yielded pure products, 

hence no requirement of tedious chromatographic purification makes this synthetic strategy highly at-

tractive and promising approach from sustainable and practical chemistry. 

 
 
Keywords: Aldehyde, DABCO, hexahydrobenzo[7]annulenes, hexahydrobenzo[8]annulenes, multi-component, tetrahydroin-
denes. 

1. INTRODUCTION 

 Designing of efficient methods for the synthesis of com-
plex molecules with predefined functionalities is a challeng-
ing task in modern organic chemistry [1-5]. Especially, when 
the method involves green principles and simple molecules 
as starting materials. In this context, multi-component reac-
tions (MCRs), by virtue of their applications, constitute a 
central academic and industrial investigation domain [6-12]. 
The last decade has witnessed tremendous development in 
Michael addition based MCRs as they allow a rapid access to 
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highly functionalized skeleton offering interesting opportuni-
ties for molecular diversity [13-15]. Conversely, existence of 
a variety of intermediates in case of such MCRs makes the 
prediction of product(s) difficult under different experimen-
tal conditions from same precursors [16-18]. 

 Recently, MCRs involving vinylogous Michael addition 
has attracted increasing interest as one of the most useful key 
reactions for the synthesis of poly substituted benzene de-
rivatives [19] like spiro[cyclohexanes-1,3’-indoline]-2’,3-
diones [20], spiroacenaphthylene [21], benzo[α]cyclooctenes 
[22], etc. Therefore, the development of an efficient method 
for MCRs which encompasses vinylogous Michael addition 
as vital reaction is of current interest.  
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Send Orders for Reprints to reprints@benthamscience.ae 

 
Letters in Organic Chemistry, 2017, 14, 403-408 

403 

LETTER ARTICLE 

DABCO: An Efficient Catalyst for Pseudo Multi-component Reaction of 
Cyclic Ketone, Aldehyde and Malononitrile 



404    Letters in Organic Chemistry, 2017, Vol. 14, No. 6 Chinchkar et al. 

2. RESULTS AND DISCUSSION 

 In continuation of our research program dedicated to de-
signing of multi-component transformations proceed through 
Michael addition [27-29], in the present manuscript, we de-
scribed the influence of DABCO on the product of the MCR 
between aldehyde, two moles of malononitrile and a cyclic 
ketone viz. cyclopentanone, cyclohexanone, cycloheptanone 
as well as cyclooctanone. The method furnished functional-
ized condensed bicyclic compounds viz. tetrahydroindenes, 
tetrahydronaphthalenes, hexahydrobenzo[7]annulenes and 
hexahydrobenzo[8]annulenes, respectively through viny-
logous Michael addition (Scheme 2). 

 A literature survey of multi-component reaction of alde-
hyde, two moles of malononitrile and a cyclic ketone reveals 
that existence of product is dependent on the nature of cata-
lyst used. It is noteworthy that the influence of strong base, 
LiOEt on present multi-component reaction leads benzo[α] 
cyclooctenes (4’, Scheme 1) which proceed through domino 
Knoevenagel condensation-Vinylogous Michael addition-
Thorpe-Ziegler cyclization-tautomerization-elimination [22]. 
On the other hand mild catalyst furnished corresponding 
functionalized condensed bicyclic compounds [23-26] (4, 
Scheme 1). However, scanty methods are available for pre-
sent multi-component reaction [22-26]. Hence, we are inter-
ested in investigating the effect of a mild base, DABCO on 
the said transformation. 
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Scheme (1). Synthesis of functionalized hexahydrobenzo [8] an-

nulenes. 

 

 For optimization of the conditions, the reaction between 
benzaldehyde, cyclooctanone and two moles of malononitrile 
was selected as a model reaction. The starting materials were 
mixed together and the reaction was performed using cata-
lytic quantity of DABCO (20 mol %) in ethanol medium at 
ambient temperature. The reaction yielded a mixture of uni-
dentified products at ambient temperature. However, under 
reflux conditions, pleasingly we obtained functionalized con-
densed bicyclic compounds instead of benzo[α]cyclooctenes 
(Scheme 1). It is noteworthy that, DABCO catalyzed multi-
component reaction of cyclohexanone, aldehyde and two 
moles of malononitrile also generated a family of functionalized 

hexahydrobenzo[8]annulenes through Knoevenagel-vinylogous 
Michael addition. Presumably, such change in the nature of 
final product of the reaction is due to the difference in ba-
sicity of DABCO and LiOEt. The influence of a strong base, 
LiOEt, resulted into the formation of benzo[α]cyclooctenes 
while the presence of a mild base, DABCO, furnished func-
tionalized hexahydrobenzo[8]annulenes (Scheme 1). 

 Added advantage of the present method is that the prod-
uct can be isolated by simple filtration and purified by wash-
ing with EtOH. Therefore, the developed method was simple 
and involving clean work-up procedure. The product was 
identified by IR, 

1
H, 

13
C NMR and MS. 

1
H NMR spectrum 

indicates a remarkable singlet at δ = 4.38 of vinylic proton. 
In 

13
C NMR signals due to carbonyl of aldehyde and ketone 

get disappeared and appearance of signals of nitrile carbons 
at δ 117.35 and 124.56 confirmed the structure of product 4i 
(Table 2). MS analysis also supported the expected structure 
by demarking molecular ion peak at 328 (m/z).  

 The reaction was carried out in different solvents to in-
vestigate the most suitable solvent for this transformation. 
Ethanol was found to be superior to other solvents such as 
CH3CN, CH2Cl2, THF, CH3OH and H2O in terms of ob-
tained yield. (Entries 1-6, Table 1) To increase yield, in light 
with our earlier experience with mixed solvent system [28], 
we further investigated the effect of ethanol: water system. 
(Entries 7-15, Table 1). Delightfully, after some attempts, we 
were pleased to notice that when mixed solvent (7:3 v/v; 
EtOH:H2O) was used, the reaction of benzaldehyde, cyclooc-
tanone and two moles of malononitrile provided desired 
hexahydrobenzo[8]annulenes in 90 % yield in the presence 
of 20 mol % DABCO at reflux condition. (Entry 9, Table 1) 
As the reaction proceeds via charged reactive intermediates, 
we hypothesized that the corresponding transition states 
would be stabilized by water, which has a relatively high 
static permittivity (εT = 78.4) [30], thus small quantity of 
water played a crucial role. 

 Then the effect of amount of DABCO was also studied. 
(Entries 16-19, Table 1) Interestingly, 20 mol % of DABCO 
was found to be effective. Lower loading of DABCO led  
to shrank yields (Entries 16-18, Table 1). Exceeding 20 %  
of DABCO did not affect the yield of product (Entry 19, 
Table 1). 

 After optimization of the reaction conditions, to delineate 
this approach, particularly regarding construction of library, 
this methodology was evaluated by using various aldehydes 
(aromatic and heteroaromatic) as well as several cyclic ke-
tones such as cyclopentanone, cyclohexanone, cyclohepta-
none and cyclooctanone (Table 2). 

 Interestingly, when cyclic ketones viz. cyclopentanone, 
cyclohexanone, cycloheptanone and cyclooctanone were 
employed, the products formed were classified as tetrahy-
droindenes, tetrahydronaphthalenes, hexahydro-2H-benzo[7] 
annulenes and hexahydrobenzo[8]annulenes, respectively. 
Under optimized reaction conditions all reactions proceed 
smoothly resulted corresponding products in excellent yields 
(Scheme 2). 

 Furthermore, the reaction in the presence of aromatic 
aldehydes bearing simple, electron donating as well as elec-
tron withdrawing groups also occurred smoothly and corre-
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sponding polyfunctionalized bicyclic compounds were in 
good yields. 

 

Table 1. Optimization of conditions for multi-component 

reaction of benzaldehyde, cyclooctanone and two 

moles of malononitrile
a
. 

Entry Solvent 
DABCO 

(mol %) 

Yield
b 

(%) 

1 CH3CN 20 -- 

2 DCM 20 -- 

3 THF 20 -- 

4 CH3OH 20 46 

5 EtOH 20 75 

6 H2O 20 38 

7 EtOH:H2O [9:1] 20 82 

8 EtOH:H2O [8:2] 20 78 

9 EtOH:H2O [7:3] 20 90 

10 EtOH:H2O [6:4] 20 75 

11 EtOH:H2O [5:5] 20 56 

12 EtOH:H2O [4:6] 20 54 

13 EtOH:H2O [3:7] 20 47 

14 EtOH:H2O [2:8] 20 43 

15 EtOH:H2O [1:9] 20 40 

16 EtOH:H2O [7:3] 05 55 

17 EtOH:H2O [7:3] 10 73 

18 EtOH:H2O [7:3] 15 80 

19 EtOH:H2O [7:3] 30 90 

aReaction condition: Benzaldehyde (1 mmol), cyclooctanone (1 mmol), malononitrile 

(2 mmol), catalyst, solvent (5 mL), Time: 1h; bIsolated yield. 
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Scheme (2). Synthesis of combinatorial library of polyfunctional-

ised bicyclic compounds. 

 

 The broad tolerance of functional groups on the alde-
hydes inspired us to extend the study to dialdehyde such as 
isophathalaldehyde. We were pleased to find that multi-
component reaction of isophathaladehyde, cyclohexanone 
and two moles of malononitrile under the optimal reaction 
conditions furnished desired bis-polyfunctionalized tetrahy-
dronaphthalene in high yield (Entry e, Table 2). 

 The plausible mechanism is depicted in Scheme 3. Ini-
tially, DABCO influenced Knoevenagel condensation of 
aldehyde and malononitrile as well as cyclic ketone and 
malononitrile furnished 5 and 6, respectively. Subsequent 
vinylogous Michael addition of 5 on 6 yielded the desired 
product (TM) 4 through transition state 7. 

 

Table 2. Synthesis of combinatorial library of polyfunctional-

ized bicyclic compounds by multi-component ap-

proach
a
 

Sr. No 
Aldehyde 

1 

Cyclic Ketone 

3 

Time 

(h) 

Yield
b
 

(%) 

a R= H n=1 1 88 

b R= 4-Cl n=1 1 90 

c R= 3-MeO, 4-OH n=1 1 92 

d R= 3,4,5-MeO n=1 1 90 

e R= 3-CHO n=1 1 90 

f R=4-MeO n=0 1 94 

g R=4-MeO n=2 1 92 

h R=4-Cl n=2 1 94 

i Thiophene n=3 1 90 

j R= H n=3 1 90 

aReaction conditions: Aldehyde (1 mmol), cyclic ketone (1 mmol), malononitrile (2 

mmol), catalyst (20 mol %), ethanol: water :: 70:30 (5 mL), reflux temperature , bIso-

lated yield. 

 

3. EXPERIMENTAL 

3.1. General 

 IR spectra were recorded on an Agilent cary 630 and 
Perkin-Elmer FT-IR 783 spectrophotometer. NMR spectra 
were recorded on a BrukerAC-300 MHz spectrometer in 
DMSO-d6 using tetramethylsilane as internal standard. Mass 
spectra were recorded on a Shimadzu QP2010 GCMS. Ele-
mental analyses were performed on a EURO EA3000 vector 
model. 

3.2. General Procedure 

3.2.1. Synthesis of Tetrahydronaphthalenes 

 A mixture of aldehyde (1 mmol, 1a: 0.102 mL, 2b: 0.140 
g, 3c: 0.152 g, 4d: 0.196 g, 5e: 0.134 g), cyclohexanone (1 
mmol, 0.103 mL), malononitrile (2 mmol, 0.111 mL) and 
DABCO (20 mol %, 0.022 g) in EtOH: H2O (7:3; 5 mL) was 
stirred at reflux temperature and stirring was continued till 
completion of the reaction as indicated by TLC. 

3.2.2. Synthesis of Tetrahydroindalenes 

 A mixture of aldehyde (1 mmol, 6f: 0.121 mL), cy-
clopentanone (1 mmol, 0.088 mL), malononitrile (2 mmol, 
0.111 mL) and DABCO (20 mol %, 0.022 g) in EtOH: H2O 
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(7:3; 5 mL) was stirred at reflux temperature and stirring was 
continued till completion of the reaction as indicated by 
TLC. 

3.2.3. Synthesis of Hexahydrobenzo[7]annulene  

 A mixture of aldehyde (1 mmol, 7g: 0.121 mL, 8h: 0.140 
g), cycloheptanone (1 mmol, 0.118 mL), malononitrile (2 
mmol, 0.111 mL) and DABCO (20 mol %, 0.022 g) in 
EtOH: H2O (7:3; 5 mL) was stirred at reflux temperature and 
stirring was continued till completion of the reaction as indi-
cated by TLC. 

3.2.4. Synthesis of and Hexahydrobenzo[8]annulenes 

 A mixture of aldehyde (1 mmol, 9i: 0.093 mL, 10j: 
0.102 mL), cyclooctanone (1 mmol, 0.132 mL), malononi-
trile (2 mmol, 0.111 mL) and DABCO (20 mol %, 0.022 g) 
in EtOH: H2O (7:3; 5 mL) was stirred at reflux temperature 
and stirring was continued till completion of the reaction as 
indicated by TLC. 

 After completion of reaction, the precipitated solid was 
filtered, washed with ethanol (3 mL) and dried over vacuum 
to afford corresponding product. All the products were char-
acterized by spectral analysis viz. IR, 

1
H and 

13
C NMR as 

well as MS. 

3.3. Spectral Data of Synthesized Compounds 

 Entry a, Table 2: Whitish yellow solid; Mp: 238-240
o
C; 

FT-IR-ATR (νmax, cm 
-1

): 3411, 3333, 3225, 2929, 2206, 1641, 
1594, 1492, 1448, 1387, 1340, 1270, 1206, 1155, 1099, 1032, 
946, 915, 871, 834, 808, 779, 704, 638; 

1
H-NMR (300 MHz, 

DMSO-d6): δ 0.81-0.89 (q, 1H, J= 12, 3 Hz, C5H), 1.50 (s, 
1H, C5H), 1.53-1.54 (d, 1H, J= 3 Hz, C6H), 1.65-1.68 (s, 
1H, C6H), 2.07-2.17 (m, 2H, C7H), 2.71-2.74 (d, 1H, J= 12 
Hz, C10H), 3.02-3.06 (d, 1H, J= 12 Hz, C4H), 5.77 (s, 1H, 
C8H), 6.55 (s, 2H, C2-NH2), 7.24-7.47 (m, 5H, ArH) 
ppm;

13
C-NMR (75 MHz, DMSO-d6): 21.50(C5), 25.31(C6), 

27.34 (C7), 34.70(C10), 43.05(C4), 52.42(C3), 84.32(C8), 

112.39 (CN), 116.01(CN), 122.60(CN), 126.85(C1), 128.29 
(C’4), 128.94(C’3,C’5), 129.28(C’2,C’6), 132.18(C9), 134.17 
(C’1), 142.71(C2) ppm; MS (EI): 300, 272, 209, 91 m/z; 
CHN analysis calcd for C19H16N4: 75.98 (C), 5.37 (H), 18.65 
(N); Found 74.89 (C), 5.15 (H), 18.57 (N). 

 Entry b, Table 2: Pale yellow solid; Mp: 235-238
o
C; 

FT-IR-ATR (νmax, cm 
-1

): 3418, 3340, 3251, 3227, 2946, 2932, 
2866, 2832, 2212, 1642, 1601, 1493, 1446, 1429, 1391, 
1350, 1339, 1278, 1269, 1212, 1163, 1094, 1015, 837, 805, 
781, 752, 704, 671; 

1
H-NMR (300 MHz, CDCl3): δ 0.90-

1.03(m, 1H, C5H), 1.60-1.70 (m, 2H, C5H,C6H), 1.80 (s, 
1H, C6H), 2.28-2.35 (m, 2H, C7H), 2.81-2.89 (m, 1H, 
C10H), 3.07-3.11 (d, 1H, J= 12Hz, C4H), 4.90 (s, 2H, -
NH2), 6.07-6.08 (t, 1H, J= 3 Hz, C8H), 7.43-7.51 (m, 4H, 
ArH) ppm, 

13
C-NMR (75 MHz, CDCl3): 21.72(C5), 25.38 

(C6), 27.09(C7), 34.72(C10), 43.44(C4), 51.67(C3), 112.00 
(CN), 114.93(CN), 125.91(C1), 127.13(C’2, C’6), 129.82 
(C’3, C’5), 132.26(C9), 135.92(C’1, C’4), 140.07(C2) ppm; 
MS (EI): 334, 209, 127, 125 m/z; CHN analysis calcd for 
C19H15N4Cl: 68.16 (C), 4.25 (H), 16.73 (N); Found 68.06 
(C), 4.19 (H), 16.51 (N). 

 Entry c, Table 2: White solid; Mp: 206-210
o
C; FT-IR-

ATR (νmax, cm 
-1

): 3463, 3405, 3340, 3241, 2206, 1655, 1599, 
1516, 1462, 1433, 1380, 1262, 1214, 1169, 1129, 1103, 1046, 
1009, 921, 882, 854, 820, 765, 739, 683, 634; 

1
H-NMR (300 

MHz, DMSO-d6): δ 0.80-0.92 (q, 1H, J= 12 Hz, C5H), 1.47-
1.67 (m, 3H, C5H, C6H), 2.06-2.22 (m, 2H, C7H), 2.69-2.78 
(t, 1H, J= 12Hz, C4H), 3.74-3.78 (d, 3H, J= 12 Hz, C’3-
OMe), 5.71 (s, 1H, C8H), 6.75-7.10 (m,3H, C’2, C’5, C’6), 
7.33 (s, 2H, -NH2), 9.24 (s, 1H, C’4-OH) ppm; 

13
C-NMR (75 

MHz, DMSO-d6): δ 21.51(C5), 25.35(C6), 27.45(C7), 34.70 
(C10), 43.89(C4), 51.32(C3), 56.24(C-OMe), 81.98(C8), 
111.27 (CN), 113.05(CN), 113.44(CN), 116.25(C1), 119.87 
(C’6), 120.64(C’2), 125.62(C’5), 129.52(C’3), 144.11(C’4), 
147.73(C’1), 148.19(C2) ppm; MS (EI): 346, 222, 137, 103, 
77 m/z; CHN analysis calcd for C20H18N4O2: 69.35 (C), 5.24 
(H), 16.17 (N), 9.24 (O); Found 68.90 (C), 5.12 (H), 16.05 
(N), 9.93 (O). 
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Scheme (3). A plausible mechanism for DABCO catalyzed pseudo multi-component synthesis of polyfunctionalized bicyclic compounds 
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 Entry d, Table 2: Pale yellow solid; Mp: 210-212
o
C; 

FT-IR-ATR (νmax, cm 
-1

): 3419, 3334, 3225, 2936, 2866, 

2214, 1647, 1599, 1446, 1392, 1341, 1270, 1207, 1159, 1100, 

1041, 958, 918, 852, 803, 733, 606; 
1
H-NMR (300 MHz, 

DMSO-d6): δ 0.85-0.97 (q, 1H, J= 9, 12 Hz, C5H), 1.48-1.72 

(m, 3H, C5H, C6H), 2.08-2.23 (m, 2H, C7H), 2.77-2.84 (t, 

1H, J= 9Hz, C10H), 3.41-3.45 (d, 1H, J= 12Hz, C4H), 3.76 

(s, 3H, -OMe), 3.77 (s, 3H,-OMe ), 3.80 (s, 3H, -OMe), 5.73 

(s, 1H, C8H), 6.83-6.87 (d,2H, J= 12Hz, C’2, C’6), 7.31 (s, 

2H, -NH2) ppm; 
13

C-NMR (75 MHz, DMSO-d6): δ 21.41 

(C5), 25.33(C6), 27.34(C7), 34.52(C10), 43.41(C-OMe), 

51.63 (C-OMe), 56.57(C4), 60.54(C3), 82.11(C8), 104.75 

(CN), 110.76 (CN), 112.86(CN), 113.32(C1), 116.58 (C’6), 

120.92 (C’2), 129.31 (C’5), 130.59(C’4), 138.42(C’2), 

143.99 (C9), 152.96 (C’1), 153.55(C2) ppm; MS (EI): 262, 

247, 219, 188, 161 m/z; CHN analysis calcd for C22H22N4O3: 

67.68 (C), 5.68 (H), 14.35 (N), 12.29 (O); Found 67.56 (C), 
5.68 (H), 14.25 (N), 12.51 (O). 

 Entry e, Table 2: Pale yellow solid; Mp: 216-220
o
C; FT-

IR-ATR (νmax, cm 
-1

): 3417, 3339, 3259, 2972, 2940, 2862, 

2833, 2249, 2215, 1651, 1600, 1488, 1449, 1394, 1351, 1339, 

1269, 1210, 1175, 1154, 1041, 959, 919, 883, 851, 804, 73, 

697; 
1
H-NMR (300 MHz, DMSO-d6): δ 0.92-0.96 (m, 2H, 

C5H), 1.03-1.08 (t, 1H, J= 6Hz, C5H), 1.37-1.68 (m, 7H, 

C5H, C6H, C7H), 2.16 (m, 5H, C7H, C10H), 2.50-2.67 (m, 

3H, C4, C10), 5.73 (s, 1H, C8H), 7.32 (s, 4H, -NH2), 7.51-

7.77 (m, 4H, ArH) ppm; 
13

C-NMR (75 MHz, DMSO-d6): δ 

18.95 (C5), 21.47(C6), 25.25(C7), 34.72(C10), 43.22(C4), 

50.48 (C3), 82.19(C8), 112.66(CN), 113.41(CN), 116.56 (CN), 

120.91(C1), 125.25(C’3), 127.75(C’4), 128.86(C’2), 129.21 

(C’6), 129.59(C’5), 133.32(C9), 135.77(C’1), 143.72(C2) 

ppm; MS (EI): 522, 495, 468, 378, 376, 209, 167, 140, 104, 

91, 81, 55 m/z; CHN analysis calcd for C32H26N8: 73.54 (C), 
5.01 (H), 21.44 (N); Found 68.03 (C), 5.39 (H), 18.87 (N). 

 Entry f, Table 2: Yellow solid; Mp: 202-205
o
C; FT-IR-

ATR (νmax, cm 
-1

): 3409, 3331, 3245, 3045, 3010, 2959, 2935, 

2910, 2857, 2842, 2215, 1651, 1613, 1586, 1514, 1474, 1451, 

1442, 1394, 1307, 1280, 1256, 1179, 1152, 1119, 1028, 981, 

840, 821, 802, 779, 764, 751, 700, 658; 
1
H-NMR (300 MHz, 

DMSO-d6): δ 1.13-1.26 (m, 1H,C5H), 1.87-1.93 (q, 1H, J= 

6, 6 Hz, C5H), 2.25-2.38 (m, 2H, C6H), 3.24 (s, 2H, C4H, 

C9H), 3.78 (s, 3H, C’4-OMe), 5.51 (s, 1H,C7H), 6.91-6.93 

(d, 2H, J= 6 Hz, ArH), 7.24 (s, 2H,-NH2), 7.36-7.39 (d, 2H, 

J= 9 Hz, ArH) ppm; 
13

C-NMR (75 MHz, DMSO-d6): 29.73 

(C5), 31.38(C6), 43.24(C9), 44.29(C4), 51.94(C3), 55.38 (C-

OMe), 112.33(C7), 112.74(CN), 114.26(CN), 116.05 (CN), 

116.55 (C’2, C’6), 120.41(C’3, C’5), 126.25(C’4), 130.87 

(C1), 135.17(C8), 146.00(C’1), 160.21(C2)ppm; MS (EI): 

316, 289, 121, 91 m/z; CHN analysis calcd for C19H16N4O: 

72.14 (C), 5.10 (H), 17.71 (N), 5.06 (O); Found 71.44 (C), 
5.05 (H), 16.71 (N), 6.98 (O). 

 Entry g, Table 2: White solid; Mp: 208-210
o
C; FT-IR-

ATR (νmax, cm 
-1

): 3442, 3353, 3260, 3222, 3012, 2914, 2843, 

2200, 1638, 1611, 1592, 1514, 1443, 1399, 1311, 1285, 1249, 

1185, 1121, 1030, 965, 923, 839, 808, 786, 750, 717, 695, 

673; 
1
H-NMR (300 MHz, CDCl3): δ 1.28-1.63 (m, 4H, C5H, 

C6H), 1.73-1.89 (m, 3H,C7H), 2.28-2.40 (m, 2H, C8H), 

3.09-3.10 (d, 1H, J= 3Hz, C4H, C11H), 3.86 (s, 3H, C’-OMe), 

4.94 (s, 1H, -NH2), 6.21-6.25 (d, 1H, J= 6 Hz, C9H), 6.98-

7.01 (d, 2H, J=9 Hz, ArH), 7.37-7.42 (dd, 1H, J= 3,3 Hz, 

ArH) ppm; 
13

C-NMR (75 MHz, CDCl3): 24.96(C5), 28.30 

(C6), 30.41(C7), 31.96(C8), 39.28(C11), 52.95(C4), 55.30 

(C-OMe), 87.74(C9), 111.10(C3), 111.79(CN), 114.84(CN), 

115.87 (CN), 127.23(C’3, C’5), 130.04(C’2, C’6), 130.17 

(C’1, C’4), 133.04(C1), 141.46(C10), 160.62(C2) ppm; MS 

(EI): 344, 315, 287, 185, 147, 121 m/z; CHN analysis calcd 

for C21H20N4O: 73.23 (C), 5.85 (H), 16.27 (N), 4.65 (O); 
Found 72.89 (C), 5.81 (H), 15.98 (N), 5.32 (O). 

 Entry h, Table 2: White solid; Mp: 188-190
o
C; FT-IR-

ATR (νmax, cm 
-1

): 3632, 3446, 3394, 3342, 2205, 1637, 1620, 

1592, 1575, 1523, 1490, 1473, 1440, 1412, 1402, 1017, 958, 

918, 852, 803, 733, 606; 
1
H-NMR (300 MHz, CDCl3): δ 

1.32-1.55 (m, 4H, C5H, C6H), 1.75-1.85 (m, 4H, C7H, 

C8H), 2.27-2.43 (m, 2H, C4H, C11H), 4.98 (s, 2H, -NH2), 

6.24-6.27 (t, 1H,J= 6 Hz, C9H), 7.44-7.50 (m, 4H, ArH) 

ppm; 
13

C-NMR (75 MHz, CDCl3): 24.86(C5), 28.26(C6), 30.31 

(C7), 32.02(C8), 39.16(C11), 42.38(C4), 52.94(C3), 87.74 

(C9), 110.72(CN), 111.39(CN), 115.61(CN), 129.78(C’3, 

C’5), 130.21(C’2, C’6), 130.51(C’4), 132.38(C’1), 133.85 

(C1), 135.91(C10), 141.02(C2) ppm; MS (EI): 348, 294, 

223, 160, 127, 125 m/z; CHN analysis calcd for C20H17N4Cl: 

68.86 (C), 4.91 (H), 16.06 (N); Found 68.56 (C), 4.91 (H), 
15.51 (N). 

 Entry j, Table 2: Pale yellow solid; Mp: 225-228
o
C; FT-

IR-ATR (νmax, cm 
-1

): 3422, 3308, 3200, 2932, 2911, 2850, 

2208, 1644, 1580, 1491, 1471, 1450, 1387, 1357, 1306, 1280, 

1206, 1181, 1159, 1039, 1034, 1004, 924, 837, 814, 758, 715, 

701, 678; 
1
H-NMR (300 MHz, DMSO-d6): δ 1.33 (s, 1H, C5H), 

1.50 (s, 4H, C5H, C6H, C7H), 1.64 (s, 3H, C7H, C8H), 1.81-

1.85 (m, 1H, C8H), 2.22-2.30 (m, 1H, C9H), 2.37-2.42 (m, 

1H, C9H), 3.72 (s, 2H, -NH2), 4.38 (s, 1H, C10H), 7.35 (s, 

3H, ArH), 7.39 (s, 2H, ArH) ppm; 
13

C-NMR (75 MHz, 

DMSO-d6): 25.34(C5), 26.73(C6), 27.99(C7), 29.11(C8), 29.62 

(C9), 31.21(C12), 42.26(C4), 51.26(C3), 79.69(C10), 112.01 

(CN), 114.83(CN), 117.35(CN), 124.56(C’3, C’5), 126.85 

(C’2, C’6), 128.98(C’4), 129.18(C’1), 129.63(C1), 134.43 

(C10), 144.40(C2) ppm; MS (EI): 328, 300, 271, 246, 212, 

144, 115, 91 m/z; CHN analysis calcd for C21H20N4: 76.80 (C), 
6.14 (H), 17.06 (N); Found 76.39 (C), 6.15 (H), 16.60 (N). 

CONCLUSION 

 In conclusion, we disclosed DABCO catalyzed multi-

component reaction of aldehyde, cyclic ketone and malono-

nitrile furnished corresponding tetrahydronaphthalenes, tet-

rahydroindalenes, hexahydrobenzo[7]annulenes and hexahy-

drobenzo[8]annulenes, with a high level of complexity. No-

tably, this methodology provides facile access to various 

multi-functional compounds. The operational simplicity and 

good yields, combined with step and atom-economic aspects, 

clean reactions yielded pure products, hence no requirement 

of tedious chromatographic purification makes this synthetic 

strategy highly attractive and promising approach from view-
point of sustainable and practical chemistry. 
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