Ring-opening reaction of methylenecyclopropanes with $\mathrm{LiCl}, \mathrm{LiBr}$ or NaI in acetic acid

Jin-Wen Huang and Min Shi*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received 7 August 2003; revised 23 December 2003; accepted 26 December 2003

Abstract

The methylenecyclopropanes 1 react with $\mathrm{LiCl}, \mathrm{LiBr}$ or NaI at $80^{\circ} \mathrm{C}$ to give the corresponding gem-disubstituted homoallylic halides 2 in good to excellent yields in acetic acid. In some cases, the ring-opening reaction can be completed within 5 min to give the corresponding gem-disubstituted homoallylic halides in high yields.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Methylenecyclopropanes (MCPs) $\mathbf{1}$ are highly strained but readily accessible molecules that have served as useful building blocks in organic synthesis. ${ }^{1}$ Strain in organic molecules often correlates with increased reactivity because the relief of ring strain provides a potent thermodynamic driving force. ${ }^{2}$ Recently, Yamamoto reported that the reaction of alkylidenecyclopropanes with HCl or with HBr proceeds very smoothly at $120^{\circ} \mathrm{C}$ to produce the corresponding gem-disubstituted homoallylic chlorides and bromides in good to excellent yields. ${ }^{3}$ However, the reactions were carried out in a well sealed, pressured vial with 4 M hydrogen chloride in 1,4-dioxane or 1 M hydrogen bromide in acetic acid. Obviously, the severe reaction conditions limited its use in organic synthesis. In addition, the preparation of gem-disubstituted homoallylic iodides has not been mentioned.

In this paper, we wish to describe a more convenient and useful synthetic method for the preparation of gemdisubstituted homoallylic halides including gem-disubstituted homoallylic iodides in good yields from the ring-opening reaction of MCPs with $\mathrm{LiCl}, \mathrm{LiBr}, \mathrm{NaI}$ (alkali metal halides) in acetic acid under milder conditions (Scheme 1).

[^0]

Scheme 1. The ring-opening reaction of MCPs $\mathbf{1}$ with $\mathrm{LiCl}, \mathrm{LiBr}, \mathrm{NaI}$ in acetic acid.

2. Results and discussion

Using diphenylmethylenecyclopropane $\mathbf{1 a}(0.5 \mathrm{mmol})$ as a substrate, we first attempted the hydrohalogenation of $\mathbf{1 a}$ using sodium halides (0.75 mmol) in acetic acid (Table 1). We found that using NaCl or NaBr as a hydrohalogenating reagent in acetic acid at $80^{\circ} \mathrm{C}$, ${ }^{4}$ only trace of the corresponding homoallylic chloride 2a or bromide 2b was formed (Table 1, entries 1 and 2). Using NaI as a hydrohalogenating reagent at $80^{\circ} \mathrm{C}$ in acetic acid, the corresponding gem-disubstituted homoallylic iodide 2c was produced in quantitative yield within 10 min , although no reaction occurred at room temperature and only trace of 2c was formed at $50^{\circ} \mathrm{C}$ under the same conditions (Table 1, entries $3-5$). This is simply because NaI has higher nucleophilicity than NaCl or NaBr and is soluble in acetic acid at $80^{\circ} \mathrm{C}$. On the other hand, using LiCl or $\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$ as a nucleophile instead of NaCl and NaBr , the ring-opening reaction of $\mathbf{1 a}$ takes place smoothly to give the corresponding gem-disubstituted homoallylic chloride 2a and bromide $\mathbf{2 c}$ in excellent yields within 20 and 60 min , respectively, under identical conditions (Table 1, entries 9 and 10). The other nucleophiles such as $\mathrm{NaN}_{3}, \mathrm{KF}$ and NaOAc showed no reactivities to this ringopening reaction under the same conditions (Table 1, entries 6-8).

Table 1. The reaction of MCP 1a with metal halides in acetic acid

Entry	MX	Temperature (${ }^{\circ} \mathrm{C}$)	Time	Yield ${ }^{\text {a }}$
,	NaCl	80	48 h	2a, trace
2	NaBr	80	48 h	2b, trace
	NaI	15	48 h	2c, NR
	NaI	50	48 h	2c, trace
5	NaI	80	10 min	2c, 100
6	NaN_{3}	80	48 h	Trace
7	KF	80	48 h	Trace
8	NaOAc	80	48 h	Trace
9	LiCl	80	60 min	2a, 96
10	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	80	20 min	2b, 98

${ }^{\text {a }}$ Isolated yield.

Using various MCPs $\mathbf{1}(0.5 \mathrm{mmol})$ as the substrates, we carried out the ring-opening reaction of $\mathbf{1}$ with LiCl , $\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaI}(0.75 \mathrm{mmol})$ under the optimized conditions. The results were summarized in Table 2. As shown in Table 2, homoallylic halides 2 were obtained in good to excellent yields (Table 2, entries $1-15$). The substituents on the benzene ring significantly affected the reaction. For MCP 1b having a strongly electron-donating group on the benzene ring, the ring-opening reaction of MCP 1b could be completed within 5 min in the presence of
either $\mathrm{LiCl}, \mathrm{LiBr}$ or NaI to give the corresponding halides in excellent yields (Table 2, entries 1-3). The electronwithdrawing groups such as F - or Cl - on the benzene ring slowed down the reaction rates. Thus, a prolonged reaction time ($1-5 \mathrm{~h}$) was required to complete the reaction for MCPs $\mathbf{1 d}$ and $\mathbf{1 e}$ (Table 2, entries 7-12). For unsymmetric MCP 1f $\left(\mathrm{R}^{1}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$, the gem-disubstituted homoallylic halides $\mathbf{2 p}$ was obtained as a mixture of Z / E-isomer (Table 2, entry 13). For aliphatic MCPs $\mathbf{1 f - i}$, the corresponding homoallylic halides could be obtained under the same conditions for a prolonged reaction time (12 h) in high yields as well (Table 2, entries $14-20$). In the case of aliphatic MCP $\mathbf{1 g}$, the corresponding homoallylic halides were obtained as a mixture of α, β-isomers (Scheme 2).

In conclusion, we disclosed in this paper a more efficient transformation of MCPs $\mathbf{1}$ to the corresponding gemdisubstituted homoallylic chlorides, bromides, and iodides under milder conditions using $\mathrm{LiCl}, \mathrm{LiBr}$, and NaI as hydrohalogenating reagents. ${ }^{5}$ The reaction was carried out under ambient atmosphere. Inert atmosphere and high pressure reaction vessel are not required. In some cases, the ring-opening reaction can be completed within 5 min to give the corresponding gem-disubstituted homoallylic halides in high yields. The rearrangement of cyclopropyl carbinyl cation to a homoallylic cation induced by acetic acid is likely the key step of this ring-opening reaction. ${ }^{6}$ The experiments are underway to elucidate the mechanistic details, expand the scope and define the limitations of this reaction.

Table 2. The reactions of various MCPs $\mathbf{1}$ with alkali metal halides in acetic acid

1

Entry	$\mathrm{R}^{1} / \mathrm{R}^{2}$	N	MX	Time	Yield ${ }^{\text {a }}$
1	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} / p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	1b	LiCl	<5 min	2d, 99
2	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} / p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	1b	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	<5 min	2e, 100
3	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} / p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	1b	NaI	<5 min	2f, 100
4	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} / p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	1c	LiCl	20 min	2g, 98
5	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} / p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	1c	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	20 min	2h, 96
6	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} / p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	1c	NaI	10 min	2i, 96
7	$p-\mathrm{FC}_{6} \mathrm{H}_{4} / p-\mathrm{FC}_{6} \mathrm{H}_{4}$	1d	LiCl	5 h	2j, 97
8	$p-\mathrm{FC}_{6} \mathrm{H}_{4} / p-\mathrm{FC}_{6} \mathrm{H}_{4}$	1d	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	5 h	2k, 92
9	$p-\mathrm{FC}_{6} \mathrm{H}_{4} / p-\mathrm{FC}_{6} \mathrm{H}_{4}$	1d	NaI	1 h	21, 95
10	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} / p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	1e	LiCl	4 h	2m, 91
11	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} / p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	1e	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	3 h	2n, 94
12	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} / p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	1e	NaI	1 h	20, 98
13	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} / \mathrm{C}_{6} \mathrm{H}_{5}$	1f	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	20 min	2p, $100(2.0: 1)^{\text {b }}$
14		1 g	LiCl	12 h	2q, $100(1: 0.9)^{\text {c }}$
15		1g	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	12 h	2r, $94(1.47: 1)^{\text {c }}$
16			NaI	12 h	2s, 89 (4:1) ${ }^{\text {c }}$
17	$n-\mathrm{C}_{7} \mathrm{H}_{15} / \mathrm{CH}_{3}$	1h	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	12 h	2t, 90 (1.7:1) ${ }^{\text {b }}$
18	$n-\mathrm{C}_{4} \mathrm{H}_{9} / n-\mathrm{C}_{4} \mathrm{H}_{9}$	1 i	LiCl	12 h	2u, 89
19	$n-\mathrm{C}_{4} \mathrm{H}_{9} / n-\mathrm{C}_{4} \mathrm{H}_{9}$	1 i	$\mathrm{LiBr} \cdot \mathrm{H}_{2} \mathrm{O}$	12 h	2v, 80
20	$n-\mathrm{C}_{4} \mathrm{H}_{9} / n-\mathrm{C}_{4} \mathrm{H}_{9}$	1i	NaI	12 h	2w, 73

[^1]

Scheme 2. The ring-opening reaction of aliphatic MCP $\mathbf{1 g}$ with $\mathrm{LiCl}, \mathrm{LiBr}, \mathrm{NaI}$ in acetic acid.

3. Experimental

3.1. General methods

Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMRs and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 and 75 MHz , respectively. Mass spectra were recorded by EI methods, and HRMS was measured on a Finnigan MA+ mass spectrometer. Organic solvents were dried by standard methods when necessary. Commercial reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel. The starting materials (MCPs) $\mathbf{1}$ were prepared according to the literature. ${ }^{7}$

3.2. General procedure for the reactions of MCPs with alkali metal chlorides, bromides or iodides

MCPs $1(0.5 \mathrm{mmol})$ was dissolved in 1.0 mL of acetic acid and then a metal iodide, chloride or bromide $(0.75 \mathrm{mmol})$ was added into the solution. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ and was stirred for $5-300 \mathrm{~min}$. The reaction was monitored by TLC plate. After the reaction was completed, it was quenched by the addition of water, the organic compounds were extracted with petroleum ether. The organic layer was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, brine, and water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography eluenting with hexane/ethyl acetate (5:1) to afford the product 2.
3.2.1. 4,4-Diphenyl-1-chloro-but-3-ene (2a). This compound was obtained as a colorless oil in 96% yield. IR (neat): $\nu 3079,3024,2956,1598,1494,1444,1296$, $1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.56$ (td, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.55\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.23-7.47(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 32.96,44.42,124.83$, 127.30, 127.33, 127.35, 128.21, 128.39, 129.77, 139.65, 142.15, 144.44; MS (EI) $m / z: 242$ (M ${ }^{+}$) (41), 193 (100), 180 (95), 165 (70), 115 (90), 104 (68), 91 (49); HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Cl}$: 242.0862 . Found: 242.0829 .
3.2.2. 4,4-Diphenyl-1-bromo-but-3-ene (2b). This compound was obtained as a colorless oil in 98% yield. IR (neat): $\nu 3056,3024,1660,1598,1494,1444,1269 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.66$ (td, $J=7.2$, $\left.7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.41\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.08$ (t , $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.15-7.37(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 32.65,32.84,125.62$, 125.65, 127.23, 127.26, 128.10, 128.27, 129.64, 139.52, 142.02, 144.19; MS (EI) m/z: 286 (M ${ }^{+}$) (31), 207 (10), 193
(56), 189 (10), 182 (16), 178 (34), 165 (27), 129 (100); HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br}$: 286.0357. Found: 285.9449.
3.2.3. 4,4-Diphenyl-1-iodo-but-3-ene (2c). This compound was obtained as a colorless oil in 100% yield. IR (neat): ν 3055, 3022, 1598, 1494, 1443, 1239, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.67$ (td, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.16\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}$), 7.15-7.36 (m, 10H, ArH); ${ }^{13} \mathrm{C}$ NMR (75 MHz , TMS, CDCl_{3}): $\delta 5.62,33.29,127.22,127.24,127.64$, 128.11, 129.26, 129.63, 139.54, 142.05, 143.72; MS (EI) $m / z: 334\left(\mathrm{M}^{+}\right)(20), 207(75), 191$ (16), 178 (23), 129 (100); HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{I}: 334.0218$. Found: 334.0194.
3.2.4. 4,4-Bis(4-methoxyphenyl)-1-chloro-but-3-ene (2d). This compound was obtained as a colorless oil in 99% yield. IR (neat): $\nu 3000,2956,1605,1510,1287,1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.55$ (td, $J=7.2,7.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.53\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.77-$ 7.16 (m, 8H, ArH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): δ $33.24,44.80,55.50,55.71,113.74,113.94,123.02,128.73$, 131.12, 132.52, 135.46, 143.69, 158.96, 159.24; MS (EI) $m / z: 302\left(\mathrm{M}^{+}\right)(44), 267$ (6), 253 (100), 242 (31), 211 (15), 145 (42), 135 (82); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{2}$: 302.1074. Found: 302.1118 .
3.2.5. 1-[4-Bromo-1-(4-methoxyphenyl)but-1-enyl]-4methoxybenzene (2e). This compound was obtained as a colorless oil in 100% yield. IR (neat): $\nu 2920,2850,1605$, 1509, 1460, 1244, 1172, 1107, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.68$ (td, $J=6.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $3.42\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.94(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.81(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.16 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 32.90,33.00,55.23,55.27$, 113.46, 113.66, 123.67, 128.46, 130.81, 132.07, 135.16, 143.30, 158.76, 158.98; MS (EI) m/z: 346 (M+) (40), 267 (18), 253 (86), 242 (43), 211 (20), 159 (35), 145 (38), 135 (100), 121 (41); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrO}_{2}$: 346.0568. Found: 346.0578.
3.2.6. 4,4-Bis(4-methoxyphenyl)-1-iodo-but-3-ene (2f). This compound was obtained as a colorless oil in 100% yield. IR (neat): $\nu 2954,2834,1606,1511,1246,833 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}\right): \delta 2.67(\mathrm{td}, J=7.2$, $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.18 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.79(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, 6.79-7.18 (m, 8H, ArH); ${ }^{13} \mathrm{C}$ NMR (75 MHz , TMS, CDCl_{3}): $\delta 5.86,33.33,55.08,55.12,113.31,113.46$, $125.58,128.33,130.68,131.94,135.05,142.66,158.52$,
158.79; MS (EI) $m / z: 394$ (M^{+}) (8), 267 (28), 227 (9), 205 (13), 159 (19), 121 (23), 84 (100); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{IO}_{2}: 394.0430$. Found: 394.0446.
3.2.7. 1-[4-Chloro-1-(4-methylphenyl)but-1-enyl]-4methylbenzene (2 g). This compound was obtained as a colorless oil in 98% yield. IR (neat): $\nu 3023,2921,1606$, 1511, 1448, 1295, 1110, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , TMS, CDCl_{3}): $\delta 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57$ (td, $\left.J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.54\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.03 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 7.03-7.19 (m, 8H, ArH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 21.05,21.21,32.92$, 44.43, 123.62, 127.17, 128.78, 128.94, 129.56, 136.72, 136.78, 136.97, 139.51, 144.12; MS (EI) m/z: 270 (M ${ }^{+}$) (14), 221 (25), 210 (46), 119 (100), 91 (41); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}$: 270.1175 . Found: 270.1197.
3.2.8. 1-[4-Bromo-1-(4-methylphenyl)but-1-enyl]-4methylbenzene (2h). This compound was obtained as a colorless oil in 96% yield. IR (neat): $\nu 3022,2920,1609$, 1511, 1445, 1267, 1207, $1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , TMS, CDCl_{3}): $\delta 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.66$ (td, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.38 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $6.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.03-7.18(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 21.04,21.21,32.77$, 32.93, 124.62, 127.15, 128.77, 128.93, 129.52, 136.66, 136.75, 136.95, 139.46, 143.96; MS (EI) $m / z: 316\left(\mathrm{M}^{+}\right)$ (73), 221 (100), 205 (42), 143 (97), 129 (55), 105 (60); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Br}$: 314.0670. Found: 314.0653.
3.2.9. 1-[4-Iodo-1-(4-methylphenyl)but-1-enyl]-4methylbenzene (2i). This compound was obtained as a colorless oil in 96% yield. IR (neat): $\nu 3021,2919,1609$, 1511, 1444, 1239, 1169, 1110, $1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.37 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.66 (td, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.15 (t , $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $5.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.02-$ 7.18 (m, 8H, ArH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): δ 6.78, 21.06, 21.22, 33.39, 126.56, 127.16, 128.77, 128.90, 129.51, 136.71, 136.75, 136.93, 139.50, 143.48; MS (EI) $m / z: 362\left(\mathrm{M}^{+}\right)(14), 235(68), 219$ (17), 205 (20), 143 (100), 128 (34), 105 (72); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{I}$: 362.0531. Found: 362.0500 .
3.2.10. 1-[4-Chloro-1-(4-fluorophenyl)but-1-enyl]-4fluorobenzene ($\mathbf{2 j}$). This compound was obtained as a colorless oil in 97% yield. IR (neat): ν 2958, 2926, 1602, 1508, 1445, 1409, 1297, 1225, 1094, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.56$ (td, $J=6.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.57\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}), 6.92-7.20(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH})$; ${ }^{19} \mathrm{~F}$ NMR (282 MHz , TMS, CDCl_{3}): -115.47, -115.02; MS (EI) m/z: $278\left(\mathrm{M}^{+}\right)$ (55), 229 (100), 214 (20), 147 (14), 133 (41), 109 (30); HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClF}_{2}$: 278.0674. Found: 278.0664.
3.2.11. 1-[4-Bromo-1-(4-fluorophenyl)but-1-enyl]-4fluorobenzene (2k). This compound was obtained as a colorless oil in 92% yield. IR (neat): $\nu 2968,1602,1508$, 1225, 1158, 1094, $1015 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , TMS, CDCl_{3}): $\delta 2.67$ (td, $J=7.2,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.43 (t, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.93-$
7.20 (m, 8H, ArH); ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): -115.47, - 115.02; MS (EI) m/z: 322 (M ${ }^{+}$) (64), 229 (100), 214 (30), 147 (82), 133 (54), 109 (85); HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrF}_{2}: 322.0169$. Found: 322.0177 .
3.2.12. 1-Fluoro-4-[1-(4-fluorophenyl)-4-iodobut-1enyl]benzene (21). This compound was obtained as a colorless oil in 95% yield. IR (neat): $\nu 3043$, 2958, 1601, 1508, 1225, 1158, 1094, $1014 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , TMS, CDCl_{3}): $\delta 2.67\left(\mathrm{td}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.19(\mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.93-$ $7.20(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $-115.47,-114.99 ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): δ 5.46, 33.14, 114.89, 115.18, 115.23, 115.51, 127.92, 127.95, 128.78, 128.88, 131.20, 131.31, 135.20, 138.13, 138.85, $141.79,160.39,163.66,163.86$; MS (EI) $m / z: 370\left(\mathrm{M}^{+}\right)$ (24), 243 (100), 227 (11), 214 (14), 201 (14), 147 (93), 109 (95); HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{I}: 370.0030$. Found: 370.0036.
3.2.13. 4,4-Bis(4-chlorophenyl)-1-chloro-but-3-ene (2m). This compound was obtained as a colorless oil in 91% yield. IR (neat): ν 3030, 2956, 2925, 1592, 1492, 1401, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.57$ (td, $J=6.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.58 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.11 (t, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), $7.09-7.38$ (m, 8H, ArH); ${ }^{13}{ }^{13}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 33.03,44.36,126.20$, 128.64, 128.77, 128.99, 131.31, 133.63, 133.71, 137.77, 140.41, 142.49; MS (EI) $m / z: 310\left(\mathrm{M}^{+}\right), 275,261,226,191$, 163; HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{3}: 310.0083$. Found: 310.0047.
3.2.14. 4,4-Bis-(4-chlorophenyl)-1-bromo-but-3-ene (2n). This compound was obtained as a colorless oil in 95% yield. IR (neat): ν 3030, 2963, 1661, 1590, 1491, 1268, $1091 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.65$ ($\mathrm{td}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.42\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 6.06 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 7.08-7.37 (m, 8H, ArH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 40.42,41.67,126.37$, 128.26, 128.31, 128.46, 130.96, 131.26, 133.37, 137.39, 140.04, 141.97; MS (EI) m/z: 354 (M ${ }^{+}$), 261, 250, 235, 226, 202, 191, 163; HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrCl}_{2}$: 353.9578. Found: 353.9569 .
3.2.15. 4,4-Bis(4-chlorophenyl)-1-iodo-but-3-ene (20). This compound was obtained as a colorless oil in 98% yield. IR (neat): ν 3030, 2957, 1591, 1491, 1400, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 2.65$ (td, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.17 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 5.99 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 7.07-7.36 (m, 8H, ArH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 5.20,33.08,128.35$, 128.49, 128.57, 128.66, 128.75, 130.97, 133.31, 137.46, 140.12, 141.57; MS (EI) m/z: $402\left(\mathrm{M}^{+}\right), 275,250,204,163$; HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{I}$: 401.9439. Found: 401.9482.
3.2.16. 1-(4-Bromo-1-phenyl-but-1-enyl)-4-methoxybenzene ($\mathbf{2 p}$). This compound was obtained as a colorless oil (Z/E-mixture, 2:1) in 100% yield. IR (neat): ν 3028, 2958, 2835, 1606, 1575, 1510, 1493, 1443, 1247, 1179, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): for Z - or E-2p: $\delta 2.60-2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.38-3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-7.38(\mathrm{~m}$,
$9 \mathrm{H}, \mathrm{ArH}$); for E - or $Z-2 \mathbf{p}: \delta 2.60-2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.38-$ 3.43 (m, 2H, CH 2), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.02(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78-7.38(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH})$; MS (EI) $m / z: 316\left(\mathrm{M}^{+}\right)(77)$, 277 (3), 237 (15), 223 (100), 208 (10), 191 (10), 178 (17), 165 (19), 129 (42), 121 (24), 115 (37), 91 (28); HRMS (EI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}: 316.0463$. Found: 316.0454.

3.2.17. [4-(3-Chloropropylidene)cyclohexyl]benzene

 (2q). This compound was obtained as a colorless oil (α / β mixture, 1:0.9) in 100% yield. IR (neat): $\nu 3027,2925$, 1603, 1493, 1452, 1292, $1242 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , TMS, CDCl_{3}): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): for α - or β-isomer: $\delta 1.40-2.40\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47-2.56(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.64-2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.47-3.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.18(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.15-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; for β - or α-isomer: $\delta 1.40-2.40\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47-2.56$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.64-2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.47-3.58(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 5.54(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.15-7.36(\mathrm{~m}, 5 \mathrm{H}$, ArH); MS (EI) m/z: 234 (M+) (34), 157 (10), 143 (10), 104 (100), 91 (20); HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}: 234.1175$. Found: 234.1168.3.2.18. [4-(3-Bromopropylidene)cyclohexyl]benzene (2r). This compound was obtained as a colorless oil $(\alpha / \beta$ mixture, 1.47:1) in 94% yield. IR (neat): $\nu 3026,2925$, 1602, 1493, 1452, 1268, 1245, 1206, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): for α - or β-isomer: $\delta 1.40-2.40$ (m, 9H, CH $)$, 2.57-2.71 (m, 2H, CH 2), 3.35-3.44 (m, 2H, $\left.\mathrm{CH}_{2}\right), 5.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.18-7.31(\mathrm{~m}, 5 \mathrm{H}$, ArH); for β - or α-isomer: $\delta 1.40-2.40\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57-$ $2.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35-3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.54(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.18-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; MS (EI) $m / z: 278\left(\mathrm{M}^{+}\right)(4), 199(5), 157$ (10), 143 (11), 129 (16), 115 (21), 104 (100), 91 (52); HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Br}$: 278.0670. Found: 278.0673.
3.2.19. [4-(3-Iodopropylidene)cyclohexyl]benzene (2s). This compound was obtained as a colorless oil $(\alpha / \beta$ mixture, $4: 1$) in 90% yield. IR (neat): $\nu 3025,2924,1602$, 1493, 1451, 1227, $1166 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , TMS, CDCl_{3}): for α - or β-isomer: $\delta 1.42-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.80-2.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58-2.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.05-$ $3.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 7.07-$ $7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; for β - or α-isomer: $\delta 1.42-1.60(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.80-2.40 (m, 5H, CH $)^{2}$, $2.58-2.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.05-3.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.55(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, 7.07-7.18 (m, 5H, ArH); MS (EI) m/z: 326 (M ${ }^{+}$) (23), 222 (6), 199 (100), 157 (34), 143 (20), 129 (23), 117 (50), 104 90), 95 (52), 91 (100); HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{I}$: 326.0531. Found: 326.0521.
3.2.20. 1-Bromo-4-methyl-undec-3-ene (2t). This compound was obtained as a colorless oil (Z / E-mixture, 1.7:1) in 90\% yield. IR (neat): ν 2957, 2855, 1456, 1378, 1268, $723 \mathrm{~cm}^{-1} ; Z$ - or $E-2 \mathrm{t}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): δ $0.86\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26-1.40\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80-1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-2.20(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.38 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $5.18(\mathrm{tt}, J=7.2$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$); $E-$ or $Z-2 \mathrm{t}:{ }^{1} \mathrm{H}$ NMR (300 MHz , TMS, CDCl_{3}): $\delta 0.87\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26-1.40(\mathrm{~m}$, $10 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 2 \mathrm{H})$, 3.34 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.12 (tq, $J=7.2,1.0 \mathrm{~Hz}$); MS (EI) $m / z: 246\left(\mathrm{M}^{+}\right)(25), 162(51), 125$ (16), 95 (35), 83 (72), 55
(100); HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{Br}$: 246.0983 . Found: 246.0960.
3.2.21. 5-(2-Chloroethylidene)nonane (2u). This compound was obtained as a colorless oil in 89% yield. IR (neat): ν 2957, 2928, 2859, 1465, 1378, 1293, $1138 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 0.85-0.93(\mathrm{~m}, 6 \mathrm{H}$, CH_{3}), 1.27-1.34 (m, 8H, CH2), 1.97-2.03 (m, 4H, CH2 $)$, 2.48 (dt, $\left.J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $5.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, TMS, CDCl_{3}): $\delta 14.00,14.03,22.46,22.85,29.95,30.30$, 30.69, 31.33, 36.54, 44.57, 119.55, 143.31; MS (EI) m / z : $202\left(\mathrm{M}^{+}\right)(65), 160(20), 145(5), 118$ (54), 97 (26), 81 (42), 69 (58), 55 (100); HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{Cl}$: 202.1488. Found: 202.1519.
3.2.22. 5-(2-Bromoethylidene)nonane (2v). This compound was obtained as a colorless oil in 80% yield. IR (neat): ν 2957, 2928, 2859, 1465, 1378, 1293, $1138 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}\right): \delta 0.88-0.92(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.30-1.41\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.96-2.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.57 (dt, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $5.10\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}=\mathrm{CH}\right.$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , TMS, CDCl_{3}): $\delta 13.99,14.02,22.45,22.84,29.95,30.28$, 30.68, 31.48, 32.93, 36.51, 120.57, 143.21; MS (EI) m/z: $246\left(\mathrm{M}^{+}\right)(7), 206$ (8), 162 (6), 109 (9), 97 (21), 83 (69), 69 (67), 55 (100) HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{Br}: 246.0983$. Found: 246.1002.
3.2.23. 5-(2-Iodoethylidene)nonane (2 w). This compound was obtained as a colorless oil in 73\% yield. IR (neat): ν 2956, 2927, 2858, 1465, 1378, 1244, $1164 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TMS}, \mathrm{CDCl}_{3}$): $\delta 0.87-0.93\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-$ 1.35 (m, $8 \mathrm{H}, \mathrm{CH}_{2}$), $1.94-2.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58$ (dt, $\left.J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.11\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.06$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}=\mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , TMS, CDCl_{3}): $\delta 6.23,14.01,14.03,22.45,22.83,29.97,30.23$, 30.65, 32.15, 36.18, 122.71, 142.74; MS (EI) m/z: 294 (M ${ }^{+}$) (2), 210 (4), 167 (16), 111 (20), 97 (37), 83 (41), 69 (84), 55 (100); HRMS (EI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{I}: 294.0844$. Found: 294.0868.

Acknowledgements

We thank the State Key Project of Basic Research (Project 973) (No. G2000048007), Shanghai Municipal Committee of Science and Technology, and the National Natural Science Foundation of China for financial support (20025206, 20390050, and 20272069).

References and notes

1. (a) For a recent review: Nakamura, I.; Yamamoto, Y. $A d v$. Synth. Catal. 2002, 2, 111. (b) For the synthesis of MCPs: Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 598. (c) Inoue, Y.; Hibi, T.; Sataka, H.; Hashimoto, H. Chem. Commun. 1979, 982. (d) Binger, P.; Germer, A. Chem. Ber. 1984, 114, 3325. (e) Nakamura, I.; Oh, B. H.; Saito, S.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 2001, 40, 1298. (f) Oh, B. H.; Nakamura, I.; Saito, S.; Yamamoto, Y. Tetrahedron Lett. 2001, 42, 6203.
(g) Trost, B. M.; Bonk, P. J. J. Am. Chem. Soc. 1985, 107, 1778.
(h) Trost, B. M.; Bonk, P. J. J. Am. Chem. Soc. 1985, 107, 8277.
(i) Trost, B. M.; King, S. A. Tetrahedron Lett. 1986, 27, 5971.
(j) Trost, B. M.; King, S. A. J. Am. Chem. Soc. 1989, 111, 5902.
(k) Trost, B. M.; King, S. A. J. Am. Chem. Soc. 1990, 112, 408.
2. For reviews, see: (a) Binger, P.; Buch, H. M. Top. Curr. Chem. 1987, 135, 77. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (c) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213. For related papers, see: (d) Dunkelblum, E. Tetrahedron 1974, 30, 3391. (e) Xu, B.; Shi, M. Org. Lett. 2003, 5, 1415. (f) Donskaya, N. A.; Shulishov, E. V.; Shabarov, Yu. S. J. Org. Chem. USSR. (Engl. Transl) 1981, 17, 1874.
3. Siriwardana, A. I.; Nakamura, I.; Yamamoto, Y. Tetrahedron Lett. 2003, 44, 985, and references cited therein.
4. NaCl and NaBr are insoluble in acetic acid at $80^{\circ} \mathrm{C}$.
5. For hydrohalogenation reaction of propiolates. See: (a) Ma, S.-M.; Lu, X. Chem. Commun. 1990, 1643. (b) Comasseto, J. V.;

Menezes, P. H.; Stefani, H. A.; Zeni, G.; Braga, A. L. Tetrahedron 1996, 52, 9687. (c) Ma, S. M.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709. For hydrohalogenation reaction of allenes. See: (a) Ma, S. M.; Shi, Z.-J.; Li, L.-T. J. Org. Chem. 1998, 63, 4522. (b) Ma, S. M.; Li, L.-T.; Xie, H. J. Org. Chem. 1999, 64, 5325. (c) Ma, S. M.; Wei, Q. J. Org. Chem. 1999, 64, 1026. (d) Ma, S. M.; Li, L.-T. Synlett 2001, 1206. (e) Ma, S.-M.; Wang, G.-W. Chin. J. Chem. 1999, 17, 545. (f) Ma, S. M.; Xie, H.; Wang, G.-W.; Zhang, J.-L.; Shi, Z.-J. Synthesis 2001, 5, 713.
6. (a) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C. Chem. Rev. 1989, 89, 182. (b) Carey, F. A.; Tremoer, H. S. J. Am. Chem. Soc. 1969, 91, 2967. (c) Shi, M.; Xu, B. Org. Lett. 2002, 4, 2145. (d) Shi, M.; Chen, Y.; Xu, B.; Tang, J. Tetrahedron Lett. 2002, 43, 8019.
7. Utimoto, K.; Tamura, M.; Sisido, K. Tetrahedron 1973, 29, 1169.

[^0]: Keywords: Methylenecyclopropanes; $\mathrm{LiCl} ; \mathrm{LiBr} ; \mathrm{NaI} ;$ gem-Disubstituted homoallylic halides; Ring-opening reaction; Acetic acid.

 * Corresponding author. Tel.: +86-21-64163300x342; fax: +86-2164166128; e-mail address: mshi@pub.sioc.ac.cn

[^1]: ${ }^{\mathrm{a}}$ Isolated yield.
 ${ }^{\mathrm{b}}$ Z/E-mixture.
 ${ }^{\text {c }} \alpha / \beta$-mixture.

