Bioorganic & Medicinal Chemistry 22 (2014) 6509-6514

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Synthesis of triazole Schiff bases: Novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1

Khalid Mohammed Khan^{a,*}, Salman Siddiqui^a, Muhammad Saleem^a, Muhammad Taha^{a,b}, Syed Muhammad Saad^a, Shahnaz Perveen^c, M. Igbal Choudhary^{a,d}

^a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University Karachi, Karachi 75270, Pakistan ^b Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia ^c PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan ^d Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21412, Saudi Arabia

ARTICLE INFO

Article history: Received 10 July 2014 Revised 22 August 2014 Accepted 26 August 2014 Available online 16 September 2014

Keywords: Nucleotide pyrophosphatase/ phosphodiesterase-1 Schiff bases of triazoles PC3 cell lines Chondrocalcinosis

ABSTRACT

A series of Schiff base triazoles 1-25 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 $(IC_{50} = 132.20 \pm 2.89 \,\mu\text{M})$, **13** $(IC_{50} = 152.83 \pm 2.39 \,\mu\text{M})$, and **22** $(IC_{50} = 251.0 \pm 6.64 \,\mu\text{M})$ were identified as potent inhibitors with superior activities than the standard EDTA (IC₅₀ = $277.69 \pm 2.52 \mu$ M). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Triazoles are five membered organic heterocyclic compounds having a di-unsaturated ring comprising of three nitrogen and two carbon atoms. 1,2,4-Triazoles are cyclic hydrazones with Hatom (or substitution) on either hydrazide N-atom or an amide N-atom. According to the literature, 1H-1,2,4-triazoles and their analogues have diverse biological activities, such as antiasthamatic,^{1,2} antiviral,³ antifungal,⁴ antibacterial,⁵ hypnotic,⁶ pesticidal,⁷ breast cancer preventive,^{8,9} anticonvulsant, anticancer, antiinflammatory,^{10–19} CNS depressant,²⁰ and antihypertensive^{21,22} activities. 1,2,4-Triazole derivatives have been used as mimics and isosteres.^{23–30} Vasodilatory,^{31,32} psychotropic,^{33,34} cyclooxygenase and 5-lipoxygenase inhibition,³⁵ hypoglycemic,³⁶ antitumor activities,³⁷ plant growth regulating and anticoagulant properties are also reported for this class of compounds.³⁸

Easily attainable heterocyclic compounds of synthetic origin are ideal candidates for drug discovery and development against defined biological targets. Based on this hypothesis, we recently reported 1,3,4-oxadiazole-2(3H)-thiones and 1,3,4-thiadiazole-2(3H)-thiones (Fig. 1), as potent inhibitors of nucleotide pyrophosphatase/ phosphodiesterase-I.³⁹ Due to close structural resemblance of 1,2,4-triazoles with above-mentioned compounds, we synthesized 1,2,4-triazoles as potential inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1. Enzyme inhibition studies on 1,2,4-triazoles proved our hypothesis.

Nucleoside-5'-monophosphates are released by the catalytic action of nucleotide pyrophosphatase/phosphodiesterase-1 (NPP/ PDEs) from a variety of nucleotides and their derivatives.⁴⁰ These PDEs/NPPs occur in both forms as soluble proteins in the body or membrane proteins with active site outside the body. These enzymes are widely distributed throughout the body cells, as well as in a variety of organs, such as liver cells, serum, mammalian intestinal mucosa, and snake venom.⁴¹⁻⁴³ Plasma cell membrane glycoprotein (NPP1/PC-1) is the major agent for bone calcification and related tissues. The hyperactivity of PDE1 results in chondrocalcirosis,⁴⁴ whereas down regulation of enzymes severes calcification in mice.^{45,46} Human calcification syndrome is found to be associated with the down regulation of PDEs.

Only a few studies have been conducted on the inhibition of nucleotide pyrophosphatases/phosphodiesterases by natural or synthetic compounds.^{47–53} Progress in the discovery and development of inhibitors slowed largely due to the unavailability of the three-dimensional structures of the target enzymes.⁵⁴

^{*} Corresponding author. Tel.: +92 21 34824910; fax: +92 21 34819018. E-mail addresses: hassaan2@super.net.pk, khalid.khan@iccs.edu (K.M. Khan).

$$R^{1} \xrightarrow{X = 0 \text{ or } S}^{X^{-1}}$$

Figure 1. 1,3,4-Oxadiazole-2(3H)-thiones and 1,3,4-thiadiazole-2(3H)-thiones.

During the current study, triazole Schiff bases **1–25** were synthesized by using very simple and one step synthetic procedure keeping in mind the easy adoptability by pharma industries and cheap commercialization. All the synthetic Schiff bases **1–25** were screened for the inhibition of the snake venom nucleotide pyrophosphatase/phosphodiesterase-1. According to literature survey, these compounds are novel inhibitors of PDE1. This is the first report on the inhibitory potential of Schiff base of triazoles against PDE1/NPP1.

2. Results and discussion

2.1. Chemistry

Triazole Schiff bases **1–25** were synthesized by refluxing different substituted benzaldehydes and amino triazole in equimolar proportion in ethanol as a solvent with a catalytic amount of H_2SO_4 for 4–10 h. Progress of reaction was periodically monitored by TLC. After completion of reaction, solvent was evaporated under reduced pressure. The solid mass was re-crystallized with ethanol, which gave pure compounds (Scheme 1). These resulting compounds were characterized by ¹H NMR and EI mass spectrometry. Elemental analyses of all the compounds were found satisfactory. Compounds **3**, **4**, **6**, **7**, **8**, **13**, and **25** were synthesized for the first time.

In vitro snake venom NPP1 inhibitory activity of all derivatives of triazole Schiff bases **1–25** was carried out, whereas EDTA was used as the positive control. Compounds **10, 13,** and **22** were found to be most potent inhibitors against PDE1/NPP1 enzymes with IC₅₀ values 132.20 ± 2.89, 152.83 ± 2.39, and 251.0 ± 6.64 μ M, respectively, better than the standard EDTA (IC₅₀ = 277.69 ± 2.52 μ M). Compounds **23, 21**, and **20** were found to be weakly active with IC₅₀ values between 404 and 1164 μ M. Nonetheless, all other derivatives were found to be inactive. The IC₅₀ values of all the inhibitors against snake venom PDE1/NPP1 are shown in Table 1.

EDTA is used for the treatment of rheumatoid arthritis, osteoarthritis, diabetes, Parkinson's disease, and multiple sclerosis. Skin conditions, including scleroderma and psoriasis are also being treated with EDTA. As the PDEs hyperactivity is involved in a number of diseases such as arthritis, hypertension, and cardiovascular diseases,⁵⁵ therefore, it is usually used as standard for PDE1/NPP1 enzymes.

2.2. Structure-activity relationship

Structure-activity relationship (SAR) revealed that activity is mainly due to substitutions on benzene ring. Compound **10** having

Scheme 1. Synthesis of triazole Schiff bases 1-25.

Table 1

Compounds	Structures	$IC_{50} \pm SEM^a (\mu M)$
1	OH N N N N	NA ^b
2	MeO OH H N N N	NA ^b
3	Me OH H N N N	NA ^b
4	MeO N-N	NA ^b
5		NA ^b
6	$O_2N - \swarrow N - \swarrow N - \swarrow N - \bigvee N - N$	NA ^b
7	$EtO \longrightarrow N \longrightarrow $	NA ^b
8	$MeS \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow N$	NA ^b
9	$\overset{Cl}{\underset{Cl}{\longrightarrow}} \overset{H}{\underset{N}{\longrightarrow}} \overset{H}{\underset{N}{\longrightarrow}}$	NA ^b
10	$Me' \qquad \qquad Me' $	132.2 ± 2.89
11	$ \begin{array}{c} H \\ H $	NA ^b
12		NA ^b
13		152.83 ± 2.39
14		NA ^b
15		NA ^b
16	MeO OH	NA ^b

Table 1 (continued)

Compounds	Structures	IC ₅₀ ± SEM ^a (µM
17	EtO OH	NA ^b
18	MeO-	NA ^b
19	Eto - N N N N N N N N N N N N N N N N N N	NA ^b
20	HO - OH N-N N N	1164 ± 100.45
21	Br	823.1 ± 31.56
22	$\overset{\mathrm{Cl}}{\swarrow}_{\mathrm{OH}}\overset{\mathbb{N}^{-N}}{\overset{\mathbb{N}^{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{\underset{\mathrm{N}}{\overset{\mathrm{N}}{\underset{\mathrm{N}}{{N}}{$	251.0 ± 6.64
23	Br	404.56 ± 10.74
24	MeO MeO	NA ^b
25		NA ^b
	EDTA (Std.)	277.69 ± 2.52

^a Standard error of mean.

^b NA = Not active.

N,*N*'-dimethyl substituent exhibited a potent activity with $IC_{50} = 132.2 \pm 2.89 \,\mu$ M, as compared to other analogues. Similarly in compound 13 with ortho hydroxyl groups, a comparable activity (IC₅₀ = $152.83 \pm 2.39 \mu$ M) was observed. Compound **22** $(IC_{50} = 251.0 \pm 6.64 \,\mu\text{M})$ was found to be an excellent inhibitor with ortho hydroxyl and meta chloro groups. However, the presence of bromo group, as in compound **23** ($IC_{50} = 404.56 \pm 10.74$ - μ M) decreased the activity. It may be due to larger size of bromo substituent than a chloro group which developed steric and electronic hindrances for interaction with the active site residues of PDE1. Furthermore, the presence of chloro and hydroxyl groups in compound 22 enhanced the activity, as compared to the compound 23 which may be due to more electronegativity of chlorine than bromine. Compounds **21** ($IC_{50} = 823.1 \pm 31.56$ μ M), and **20** (IC₅₀ = 1164 ± 100.45 μ M) were found to be weak inhibitors with different substituents. Weak inhibitor 20 indicated that the presence of three hydroxyl groups caused a marked decrease in activity which may be due to steric hindrance making π -electrons non-available to chelate with the active site amino acid residues of the enzyme. In compound 21, the presence of bromo residue enhanced the activity as compared to compound 20 which possessed three hydroxyl groups contributing in the steric hindrance.

In brief, this study has identified compounds **10**, **13**, and **22** as leads for further research towards the treatment of phosphodies-terase-I related disorders.

Table 2	
Cytotoxcity of Schiff bases of triazole 1-25 against PC3 cell lines	

Compounds	$IC_{50}\pm SEM~(\mu M)$	Compounds	$IC_{50} \pm SEM (\mu M)$
1	>30	14	>30
2	>30	15	>30
3	>30	16	>30
4	>30	17	>30
5	>30	18	>30
6	>30	19	>30
7	>30	20	>30
8	>30	21	>30
9	>30	22	>30
10	>30	23	>30
11	>30	24	>30
12	>30	25	>30
13	>30	Doxorubicin Std.	0.912 ± 0.12

2.3. Cytotoxicity studies

All the compounds **1–25** were found to be inactive against the anticancer activity (PC3 Cell Line) (Table 2).

3. Conclusion

Three compounds **10**, **13**, and **22** were identified as potential lead compounds for nucleotide pyrophosphatase/phosphodiesterase-1 inhibition. These compounds were also evaluated for carbonic anhydrase and found to be inactive. The result illustrates that these synthetic compounds are selective towards nucleotide pyrophosphatase/phosphodiesterase-1 and may be useful for the treatment of disorders related to PDEs hyperactivity after further mechanistic studies.

4. Experimental

4.1. Material and methods

The phosphodiesterase-1 (Broth atrox crude dried snake venom) was purchased from Sigma-Aldrich, USA. The tris buffer was purchased from Scharlau, Spain Cat #TR0423, magnesium acetate was purchased from Sigma-Aldrich, USA Cat #M-0631, bis(p-nitrophenyl) phosphate was used as a substrate (Sigma-Aldrich, USA N-3002). 3-Amino-4(H)-1,2,4-triazoles, 4-amino-4(H)-1,2,4-triazoles, and different benzaldehydes of analytical grades were purchased from TCI, Japan. Ethanol was dried using magnesium turnings. ¹H NMR experiments were run on Avance Bruker AM 300 MHz instrument. Electron impact mass spectrometry (EI-MS) analyses were performed on a Finnigan MAT-311A (Germany) mass spectrometer. CHN analyses were performed on a Carlo Erba Strumentazione-Mod-1106, Milano, Italy. Thin layer chromatography (TLC) was monitored on precoated silica gel aluminum plates (Kieselgel 60, 254, E. Merck, Germany). TLC Chromatograms were visualized under UV at wavelengths of 254 and 365 nm or by using iodine vapours spray.

4.2. Nucleotide pyrophosphatases/phosphodiesterases-1 inhibition assay

The activity of snake venom PDE1/NPP1 was carried out by the standard procedure as reported in literature⁵⁶ with some modifications, such as 33 mM tris–HCl as buffer at pH of 8.8, magnesium acetate at a concentration of 30 mM as a co-factor, and 7.42×10^{-4} units of PDE1 enzyme dissolved in cold de-ionized water. After 30 min of incubation at 37 °C, the reaction was monitored by the addition of substrate (bis(*p*-nitrophenyl)phosphate) at 0.33 mM of total concentration. The rate of *p*-nitrophenol release

was monitored at 410 nm in 96-well plate by spectrophotometer (Molecular Devices, CA, USA).

All the reactions were performed in triplicate, and the initial rates were measured as the rate of changes in the $V_{max/min}$ (maximal velocity/min) and used in subsequent calculations.

The formula for % inhibition is:

%Inhibition = 100 - (V_{max} of test/ V_{max} of control) × 100

IC₅₀ Values were calculated by using the EZ-fit enzyme kinetics software (USA).

4.3. General procedure for the synthesis of compounds 1-25

In a typical procedure, 3-arylimino-1,2,4-triazoles and 4-arylimino-1,2,4-triazoles **1–25** were synthesized by mixing 3-amino-1,2,4-triazole or 4-amino-1,2,4-triazole (2 mmol), substituted benzaldehydes (2 mmol) and H_2SO_4 (2 mL) in ethanol (15 mL). The mixtures were refluxed for 4–10 h, while progress of the reaction was monitored through thin layer chromatography. When reaction was completed, solvent was evaporated on a rotary evaporator under reduced pressure and residue was washed with hot hexane. Resulting compounds were crystallized by ethanol to give title compounds in moderate to good yields.

4.3.1. *N*-[(3'-Hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-3-amine (1)

Yield: 74%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.41 (s, 1H, N=CH–Ar), 8.41 (s, 1H, H-5), 7.79 (d, 1H, $J_{6',5'}$ = 7.6 Hz, H-6'), 7.44 (t, 1H, $J_{4',3',5'}$ = 7.6 Hz, H-4'), 6.98 (m, 2H, H-5', H-3'); El-MS *m*/*z* (% rel. abund.): 188 [M]⁺ (48), 171 (100), 84 (31); Anal. Calcd for C₉H₈N₄O, C = 57.44; H = 4.28; N = 29.77; O = 8.50. Found: C = 57.42; H = 4.27; N = 29.78.

4.3.2. *N*-[(2'-Hydroxy-3'-methoxyphenyl)methylidene]-4*H*-1,2,4-triazol-3-amine (2)

Yield: 95%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.40 (s, N=CH-Ar), 8.42 (s, 1H, H-5), 7.38 (dd, 1H, $J_{6',5'}$ = 7.8 Hz, $J_{6',4'}$ = 1.3 Hz, H-6'), 7.35 (dd, 1H, $J_{4',5'}$ = 7.6 Hz, $J_{4',6'}$ = 1.2 Hz, H-4'), 6.91 (t, 1H, J = 7.8 Hz, H-5'), 3.82 (s, 3H, OCH₃); EI-MS *m*/*z* (% rel. abund.): 218 [M]⁺ (47), 201 (100), 92 (24); Anal. Calcd for C₁₀H₁₀N₄O₂, C = 55.04; H = 4.62; N = 25.68. Found: C = 55.02; H = 4.61; N = 25.67.

4.3.3. *N*-[(2'-Hydroxy-5'-methylphenyl)methylidene]-4H-1,2,4-triazol-3-amine (3)

Yield: 65%; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.35 (s, N=CH-Ar), 8.39 (s, 1H, H-5), 7.58 (s, 1H, H-6'), 7.26 (d, 1H, $J_{4',3'}$ = 8.0 Hz, H-4'), 6.88 (d, 1H, $J_{3',4'}$ = 8.0 Hz, H-3'), 4.01 (s, 1H, OH), 3.16 (s, 3H, CH₃), 2.26 (s, 3H, OCH₃); EI-MS *m*/*z* (% rel. abund.): 202 [M]⁺ (72), 185 (100), 84 (86); Anal. Calcd for C₁₀H₁₀N₄O, C = 59.40; H = 4.98; N = 27.71; O = 7.91. Found: C = 59.41; H = 4.97; N = 27.70.

4.3.4. *N*-[(3',4'-Dimethoxyphenyl)methylidene]-4*H*-1,2,4-triazol-3-amine (4)

Yield: 69%; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.92 (s, 1H, H-4), 9.11 (s, N=CH-Ar), 8.22 (s, 1H, H-5), 7.58 (s, 1H, H-2'), 7.53 (d, 1H, *J*_{6',5'} = 8.4 Hz, H-6'), 7.11 (d, 1H, *J*_{5',6'} = 8.4 Hz, H-4'), 3.84 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃); EI-MS *m*/*z* (% rel. abund.): 232 [M]⁺ (99), 231 (100), 84 (9); Anal. Calcd for C₁₁H₁₂N₄O₂, C = 56.89; H = 5.21; N = 24.12; O = 13.78. Found: C = 56.87; H = 5.20; N = 24.11.

4.3.5. *N*-[(2',4'-Dichlorophenyl)methylidene]-4*H*-1,2,4-triazol-3-amine (5)

Yield: 56%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.50 (s, N=CH-Ar), 8.42 (s, 1H, H-5), 7.82 (d, 1H, *J*_{3',5'} = 1.8 Hz, H-3'), 7.20 (d, 1H,

 $\begin{array}{l} J_{6',5'} = 8.4 \; \text{Hz}, \; \text{H-6'}), \; 7.59 \; (\text{dd}, \; 1\text{H}, \; J_{5',6'} = 8.4 \; \text{Hz}, \; J_{5',3'} = 1.8 \; \text{Hz}, \; \text{H-5'}); \\ \text{EI-MS} \; m/z \; (\% \; \text{rel. abund.}): \; 242 \; \; [\text{M+2}]^+ \; (6), \; 240 \; \; [\text{M}]^+ \; (10), \; 207 \\ (37), \; 205 \; (100); \; \text{Anal. Calcd for } C_9 H_6 \text{Cl}_2 \text{N}_4, \; \text{C} = 44.84; \; \text{H} = 2.51; \\ \text{Cl} = 29.41; \; \text{N} = 23.24. \; \text{Found:} \; \text{C} = 44.82; \; \text{H} = 2.52; \; \text{N} = 23.23. \end{array}$

4.3.6. *N*-[(4'-Nitrophenyl)methylidene]-4*H*-1,2,4-triazol-3-amine (6)

Yield: 62%; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.35 (s, N=CH-Ar), 8.55 (s, 1H, H-5), 8.36 (d, 2H, $J_{3',2'} = J_{5',6'} = 8.8$ Hz, H-3', H-5'), 7.82 (d, 2H, $J_{2',3'} = J_{6',5'} = 8.8$ Hz, H-2', H-6'); EI-MS *m*/*z* (% rel. abund.): 217 [M]⁺ (74), 76 (13); Anal. Calcd for C₉H₇N₅O₂, C = 49.77; H = 3.25; N = 32.25. Found: C = 49.76; H = 3.24; N = 32.26.

4.3.7. *N*-[(4'-Ethoxy-2'-hydroxyphenyl)methylidene]-4H-1,2,4-triazol-3-amine (7)

Yield: 77%; ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.39 (s, N=CH–Ar), 8.43 (s, 1H, H-5), 7.35 (d, 1H, $J_{6',5'}$ = 8.0 Hz, H-6'), 7.15 (d, 1H, $J_{5',6'}$ = 8.0 Hz, H-5'), 6.90 (m, 1H, H-3'), 4.08 (q, 2H, OCH₂), 1.35 (t, 3H, CH₃); EI-MS *m/z* (% rel. abund.): 232 [M]⁺ (94), 215 (100), 175 (40); Anal. Calcd for C₁₁H₁₂N₄O₂, C = 56.89; H = 5.21; N = 24.12; O = 13.78. Found: C = 56.87; H = 5.20; N = 24.11.

4.3.8. *N*-[4'-(Methylsulfanyl)phenyl]methylidene-4H-1,2,4-triazol-3-amine (8)

Yield: 57%; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.99 (s, 1H, H-4), 9.15 (s, N=CH—Ar), 8.22 (s, 1H, H-5), 7.91 (d, 2H, $J_{2',3'} = J_{6',5'} = 8.4$ Hz, H-2', H-6'), 7.38 (d, 2H, $J_{3',2'} = J_{5',6'} = 8.4$ Hz, H-3', H-5'), 3.32 (s, 3H, SCH₃); EI-MS *m*/*z* (% rel. abund.): 218 [M]⁺ (95), 217 (100), 149 (77); Anal. Calcd for C₁₀H₁₀N₄S, C = 55.02; H = 4.62; N = 25.67; *S* = 14.69. Found: C = 55.03; H = 4.61; N = 25.66.

4.3.9. *N*-[(3',5-Dichloro-2'-hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-3-amine (9)

Yield: 40%; ¹H NMR (500 MHz, DMSO-*d*₆): δ 14.27 (s, 1H, H-4), 13.80 (s, 1H, OH), 9.41 (s, N=CH-Ar), 8.63 (s, 1H, H-5), 7.94 (d, 1H, $J_{4',6'}$ = 1.1 Hz, H-4'), 7.78 (d, 1H, $J_{6',4'}$ = 1.1 Hz, H-6'); EI-MS *m*/*z* (% rel. abund.): 258 [M+2]⁺ (41), 256 [M]⁺ (62), 243 (12), 241 (66), 239 (100); Anal. Calcd for C₉H₆Cl₂N₄O, C = 42.05; H = 2.35; Cl = 27.58; N = 21.79; O = 6.22. Found: C = 42.04; H = 2.34; N = 21.78.

4.3.10. *N*-[4'-(Dimethylamino)phenyl]methylidene-4*H*-1,2,4-triazol-3-amine (10)

Yield: 51%; ¹H NMR (500 MHz, DMSO-*d*₆): δ 13.75 (s, 1H, H-4), 8.99 (s, N=CH—Ar), 8.04 (s, 1H, H-5), 7.78 (d, 2H, $J_{2',3'} = J_{6',5'} = 8.5$ Hz, H-2', H-6'), 7.38 (d, 2H, $J_{3',2'} = J_{5',6'} = 8.5$ Hz, H-3', H-5'), 3.03 (s, 6H, 2 × NCH₃); EI-MS *m*/*z* (% rel. abund.): 215 [M]⁺ (100), 214 (100), 146 (85); Anal. Calcd for C₁₁H₁₃N₅, C = 61.38; H = 6.09; N = 32.54. Found: C = 61.37; H = 6.10; N = 32.53.

4.3.11. *N*-[(3',5'-Dibromo-2'-hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-3-amine (11)

Yield: 51%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 14.24 (bs, 2H, H-4, OH), 9.38 (s, N=CH-Ar), 8.61 (s, 1H, H-5), 8.07 (d, 1H, $J_{4',6'}$ = 2.4 Hz, H-4'), 7.96 (d, 1H, $J_{6',4'}$ = 2.4 Hz, H-6'); EI-MS *m*/*z* (% rel. abund.): 348 [M⁺+4] (51), 346 [M+2]⁺ (100), 344 [M]⁺ (56), 225 (26); Anal. Calcd for C₉H₆Br₂N₄O, C = 31.24; H = 1.75; Br = 46.19; N = 16.19; O = 4.62. Found: C = 31.22; H = 1.74; N = 16.17.

4.3.12. *N*-[(2'-Hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (12)

Yield: 64%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.15 (s, 3H, H-3, H-5, N=CH–Ar), 7.77 (d, 1H, $J_{6',5'}$ = 7.8 Hz, H-6'), 7.40 (t, 1H, $J_{4',3',5'}$ = 8.4 Hz, H-4'), 7.0 (d, 1H, $J_{3',4'}$ = 8.4 Hz, H-3'), 6.92 (t, 1H, $J_{5',4',6'}$ = 7.5 Hz, H-5'); EI-MS *m*/*z* (% rel. abund.): 188 [M]⁺ (99),

119 (44), 84 (100); Anal. Calcd for C₉H₈N₄O, C = 57.44; H = 4.28; N = 29.77, O = 8.50. Found: C = 57.42; H = 4.27; N = 29.78.

4.3.13. *N*-[(2',3'-Dihydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (13)

Yield: 72%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.71 (s, 2H, 2 × OH), 9.15 (s, 3H, H-3, H-5, N=CH-Ar), 7.22 (dd, 1H, *J*_{6',5'} = 7.8 Hz, *J*_{6',4'} = 1.5 Hz, H-6'), 6.98 (dd, 1H, *J*_{4',5'} = 7.8, *J*_{4',6'} = 1.5 Hz, H-4'), 6.76 (t, 1H, *J*_{5',6',4'} = 7.8 Hz, H-5'); EI-MS *m*/*z* (% rel. abund.): 204 [M]⁺ (100), 135 (84), 107 (51); Anal. Calcd for C₉H₈N₄O₂, C = 52.94; H = 3.95; N = 27.44; O = 15.67. Found: C = 52.93; H = 3.93; N = 27.43.

4.3.14. *N*-[(3'-Hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (14)

Yield: 46%; ¹H NMR (300 MHz, DMSO- d_6): δ 9.86 (s, 1H, OH), 9.12 (s, 2H, H-3, H-5), 8.99 (s, N=CH-Ar), 7.35 (m, 1H, H-5'), 7.35 (m, 1H, H-6'), 7.25 (m, 2H, H-4', H-2'); EI-MS *m*/*z* (% rel. abund.): 188 [M]⁺ (100), 84 (93); Anal. Calcd for C₉H₈N₄O, C = 57.44; H = 4.28; N = 29.77; O = 8.50. Found: C = 57.42; H = 4.27; N = 29.78.

4.3.15. *N*-[(4'-Hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (15)

Yield: 76%; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.34 (s, 1H, OH), 9.05 (s, 2H, H-3, H-5), 8.91 (s, N=CH−Ar), 7.69 (d, 2H, $J_{2',3'} = J_{6',5'} = 8.8$ Hz, H-2', H-6'), 6.95 (d, 2H, $J_{3',2'} = J_{5',6'} = 8.8$ Hz, H-3', H-5'); EI-MS *m*/*z* (% rel. abund.): 188 [M]⁺ 100, 106 (95); Anal. Calcd for C₉H₈N₄O, C = 57.44; H = 4.28; N = 29.77; O = 8.50. Found: C = 57.42; H = 4.27; N = 29.78.

4.3.16. *N*-[(2'-Hydroxy-3'-methoxyphenyl)methylidene]-4*H*-1,2, 4-triazol-4-amine (16)

Yield: 61%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.86 (s, 1H, OH), 9.16 (s, 3H, H-3, H-5, N=CH–Ar), 7.37 (dd, 1H, *J*_{6',5'} = 7.8, *J*_{6',4'} = 1.2 Hz, H-6'), 7.14 (dd, 1H, *J*_{4',5'} = 7.8, *J*_{4',6'} = 1.2 Hz, H-4'), 6.89 (t, 1H, *J*_{5',6',4'} = 7.8 Hz, H-5'), 3.85 (s, 3H, OCH₃); EI-MS *m*/*z* (% rel. abund.): 218 [M]⁺ (100), 149 (100), 106 (83); Anal. Calcd for C₁₀H₁₀N₄O₂, C = 55.04; H = 4.62; N = 25.68; O = 14.66. Found: C = 55.02; H = 4.61; N = 25.67.

4.3.17. *N*-[(3'-Ethoxy-2'-hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (17)

Yield: 48%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.85 (s, 1H, OH), 9.16 (s, 3H, H-3, H-5, N=CH-Ar), 7.35 (dd, 1H, $J_{6',5'}$ = 8.1 Hz, $J_{6',4'}$ = 1.2 Hz, H-6'), 7.14 (dd, 1H, $J_{4',5'}$ = 8.1 Hz, $J_{4',6'}$ = 1.2 Hz, H-4'), 6.88 (t, 1H, $J_{5',6',4'}$ = 7.8 Hz, H-5'), 4.09 (s, 2H, OCH₂), 1.36 (s, 3H, CH₃); EI-MS *m*/*z* (% rel. abund.): 232 [M]⁺ (100), 164 (36), 135 (100); Anal. Calcd for C₁₁H₁₂N₄O₂, C = 56.89; H = 5.21; N = 24.12; O = 13.78. Found: C = 56.87; H = 5.23; N = 24.10.

4.3.18. *N*-[(4'-Methoxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (18)

Yield: 49%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.08 (s, 2H, H-3, H-5), 8.98 (s, N=CH–Ar), 7.79 (d, 2H, $J_{2',3'} = J_{6',5'} = 8.7$ Hz, H-6', H-2'), 7.11 (d, 2H, $J_{3',2'} = J_{5',6'} = 8.7$ Hz, H-5', H-3'), 3.84 (s, 3H, OCH₃); EI-MS *m*/*z* (% rel. abund.): 202 [M]⁺ (100), 120 (73), 105 (25); Anal. Calcd for C₁₀H₁₀N₄O, C = 59.40; H = 4.98; N = 27.71; O = 7.91. Found: C = 59.41; H = 4.97; N = 27.70.

4.3.19. *N*-[(4'-Ethoxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (19)

Yield: 70%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.07 (s, 2H, H-3, H-5), 8.98 (s, N=CH–Ar), 7.78 (d, 2H, $J_{2',3'} = J_{6',5'} = 9.0$ Hz, H-6', H-2'), 7.11(d, 2H, $J_{3',2'} = J_{5',6'} = 9.0$ Hz, H-5', H-3') 4.11 (s, 2H, OCH₂), 1.35

(s, 3H, CH₃); EI-MS m/z (% rel. abund.): 216 [M]⁺ (100), 188 (41), 106 (84); Anal. Calcd for C₁₁H₁₂N₄O, C = 61.10; H = 5.59; N = 25.91; O = 7.40. Found: C = 61.11; H = 5.57; N = 25.92.

4.3.20. *N*-[(2',4',6'-Trihydroxyphenyl)methylidene]-4H-1,2,4-triazol-4-amine (20)

Yield: 42%; ¹H NMR (500 MHz, DMSO- d_6): δ 10.62 (s, 2H, H-3, H-5), 10.26 (s, N=CH-Ar), 9.10 (s, 2H, 2xOH), 9.02 (s, 1H, OH), 5.89 (s, 2H, H-3', H-5'); EI-MS m/z (% rel. abund.): 220 [M]⁺ (2), 151 (41), 44 (100); Anal. Calcd for C₉H₈N₄O₃, C = 49.09; H = 3.66; N = 25.45; O = 21.80. Found: C = 49.08; H = 3.67; N = 25.43.

4.3.21. *N*-[(4'-Bromophenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (21)

Yield: 45%; ¹H NMR (500 MHz, DMSO-*d*₆): δ 9.12 (s, 2H, H-3, H-5), 9.08 (s, N=CH–Ar), 7.78 (s, 4H, H-2', H-3', H-5', H-6); EI-MS *m/z* (% rel. abund.): 252 [M+2]⁺ (94), 250 [M]⁺ (100), 89 (88); Anal. Calcd for C₉H₇BrN₄, C = 43.05; H = 2.81; Br = 31.82; N = 22.31. Found: C = 43.04; H = 2.80; N = 22.30.

4.3.22. *N*-[(5'-Chloro-2'-hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (22)

Yield: 48%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.17 (s, 2H, H-3, H-5), 9.09 (s, N=CH—Ar), 7.75 (d, 1H, *J*_{6',4'} = 2.7 Hz, H-6'), 7.44 (dd, 1H, *J*_{4',3'} = 9.0, *J*_{4',6'} = 3.0 Hz, H-4'), 7.00 (d, 1H, *J*_{3',4'} = 9.0 Hz, H-3'); EI-MS *m*/*z* (% rel. abund.): 224 [M+2]⁺ (21), 222 [M]⁺ (60), 153 (100); Anal. Calcd for C₉H₇ClN₄O, C = 48.55; H = 3.17; Cl = 15.92; N = 25.17; O = 7.19. Found: C = 48.54; H = 3.16; N = 25.16.

4.3.23. *N*-[(5'-Bromo-2'-hydroxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (23)

Yield: 60%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.80 (s, 1H, OH), 9.17 (s, 2H, H-3, H-5), 9.08 (s, N=CH-Ar), 7.89 (d, 1H, $J_{6',4'}$ = 2.4 Hz, H-6'), 7.55 (dd, 1H, $J_{4',3'}$ = 8.7 Hz, $J_{4',6'}$ = 2.4 Hz, H-4'), 6.95 (d, 1H, $J_{3',4'}$ = 8.7 Hz, H-3'); EI-MS *m/z* (% rel. abund.): 268 [M+2]⁺ (5), 266 [M]⁺ (5), 199 (100); Anal. Calcd for C₉H₇BrN₄O, C = 40.47; H = 2.64; Br = 29.92; N = 20.98; O = 5.99. Found: C = 40.48; H = 2.63; N = 20.97.

4.3.24. *N*-[(3',4'-Dimethoxyphenyl)methylidene]-4*H*-1,2,4-triazol-4-amine (24)

Yield: 73%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.08 (s, 3H, H-3, H-5), 9.97 (s, N=CH-Ar), 7.42 (d, 1H, $J_{2',6'}$ = 1.8 Hz, H-2'), 7.37 (dd, 1H, $J_{6',5'}$ = 8.4 Hz, $J_{6',2'}$ = 1.8 Hz, H-6'), 7.13 (d, 1H, $J_{5',6'}$ = 9.0 Hz, H-5'), 3.84 (s, 1H, OCH₃), 3.82 (s, 1H, OCH₃); EI-MS *m*/*z* (% rel. abund.): 232 [M]⁺ (100), 166 (27), 135 (40); Anal. Calcd for C₁₁H₁₂N₄O₂, C = 56.89; H = 5.21; N = 24.12; O = 13.78. Found: C = 56.87; H = 5.20; N = 24.11.

4.3.25. *N*-[4'-(Methylthio)phenyl]methylidene-4*H*-1,2,4-triazol-4-amine (25)

Yield: 76%; ¹H NMR (300 MHz, DMSO-*d*₆): δ 9.10 (s, 2H, H-3, H-5), 9.07 (s, N=CH—Ar), 7.76 (d, 1H, $J_{2',3'}$ = 8.4 Hz, H-2', H-6'), 7.40 (d, 1H, $J_{3',2'}$ = 8.4, H-3', H-5'), 1.13 (s, 3H, CH₃); EI-MS *m/z* (% rel. abund.): 218 [M]⁺ (91), 149 (100), 122 (70), 84 (56); Anal. Calcd for C₁₀H₁₀N₄S, C = 55.02; H = 4.62; N = 25.67; S = 14.69. Found: C = 55.03; H = 4.61; N = 25.66.

Acknowledgments

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing financial support through Project 20-1910 under the 'National Research Program for Universities', and for award of indigenous fellowship through HEC 5000 indigenous fellowship program to one of the students.

References and notes

- 1. Al-Masoudi, N. A.; Al-Soud, Y. A.; Ali, I. A. Nucleos. Nucleot. Nucl. 2007, 26, 37.
- 2. Naito, Y.; Akahoshi, F.; Takeda, S.; Takada, T.; Kajii, M.; Nishimura, H.; Sugiura, M.; Fukaya, C.; Kagitani, Y. J. Med. Chem. 1996, 39, 3019.
- 3. De Clercq, E. J. Clin. Virol. 2004, 30, 115.
- 4. Collin, X.; Sauleau, A.; Coulon, J. Bioorg. Med. Chem. Lett. 2003, 13, 2601.
- 5. Sui, Z.; Guan, J.; Hlasta, D. J.; Macielag, M. J.; Foleno, B. D.; Goldschmidt, R. M.; Loeloff, M. J.; Webb, G. C.; Barrett, J. F. Bioorg. Med. Chem. Lett. 1929, 1998, 8.
 Hester, J. B.; Rudzik, A. D.; Kamdar, B. V. J. Med. Chem. 1971, 14, 1078.
- Tanaka, G. Japan Kokai, 74, 95973. Chem. Abstr. 1975, 82, 156320h. 7 Lambert, P. A.; Somers, K. D.; Kohn, E. C.; Perry, R. R. Surgery 1997, 122, 372. 8
- Akçay, H. T.; Bayrak, R. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2014, 122, 9. 142
- 10. Clemons, M.; Coleman, R. E.; Verma, S. Cancer Treat. Rev. 2004, 30, 325.
- 11. Bekircan, O.; Bektas, H. Molecules 2006, 11, 469.
- Kane, J. M.; Baron, B. M.; Dudley, M. W.; Sorenson, S. M.; Staeger, M. A.; Miller, F. P. J. Med. Chem. 1990, 33, 2772.
- Küçükgüzel, I.; Küçükgüzel, S. G.; Rollas, S.; Ötük-Saniş, G.; Özdemir, O.; Bayrak, I.; Altuğ, T.; Stables, J. P. *IL Farmaco* **2004**, *59*, 893. 13
- 14.
- Gilbert, B. E.; Knight, V. Antimicrob. Agents Chemother. **1986**, 30, 201. Holla, B. S.; Veerendra, B.; Shivananda, M. K.; Poojary, B. Eur. J. Med. Chem. 15. 2003. 38. 759.
- 16. Turan-Zitouni, G.; Sivaci, M. F.; Kiliç, S.; Erol, K. Eur. J. Med. Chem. 2001, 36, 685.
- Bekircan, O.; Kucuk, M.; Kahveci, B.; Kolayli, S. Arch. Pharm. 2005, 338, 365. 17 Wade, P. C.; Vogt, B. R.; Kissick, T. P.; Simpkins, L. M.; Palmer, D. M.; Millonig, R. 18.
- C. J. Med. Chem. 1982, 25, 331.
- 19. Gruta, A. K.; Bhargava, K. P. Pharmazie 1978, 33, 430.
- 20. Modzelewska, B.; Kalabun, J. Pharmazie 1999, 54, 503.
- 21. Meyer, W. E.; Tomcufcik, A. S.; Chan, P. S.; Haug, M. J. Med. Chem. 1989, 32, 593.
- Siddiqui, A. A.; Mishra, R.; Shaharyar, M.; Husain, A.; Rashid, M.; Pal, P. Bioorg. 22. Med. Chem. Lett. 2011, 21, 1023.
- 23. Lagoja, I. M.; Pannecouque, C.; Musumeci, L.; Froeyen, M.; Aerschot, A. V.; Balzarini, J.; Herdewijn, P.; Clercq, E. D. Helv. Chim. Acta 1883, 2002, 85.
- Boeglin, D.; Cantel, S.; Heitz, A.; Martinez, J.; Fehrentz, J. A. Org. Lett. 2003, 5, 24. 4465
- 25. Wadsworth, H. J.; Jenkins, S. M.; Orlek, B. S.; Cassidy, F.; Clark, M. S. G.; Brown, F.; Riley, G. J.; Graves, D.; Hawlins, J.; Naylor, C. B. J. Med. Chem. 1992, 35, 1280. 26. Jenkins, S. M.; Wadsworth, H. J.; Bromidge, S.; Orlek, B. S.; Wyman, P. A.; Riley,
- G. J.; Hawkins, J. J. Med. Chem. 1992, 35, 2392. 27 Burrell, G.; Evans, J. M.; Hadley, M. S.; Hicks, F.; Stemp, G. Bioorg. Med. Chem.
- Lett. 1994, 4, 1285.
- Tully, W. R.; Gardner, C. R.; Gillepsie, R. J.; Westwood, R. J. Med. Chem. 1991, 34, 28. 2060
- 29. Thompson, S. K.; Eppley, A. M.; Frazee, J. S.; Darcy, M. G.; Lum, R. T.; Tomaszeck, T. A.; Ivanoff, L. A.; Morris, J. F.; Sternberg, E. J.; Lambert, D. M.; Fernandez, A. V.; Petteway, S. R.; Meek, T. D.; Metclaff, B. W.; Gleason, J. G. Bioorg. Med. Chem. Lett. 1994, 4, 2441.

- 30. Boyd, S. A.; Fung, A. K. L.; Baker, W. R.; Mantei, R. A.; Stein, H. H.; Cohen, J.; Barlow, J. L.; Klinghofer, V.; Wessale, J. L.; Vreburg, K. M.; Polakowski, J. S.; Adler, A. L.; Calzadilla, S. V.; Kovar, P.; Yao, Z.; Hutchins, C. W.; Denissen, J. F.; Grabowski, B. A.; Cepa, S.; Hoffman, D. J.; Garren, K. W.; Kleinert, H. D. J. Med. Chem. 1994, 37, 2991.
- 31. Hovsepian, T. R.; Dilanian, E. R.; Engoyan, A. P.; Melik-Ohanjanian, R. G. Chem. Heterocycl. Compd. 2004, 40, 1194.
- Tenor, E.; Ludwig, R. Pharmazie 1971, 26, 534. 32.
- 33. Baiocchi, L.; Chiari, A.; Frigerio, A.; Ridolfi, P. Arzneim.-Forsch. 1973, 23, 400.
- 34. Hökfelt, B.; Jöhnsson, A. J. Med. Chem. 1962, 5, 247.
- Boschelli, D. H.; Connor, D. T.; Bornemeier, D. A.; Dyer, R. D.; Kennedy, J. A.; 35 Kuipers, P. J.; Okonkwo, G. C.; Schrier, D. J.; Wright, C. D. J. Med. Chem. 1802, 1993. 36.
- Iqbal, A. K. M.; Khan, A. Y.; Kalashetti, M. B.; Belavagi, N. S.; Gong, Y. D.; Khazi, I. 36. A. Eur. J. Med. Chem. 2012, 53, 308.
- 37 Al-Soud, Y. A.; Al-Dweri, M. N.; Al-Masoudi, N. A. IL Farmaco 2004, 59, 775.
- 38. Eliott, R.; Sunley, R. L.; Griffin, D. A. U.K. Pat. Appl. GB. 1986, 2, 175301.
- 39. Khan, K. M.; Fatima, N.; Rasheed, M.; Jalil, S.; Ambreen, N.; Perveen, S.; Choudhary, M. I. Bioorg. Med. Chem. 2009, 17, 7816.
- Razzell, W. E. Methods Enzymol. 1963, 6, 236. 40.
- Bollen, M.; Gijsbers, R.; Ceulemans, H.; Stalmans, W.; Stefan, C. Crit. Rev. 41. Biochem. Mol. Biol. 2000, 35, 393.
- Goding, J. W.; Grobben, B.; Slegers, H. Biochim. Biophys. Acta 2003, 1638, 1. 42 43. Johnson, K.; Hashimoto, S.; Lotz, M.; Pritzker, K.; Goding, J.; Terkeltaub, R.
- Arthritis Rheum. 2001, 44, 1071. Okawa, A.; Nakamura, I.; Oto, S.; Moriya, H.; Nakamura, Y.; Ikegawa, S. Nat. 44. Genet. 1998, 19, 271.
- Ahmed, V. U.; Abbasi, M. A.; Hussain, H.; Akhtar, M.; Farooq, U.; Fatima, N.; 45. Choudhary, M. I. Phytochemistry 2003, 63, 217.
- Iqbal, K.; Anis, I.; Muhktar, N.; Malik, A.; Fatima, N.; Choudhary, M. I. 46. Heterocycles 2003, 60, 151.
- 47. Ahmed, V. U.; Abbasi, M. A.; Zubair, M.; Fatima, N.; Farooq, U.; Choudhary, M. I. Helv. Chim. Acta 2004, 87, 67.
- Choudhary, M. I.; Fatima, N.; Abbasi, A.; Jalil, S.; Ahmad, V. U.; Atta-ur-Rahman 48. Bioorg. Med. Chem. 2004, 12, 5793.
- Abbasi, M. A.; Ahmed, V. U.; Zubair, M.; Fatima, N.; Farooq, U.; Hussain, S.; 49. Lodhi, M. A.; Choudhary, M. I. Planta Med. 2004, 70, 1189.
- Atta-ur-Rahman; Naz, H.; Fadimatou, M. T.; Yasin, A.; Fatima, N.; Ngounou, F. 50. N.; Kimbu, S. F.; Sondengam, B. L.; Choudhary, M. I. J. Nat. Prod. 2005, 68, 189.
- 51. Ahmed, V. U.; Zubair, M.; Abbasi, M. A.; Kousar, F.; Fatima, N.; Choudhary, Z. Naturforsch 2005, 60B, 1101.
- Choudhary, M. I.; Fatima, N.; Khan, K. M.; Jalil, S.; Iqbal, S.; Atta-ur-Rahman 52. Bioorg. Med. Chem. 2006, 14, 8066.
- Mostafa, M.; Nahar, N.; Mosihuzzaman, M.; Sokeng, S.; Fatima, N.; Atta-ur-53. Rahman, ; Choudhary, M. I. Nat. Prod. Res. 2006, 20, 686.
- 54. Abby, L. P.; Daniel, L. B. Expert Opin. Ther. Pat. 2010, 20, 1619.
- 55. Olszewer, E.; Carter, J. P. Med. Hypotheses 1988, 27, 41.
- 56. Razzell, W. E.; Khorana, H. G. J. Biol. Chem. 1959, 234, 2114.