An Enantioselective Ketene–Imine Cycloaddition Method for Synthesis of Substituted Ring-Fused 2-Pyridinones

Hans Emtenäs, Lisa Alderin, and Fredrik Almqvist*

Organic Chemistry, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden

fredrik.almqvist@chem.umu.se

Received May 25, 2001

Previously, a method for the stereoselective synthesis of β -lactams, starting from $2H-\Delta^2$ -thiazolines and Meldrum's acid derivatives, has been reported from our laboratory. We now report a new method for the synthesis of optically active, highly substituted ring-fused 2-pyridinones. This was discovered when 2-alkyl- Δ^2 -thiazolines and Meldrum's acid derivatives were treated with HCl(g) in benzene at 5 \rightarrow 78 °C. Further refinement of the synthetic protocol revealed that use of 1,2-dichloroethane as solvent at $0 \rightarrow 64$ °C led to the desired 2-pyridinones in good yields and with excellent enantioselectivity. Use of these conditions allowed preparation of 2-pyridinones from several different Δ^2 -thiazolines and Meldrum's acid derivatives and may be a general route to 2-pyridinones.

Introduction

Recently, we reported the stereoselective synthesis of optically active β -lactams.¹ This rigid framework, with different stereochemistry than that of penicillin, was designed to be a suitable scaffold for the development of compounds (termed pilicides) that inhibit pilus formation in uropathogenic E. coli. The synthesis took use of acyl Meldrum's acids and Δ^2 -thiazolines as key intermediates, which gave the desired β -lactams in yields as high as 93% in the best cases. In our design work, however, we saw a possibility to obtain more potent pilicides if we could introduce an additional substituent in the β -lactam ring. To do so, the most direct approach would be to use 2-alkyl- or 2-aryl-substituted Δ^2 -thiazolines and perform the same ketene-imine cycloaddition. Although the steric hindrance in the β -lactam-forming step would be substantial with a substituent in the Δ^2 -thiazoline, others have shown that this approach can be successful.^{2,3}

Therefore, substituted Δ^2 -thiazolines were synthesized by the method described by Myers.^{4,5} This methodology is very attractive since commercially available nitriles, via their corresponding imino ethers, can be condensed with (R)-cysteine methyl ester hydrochloride. Thus, a set of different substituted Δ^2 -thiazolines was prepared (Scheme 1). The other building block, i.e., the Meldrum's acid derivatives, was easily made from an activated carboxylic acid and Meldrum's acid⁶ (Scheme 1).

Surprisingly, when the benzyl-substituted Δ^2 -thiazoline 1c was used, the previously so successful approach

^{*a*} Key: (a) HCl(g), EtOH, 0 °C, 4 h; (b) (*R*)-cysteine methyl ester hydrochloride, TEA, CH_2Cl_2 , 0 °C \rightarrow rt, 17 h; (c) DMAP, CH_2Cl_2 , $-12 \text{ °C} \rightarrow \text{rt}, 4 \text{ h}.$

did not give the desired benzyl-substituted β -lactam. Instead, a ring-fused 2-pyridinone framework was formed (Figure 1).

The core structure of these heterocycles can be found in numerous biologically active compounds with diverse medicinal properties. These range from antibacterial⁷⁻⁹ and antifungal¹⁰ agents to free-radical scavengers^{11,12} and angiotensin converting enzyme (ACE) inhibitors (Figure

⁽¹⁾ Emtenäs, H.; Soto, G.; Hultgren, S. J.; Marshall, G. R.; Almqvist,
F. Org. Lett. 2000, 2, 2065–2067.
(2) Bose, A. K.; Manhas, M. S.; Chib, J. S.; Chavla, H. P. S.; Dayal,
B. J. Org. Chem. 1974, 39, 2877–2884.
(3) Nagao, Y.; Kumagai, T.; Takao, S.; Abe, T.; Ochiai, M.; Inoue,
Y.; Taga, T.; Fujita, E. J. Org. Chem. 1986, 51, 4737–4739.
(4) Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am. Chem.

Soc. 1976, 98, 567-576.

⁽⁵⁾ Meyers, A. I.; Whitten, C. E. *Heterocycles* **1976**, *4*, 1687–1692. (6) Yamamoto, Y.; Watanabe, Y.; Ohnishi, S. Chem. Pharm. Bull. **1987**, *35*, 1860–1870.

⁽⁷⁾ Casinovi, C. G.; Grandolini, G.; Mercantini, R.; Oddo, N.; Olivieri, (a) Dolle, R. E.; Nicolaou, K. C. J. Am. Chem. Soc. 1985, 107, 1691.
 (8) Dolle, R. E.; Nicolaou, K. C. J. Am. Chem. Soc. 1985, 107, 1691.

⁽⁹⁾ Rigby, J.; Balasubramanian, N. J. Org. Chem. 1989, 54, 224.
(10) Cox, R. J.; O'Hagan, D. J. Chem. Soc., Perkin Trans. 1 1991,

^{2537.} (11) Teshima, Y.; Shin-ya, K.; Shimazu, A.; Furihata, K.; Chul, H.

S.; Furihata, K.; Hayakawa, Y.; Nagai, K.; Seto, H. J. Antibiot. 1991, 44, 685.

⁽¹²⁾ Rice-Evans, C. A.; Burdon, R. H. Free Radical Damage and its Control; Elsevier: Amsterdam, 1994.

Figure 1. β -Lactams or 2-pyridinones can be selectively prepared by choosing a 2-H-substituted or a 2-alkyl-substituted Δ^2 -thiazoline.

Figure 2. Examples of a natural product and a synthetic compound of medicinal interest that possess a 2-pyridinone framework.

2).^{13–15} 2-Pyridinones also serve as inhibitors of A β peptide aggregation,^{16,17} which is believed to play an important role in amyloid formation in Alzheimer's disease (Figure 2).

N-Substituted 2-pyridinones have also been used as active ingredients for the therapy of fibrotic disease,¹⁸ and they have been evaluated as inhibitors of human leukocyte elastase.¹⁹ Moreover, this framework can be transformed to piperidine, pyridine, quinolizidine, and indolizidine alkaloids,^{20,21} which, together with their potential as conformationally constrained amino acids,²²⁻²⁴ make them into important intermediates in natural product synthesis and versatile scaffolds for preparation of peptide mimetics.

Due to the importance of substituted 2-pyridinones, many preparative methods have been reported in the literature.²⁵⁻³⁸ In recent years, attractive cycloaddition

(13) Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; Du Bus, R. H.; Baker, P. J. J. Antibiot. 1985, 38, 1003.

- (14) Hunt, A. H.; Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; Maciak, G. M.; Kirst, H. A.; Occolowitz, J. L.; Swartzendruber, J. K.; Jones, N. D. J. Antibiot. 1988, 41, 771.
 (15) O'Connor, S.; Somers, P. J. Antibiot. 1985, 38, 993.
- (16) Kuner, P.; Bohrmann, B.; Tjernberg, L. O.; Näslund, J.; Huber,
- G.; Celenk, S.; Grüninger-Leitch, F.; Richards, J. G.; Jakob-Rœtne, R.; Kemp, J. A.; Nordstedt, C. J. Biol. Chem. **2000**, *275*, 1673–1678. (17) Thorsett, E. D.; Latimer, L. H. Curr. Opin. Chem. Biol. 2000,
- 4, 377-382.
- (18) Margolin, S. B. U. S. Patent 59214, May 7, 1993.

(19) Groutas, W. C.; Stanga, M. A.; Brubaker, M. J.; Huang, T. L.; Moi, M. K.; Carroll, R. T. J. Med. Chem. 1985, 28, 1106.
 (20) Scriven, E. F. V. In Comprehensive Heterocyclic Chemistry,

- Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 2
- (21) Elbein, A. D.; Molyneux, R. J. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1981; Vol. 5, p 1–54.
- (22) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789-12854.
- (23) Polyak, F.; Lubell, W. D. J. Org. Chem. 2001, 66, 1171-1180. (24) Feng, Z.; Lubell, W. D. J. Org. Chem. 2001, 66, 1181–1185.
 (25) Decker, H. Chem. Ber. 1892, 25, 443.

(26) Tieckelmann, H. In Hetrocyclic Compounds, Pyridine and Its Derivatives, Supplement Part Three, Abramovitch, R. A., Ed.; Wiley-Interscience: New York, 1974; p 597.

procedures have been reported separately by Padwa^{39,40} and Liebeskind^{41,42} that cover the preparation of ringfused 2-pyridinones.

Results and Discussion

Although a variety of methods for the synthesis of substituted 2-pyridinones are available, new direct approaches that are regioselective and mild enough to allow preparation of optically active products are continuously attracting interest. Therefore, we decided to investigate this novel enantioselective route from acyl Meldrum's acids and substituted Δ^2 -thiazolines further. Sets of 2-alkyl- and 2-aryl-substituted Δ^2 -thiazolines **1a**-**e** and Meldrum's acid derivatives 2a-c (Scheme 1) were therefore synthesized. Using the conditions applied in our previous β -lactam synthesis, i.e., HCl(g) in benzene at 5 \rightarrow 78 °C, a small library of substituted ring-fused 2-pyridinones $3\mathbf{a} - \mathbf{e}$ was then prepared (Table 1). The yields were moderate to good, and all the products were optically active. Moreover, the synthesis could easily be performed on a gram scale without any decrease in the isolated yields; 2.3 g of 2-pyridinone 3a was prepared corresponding to an isolated yield of 69% (83% based upon recovered Δ^2 -thiazoline **1**c).

A tentative mechanistic explanation to the formation of substituted 2-pyridinones could be as follows (Scheme 2). Instead of an attack back at the activated imine A, which would give a β -lactam, a [1,5] sigmatropic rearrangement results in enamide **B**. Then, an intramolecular attack at the β carbonyl group closes the sixmembered ring to give C. After consecutive removal of a proton and water, the final 2-pyridinone **D** is thus formed. According to this mechanism, a Δ^2 -thiazoline lacking a methylene group in the R²-substituent adjacent to the imine carbon would not be able to form a 2-pyridinone. Therefore, attempts to use 2-phenyl- or 2-isopropyl-substituted Δ^2 -thiazolines (**1d** and **1e**) should not result in any 2-pyridinones. Indeed, performing the reaction with these substrates resulted in undefined products. In these cases, one could expect the β -lactam "pathway" to be dominating but no substituted β -lactams could be isolated.

- (31) Schmidhauser, J. C.; Khouri, F. F. Tetrahedron Lett. 1993, 34, 6685
- (32) Sieburth, S. M.; Chen, J. L. J. Am. Chem. Soc. 1991, 113, 8163. (33) Chung, K. H.; Cho, K. Y.; Asami, Y.; Takahashi, N.; Yoshida,
 S. *Heterocycles* 1991, *32*, 99.
- (34) Aggarwal, V.; Singh, G.; Ila, H.; Junjappa, H. Synthesis 1982, 214
- (35) Datta, A.; Ila, H.; Junjappa, H. J. Org. Chem. 1990, 55, 5589.
 (36) Chuit, C.; Corriu, R. J. P.; Perz, R.; Reye, C. Tetrahedron 1986, 42, 2293.
- (37) Cainelli, G.; Panunzio, M.; Giacomini, D.; Simone, B. D.; Camerini, R. Synthesis 1994, 805.
- (38) Yamamoto, Y.; Takagishi, H.; Itoh, K. Org. Lett. 2001, 3, 2117-2119
- (39) Padwa, A.; Sheehan, S. M.; Straub, C. S. J. Org. Chem. 1999, 64, 8648-8659.
- (40) Padwa, A.; Heidelbaugh, T. M.; Kuethe, J. T. J. Org. Chem. 2000, 65, 2368-2378.
- (41) Gurski-Birchler, A.; Liu, F.; Liebeskind, L. S. J. Org. Chem. 1994. 59. 7737
- (42) Zhang, S.; Liebeskind, L. S. J. Org. Chem. 1999, 64, 4042-4049.

⁽²⁷⁾ Mckillop, A.; Boulton, A. J. In Comprehensive Heterocyclic Chemistry, Boulton, A. J., Mckillop, A., Eds.; Pergamon: Oxford, 1984; Vol. 2, p 67.

⁽²⁸⁾ Jones, G. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 5.

⁽²⁹⁾ Comins, D. L.; Jianhua, G. Tetrahedron Lett. 1994, 35, 2819. (30) Sieburth, S. M.; Hiel, G.; Lin, C. H.; Kuan, D. P. J. Org. Chem. 1994. 59. 80.

Table 1. Influence of Different Conditions for the Synthesis of 2-Pyridinones Regarding Yield and Enantiomeric Excess

			Lina	Infometic Exce		
		R્ +	2 S. 	HCI (g) CO ₂ Me		
				3a 3b 3c 3d 3e	$R^{1}=CH_{2}-1$ -naphthyl $R^{1}=CH_{2}-1$ -naphthyl $R^{1}=CH_{3}, R^{2}=Ph$ $R^{1}=CH_{3}, R^{2}=CH_{3}$ $R^{1}=Ph, R^{2}=H$	I, R ² =Pł I, R ² =H
compd	T (°C)	time (h)	yield ^a (%)	ee 2-pyridinone	ee Δ^2 -thiazoline (%)	Δee^b (%)
	(0)	, D.	(, 0)	(, c)	Calarat	(/0)
9-	70	Re	actions	with Benzene as	Solvent	15
58 91	10	3	09	11	92	15
30	10	3	29	97	100	10
3C 94	10 70	ა ი	69 66	13	92	19
30 20	70	2	26	04 94	100	11
30	60	3	62	04 96	100	10
Ja	Re	-+ actior	os s with	1.2-Dichloroetha	ne as Solvent	0
3a	64	14	85	89	92	3
3b	64	14	86	97	100	3
3c	64	14	66	92	92	Õ
3d	64	14	77	75	75	Ō
3e	64	14	63	97	100	3
3a	64	1	32	92	92	0

^{*a*} Yields were determined after purification by flash column chromatography. ^{*b*} The difference in enantiomeric excesses between the Δ^2 -thiazolines and the 2-pyridinones.

Scheme 2. Tentative Mechanism for the Formation of 2-Pyridinones from Δ^2 -Thiazolines and Ketenes Generated from Acyl Meldrum's Acids

Measurement of Optical Purity and Optimization of the 2-Pyridinone Synthesis. To establish the enantioselectivity in formation of the 2-pyridinones, the enantiomeric excess of the Δ^2 -thiazolines was first measured by chiral HPLC using a Chiralcel OD-H column.⁴³ The enantiomers were detected by UV spectroscopy and had identical spectra. The 2-pyridinones were also subjected to a chiral HPLC measurement and the (*S*,*S*) Whelk-O1 column gave excellent separation. In this case, the enantiomers were detected with both UV spectroscopy and mass spectrometry (Figure 3). Racemic 2-pyridinone (\pm)-**3a** was also prepared to verify that the peaks from the UV and MS detection corresponded to the enantiomers. The reproducibility of the ee determinations was confirmed by five separate HPLC measurements on different batches of 2-pyridinone **3b**. The major enantiomer ((–)-**3b**) was thus obtained with an enantiomer ratio of 98.5 \pm 0.3% corresponding to 97% ee.

The enantiomeric excess of the key intermediates 1a-c were 75–100%, and the resulting 2-pyridinones 3a-e had ee's of 64–97% (Table 1). Thus, one could conclude that some racemization occurred on formation of 2-pyridinones when the synthesis was performed in refluxing benzene for 3 h. In the worst case, for the 2-pyridinone **3c**, the ee had decreased as much as 19%. The temperature was an obvious parameter that could affect the racemization rate, and a decrease in temperature to 69 °C in the synthesis of 2-pyridinone **3a** gave an increase in ee from 77 to 86% without any substantial decrease in isolated yield.

However, although previously the solvent of choice in the β -lactam synthesis based upon acyl Meldrum's acids,^{1,6} there are drawbacks with using benzene as a solvent. Apart from being carcinogenic it also freezes at 4 °C. Since HCl(g) is led through the reaction mixture just above the freezing point of benzene, precipitation and thus a stop in the gas flow was occasionally experienced. Another problem is that the protonated Δ^2 -thiazolines easily precipitate if the HCl(g) is passed through the solution too vigorously or under a prolonged time. Even though the temperature is raised during the synthesis, the precipitated Δ^2 -thiazoline does not dissolve properly, giving a decrease in yield of the desired 2-pyridinones. It turned out that 1,2-dichloroethane is superior to benzene as solvent in this reaction in many aspects. One does not encounter any problems when introducing the HCl(g) into the solution, no back flow of HCl(g) and no precipitation of Δ^2 -thiazoline occur. The reaction can also be heated to the temperatures required to get the 2-pyridinones. Moreover, when the synthesis was performed at 64 °C overnight only limited racemization (1.5%) could be detected for **3a**, **3b**, and **3e** while the other two 2-pyridinones, 3c and 3d, could be synthesized without any racemization at all (Table 1). Also a significant increase in isolated yield was observed with 1,2dichloroethane as solvent and the most striking example was **3b** for which the yield increased from 29% (using benzene) to 86%. It should be noted that also 3a could be prepared without any racemization, although at a lower yield, if the synthesis was conducted for only 1 h at 64 °C.

Conclusions

A new enantioselective synthesis of highly substituted 2-pyridinones has been developed. The method is mild and convergent, which indicates a high potential for future parallel synthesis of diverse 2-pyridinone libraries. The methodology is also easy to scale-up, which makes synthesis of potential leads for further biological testing in gram quantities straightforward. The synthetic protocol has been refined to a highly enantioselective 2-pyridinone forming step giving the desired 2-pyridinones in good to excellent yields. Therefore, by choosing the

⁽⁴³⁾ Raman, P.; Razavi, H.; Kelly, J. W. Org. Lett. 2000, 2, 3289–3292.

Figure 3. Optical purity of the 2-pyridinones was measured by chiral HPLC ((S,S) Whelk-O1). The enantiomers showed identical mass spectra as exemplified for 3c synthesized by the original conditions (HCl(g) in benzene, $5 \rightarrow 78$ °C, 3 h, 73% ee).

correct Δ^2 -thiazolines (substituted or unsubstituted) we are now allowed to enantioselectively synthesize either β -lactams or 2-pyridinones (Figure 1).

Experimental Section

General Methods. All reactions were carried out under an inert atmosphere with dry solvents under anhydrous conditions, unless otherwise stated. 1,2-Dichloroethane and CH2-Cl₂ were distilled from calcium hydride immediately before use. THF was distilled from potassium, and toluene was distilled from sodium. HCl(g) was passed through concentrated sulfuric acid before use. TLC was performed on silica gel 60 F_{254} (Merck) with detection by UV light and staining with a solution of anisaldehyde (26 mL), glacial acetic acid (11 mL), and concentrated sulfuric acid (35 mL) in 95% ethanol (960 mL). Flash column chromatography (eluents given in brackets) was performed on silica gel (Matrex, 60 Å, 35-70 µm, Grace Amicon). Centrifugal preparative TLC was performed using rotors coated with silica gel 60 PF254 containing CaSO4 (Merck). The moving bands were visualized using UV light. The ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-400 for solutions in CDCl₃ [residual CHCl₃ (δ_H 7.26 ppm) or CDCl₃ ($\delta_{\rm C}$ 77.0 ppm), as internal standard] at 298 K. First-order chemical shifts and coupling constants were obtained from onedimensional spectra, and proton resonances were assigned from COSY experiments. IR spectra were recorded on an ATI Mattson Genesis Series FTIR spectrometer. Optical rotations were measured with a Perkin-Elmer 343 polarimeter at 20 °C. High-resolution mass spectra [EI or FAB] were recorded on a JEOL JMS-SX 102 spectrometer. Analyses of enantiomeric excess were performed with a HPLC equipped with a Chiralcel OD-H column with hexane/2-propanol 70:30 as mobile phase for the Δ^2 -thiazolines and a (*S*,*S*) Whelk-O 1 column with

hexane/dichloromethane/2-propanol 48:48:4 as mobile phase for the 2-pyridinones.

(4R)-2-Methyl-4,5-dihydrothiazole-4-carboxylic Acid Methyl Ester (1a). Prepared as described for 1c from acetonitrile to give Δ^2 -thiazoline **1a** as an oil (3.06 g, 73%). Data in agreement with published procedures:44,45 1H NMR (400 MHz, CDCl₃) δ 4.98–5.07 (m, 1H), 3.77 (s, 3H), 3.46–3.62 (m, 2H), 2.23 (d, J = 1.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.0, 78.0, 52.6, 36.1, 20.2; HRMS (EI+) calcd for C₆H₉NO₂S 159.0354, obsd 159.0355.

(4R)-2-Ethyl-4,5-dihydrothiazole-4-carboxylic Acid Methyl Ester (1b). Prepared as described for 1c from ethyl cyanide to give Δ^2 -thiazoline $\boldsymbol{1b}$ as an oil (4.19 g, 79%): $[\alpha]_D$ 93° (c 1.28, CHCl₃); IR 2976, 2953, 1739, 1620, 1437, 1200, 926 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.97–5.06 (m, 1H), 3.76 (s, 3H), 3.42–3.58 (m, 2H), 2.53 (dq, J = 7.6, 1.5 Hz, 2H), 1.18 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 171.3, 77.8, 52.5, 35.2, 27.7, 11.9; HRMS (EI+) calcd for C7H11-NO₂S 173.0510, obsd 173.0510.

(4R)-2-Benzyl-4,5-dihydrothiazole-4-carboxylic Acid Methyl Ester (1c). Dry HCl(g) was passed through a solution of benzylcyanide (22.6 g, 193 mmol) in dry EtOH (15 mL) during 4 h at 0 °C. After standing overnight at room temperature, the mixture was concentrated to give ethyl benzylimidate hydrochloride as white crystals, which were used in the next step without further purification. Triethylamine (12 mL, 86.1 mmol) was slowly added to a suspension of (R)-cysteine methyl ester hydrochloride (15.0 g, 87.4 mmol) in dry CH₂Cl₂ (100 mL) at 0 °C. After 20 min, a suspension of ethyl benzylimidate hydrochloride (13 g, 65.1 mmol) in CH₂Cl₂ (30

⁽⁴⁴⁾ Eggleton, G. L.; Bushman, D. R.; Whitlock, D. W.; Pugh, D. K.; Chance, K. L. J. Chem. Eng. Data 1984, 29, 351–354.
 (45) Ohta, G.; Nagase, O.; Hosokawa, Y.; Tagawa, H.; Shimizu, M.

Chem. Pharm. Bull. 1967, 15, 644-647.

mL) was added, and the mixture was allowed to attain room temperature overnight. Then, the mixture was diluted with CH₂Cl₂ and washed with water, saturated aqueous NaHCO₃, and brine. The aqueous layers were extracted with CH₂Cl₂, and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash column chromatography (heptane/ethyl acetate, 1:1) to give Δ^2 -thiazoline **1c** as an oil (12.7 g, 83% from benzylcyanide): [α]_D –59° (c 2.40, CHCl₃); IR λ 3027, 2951, 1736, 1616, 1435, 1198, 1174 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.36 (m, 5H), 5.09 (m, 1H), 3.80–3.91 (m, 2H), 3.82 (s, 3H), 3.42–3.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 171.2, 135.6, 129.1, 128.7, 127.3, 77.9, 52.7, 40.8, 35.7; HRMS (EI+) calcd for C₁₂H₁₃NO₂S 235.0667, obsd 235.0669.

4-(R)-2-Phenyl-4,5-dihydro-thiazole-4-carboxylic acid methyl ester, (1d). Prepared as described for 1c from phenyl cyanide to give Δ^2 -thiazoline 1d as an oil (2.18 g, 91%). Data in agreement with published procedures.⁴³

(4*R*)-2-Isopropyl-4,5-dihydrothiazole-4-carboxylic Acid Methyl Ester (1e). Prepared according to published procedures.⁴⁶

5-(1-Hydroxyethylidene)-2,2-dimethyl[1,3]dioxane-4,6dione (2a). Prepared according to published procedures.⁶

5-(Hydroxyphenylmethylene)-2,2-dimethyl[1,3]dioxane-4,6-dione (2b). Prepared according to published procedures.⁶

5-(1-Hydroxy-2-naphthalen-1-ylethylidene)-2,2-dimethyl[1,3]dioxane-4,6-dione (2c). Oxalyl chloride (10 mL, 114 mmol) and DMF (0.1 mL) were added to a solution of 1-naphthylacetic acid (7.56 g, 40.6 mmol) in dry CH_2Cl_2 (80 mL). After being stirred for 30 min at room temperature, the solution was refluxed for 1.5 h, cooled to room temperature, and concentrated. The residue was co-concentrated three times from dry CH₂Cl₂ and dissolved in dry CH₂Cl₂ (40 mL). The solution was added slowly during 1 h to a stirred solution of Meldrum's acid (5.19 g, 36 mmol) and DMAP (8.62 g, 70.3 mmol) in dry CH_2Cl_2 (80 mL) at -10 °C. The resulting solution was allowed to attain room temperature and was then stirred for 3 h before being diluted with CH2Cl2 and washed with aqueous KHSO₄ (2%), water, and brine. The aqueous layers were extracted with CH₂Cl₂, and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was recrystallized from Et₂O to give **2c** as white crystals (10.2 g, 91%): mp 104 °C dec; IR λ 3060, 2995, 1728, 1645, 1568, 1201, 918, 773 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 15.49 (s, 1H), 7.95-8.01 (m, 1H), 7.86-7.92 (m, 1H), 7.83 (d, J = 7.8Hz, 1H), 7.41-7.58 (m, 4H), 4.96 (s, 2H), 1.77 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) & 195.1, 170.5, 160.5, 133.8, 132.1, 130.5, 128.8, 128.3, 128.2, 126.5, 125.8, 125.4, 123.6, 105.0, 91.6, 38.4, 26.8; HRMS (EI+) calcd for C₁₈H₁₆O₅ 312.0998, obsd 312.0999. Anal. Calcd for C₁₈H₁₆O₅: C, 69.22; H, 5.16; N, 25.61. Found: C, 69.2; H, 5.2; N, 25.6

(3R)-7-(Naphthalen-1-ylmethyl)-5-oxo-8-phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyridine-3-carboxylic Acid Methyl Ester (3a). Dry HCl(g) was passed through a solution of 1c (501 mg, 2.13 mmol) and 2c (970 mg, 3.11 mmol) in 1,2dichloroethane (28 mL) during 15 min at 0 °C. The solution was stirred for 11 h at 64 °C, then more 2c (480 mg, 1.53 mmol) was added. The mixture was then stirred for another 2 h before it was cooled to room temperature, diluted with CH₂Cl₂, and washed with water, saturated aqueous NaHCO₃, and brine. The aqueous layers were extracted with CH₂Cl₂, and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Purification by flash column chromatography (heptane/ethyl acetate, 1:4) gave 2-pyridinone 3a as a white foam (771 mg, 85% yield from Δ^2 -thiazoline **1c**): $[\alpha]_D - 152^\circ$ (c 1.01, CHCl₃); IR λ 3041, 2953, 1753, 1655, 1581, 1485, 793 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 7.2, 2.1 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.62 (dd, J = 7.2, 1.8 Hz, 1H), 7.45-7.34 (m, 8H), 7.21 (d, J = 6.8 Hz, 1H), 5.82 (s, 1H) 5.60(dd, J = 8.5, 2.4 Hz, 1H), 3.89-4.06 (m, 2H), 3.80 (s, 3H), 3.65 (dd, J = 11.8, 8.6 Hz, 1H), 3.45 (dd, J = 11.8, 2.4 Hz, 1H); ¹³C

NMR (100 MHz, CDCl₃) δ 168.5, 161.2, 154.3, 146.4, 136.3, 133.9, 133.7, 131.7, 130.2, 129.7, 129.0 (splitted), 128.7, 128.4, 127.9, 127.6, 126.0, 125.6, 125.4, 123.7, 116.1, 115.2, 63.4, 53.2, 36.9, 31.6; HRMS (EI+) calcd for $C_{26}H_{21}NO_3S$ 427.1242, obsd 427.1228.

(3*R*)-7-(Naphthalen-1-ylmethyl)-5-oxo-2,3-dihydro-5*H*thiazolo[3,2-*a*]pyridine-3-carboxylic Acid Methyl Ester (3b). By following the procedure described for the preparation of **3a** from **1c** and **2c**, **1a** (312 mg, 1.96 mmol) and **2c** (838 mg, 2.68 mmol) gave **3b** as a white foam (593 mg, 86%): $[\alpha]_D$ -184° (*c* 1.63, CHCl₃); IR λ 2920, 1747, 1647, 1572, 1504, 1211, 1018, 779 cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ 7.88–7.85 (m, 2H) 7.79 (d, J = 8.2 Hz, 1H) 7.48–7.410 (m, 3H) 7.34 (d, J =6.8 Hz, 1H) 6.10 (d, J = 1.2 Hz, 1H) 5.97 (d, J = 1.3 Hz, 1H) 5.52 (dd, J = 8.3, 2.1 Hz, 1H) 4.20 (s, 2H) 3.78 (s, 3H) 3.67 (dd, J = 11.7, 8.3 Hz, 1H) 3.50 (dd, J = 11.7 Hz, 2.1 Hz, 1H), ¹³C NMR (100 MHz, CDCl3) δ 168.4, 161.9, 155.2, 146.8, 133.9, 133.5, 131.9, 128.8, 127.9, 127.9, 126.3, 125.8, 125.5, 123.9, 114.1, 101.8, 62.5, 53.2, 38.9, 31.8; HRMS (FAB+) calcd for C₂₀H₁₈NO₃S 352.1005, obsd 352.1007.

(3*R*)-7-Methyl-5-oxo-8-phenyl-2,3-dihydro-5*H*-thiazolo-[3,2-*a*]pyridine-3-carboxylic Acid Methyl Ester (3c). By following the procedure described for the preparation of 3a from 1c and 2c, 1c (565 mg, 2.40 mmol) and 2a (633 mg, 3.40 mmol) gave 3c as a white foam (478 mg, 66% (95% based on recovered stmrl, Δ²-thiazoline 1c)): [α]_D –185° (*c* 1.47, CHCl₃); IR λ 3053, 2999, 2954, 1753, 1649, 1581, 1483, 1416, 1207, 991, 839, 748, 702, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45∠7.33 (m, 3H), 7.25−7.21 (m, 2H), 6.24 (d, *J* = 0.8 Hz, 1H), 5.65 (dd, *J* = 8.6, 2.5 Hz, 1H), 3.83 (s, 3H), 3.64 (dd, *J* = 11.6, 8.6 Hz, 1H), 3.45 (dd, *J* = 11.6, 2.5 Hz, 1H), 1.97 (d, *J* = 0.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 161.2, 151.9, 146.1, 136.6, 129.8, 128.8, 128.1, 116.6, 115.1, 63.5, 53.3, 31.8, 20.7; HRMS (EI+) calcd for C₁₆H₁₅NO₃S 301.0773, obsd 301.0770.

(3*R*)-7,8-Dimethyl-5-oxo-2,3-dihydro-5*H*-thiazolo[3,2-*a*]pyridine-3-carboxylic Acid Methyl Ester (3d). By following the procedure described for the preparation of **3a** from **1c** and **2c**, **1b** (285 mg, 1.65 mmol) and **2a** (450 mg, 2.42 mmol) gave **3d** as a white foam (302 mg, 77% (97% based on recovered stmrl, Δ²-thiazoline **1b**)): $[\alpha]_D - 205^\circ$ (*c* 3.92, CHCl₃); IR λ 2889, 2956, 1743, 1651, 1577, 1496, 1425, 1176, 985, 827, 731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.93 (s, 1H), 5.41 (d, *J* = 8.4 Hz, 1H), 3.65–3.53 (m, 4H), 3.36 (d, *J* = 11.8 Hz, 1H), 1.95 (s, 3H), 1.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 160.2, 152.2, 143.4, 114.3, 108.8, 62.8, 52.6, 31.3, 19.6, 15.3; HRMS (EI+) calcd for C₁₁H₁₃NO₃S 239.0616, obsd 239.0616.

(3*R*)-5-Oxo-7-phenyl-2,3-dihydro-5*H*-thiazolo[3,2-*a*]pyridine-3-carboxylic Acid Methyl Ester (3e). By following the procedure described for the preparation of **3a** from **1c** and **2c**, **1a** (230 mg, 1.45 mmol) and **2b** (480 mg, 1.93 mmol) gave **3e** as a white foam (260 mg, 63%): $[\alpha]_D - 68^\circ$ (*c* 1.38, CHCl₃); IR λ 2950, 1743, 1645, 1562, 1495, 1207, 1174, 993, 843, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.55 (m, 2H), 7.34-7.44 (m, 3H), 6.45 (s, 1H), 6.36 (s, 1H), 5.60 (d, *J* = 8.8 Hz, 1H), 3.70-3.82 (m, 4H), 3.54 (d, *J* = 11.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 161.8, 153.2, 147.3, 137.3, 129.4, 128.8, 126.6, 111.9, 100.0, 62.5, 53.1, 31.8; HRMS (EI+) calcd for C₁₅H₁₃NO₃S 287.0616, obsd 287.0611.

(3*RS*)-7-(Naphthalen-1-ylmethyl)-5-oxo-8-phenyl-2,3dihydro-5*H*-thiazolo[3,2-*a*]pyridine-3-carboxylic Acid Methyl Ester ((\pm)-3a). To a solution of diisopropylamine (90 μ L, 0.635 mmol) in dry THF (1.2 mL) was added *n*-butyllithium (330 μ L 1.6 M in hexane, 0.529 mmol) at 0 °C. After being stirred for 1 h, the solution was cooled to -78 °C and **3a** (170 mg, 0.400 mmol) dissolved in dry THF (1.0 mL) was added dropwise. NH₄Cl(aq) (1 mL) was added after stirring at -78 °C for 1 h, and the mixture was allowed to attain room temperature before being diluted with CH₂Cl₂. The pH was adjusted to 4 with 6 N HCl, and the mixture was washed with water and brine. The aqueous layers were extracted with CH₂-Cl₂, and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Purification by Centrifugal preparative TLC (heptane:ethyl acetate, 30:70) gave 2-pyridinone

⁽⁴⁶⁾ Pattenden, G.; Thom, S. M. J. Chem. Soc., Perkin Trans. 1 1993, 1629–1636.

Synthesis of Substituted Ring-Fused 2-Pyridinones

(±)-**3a** as a white foam (54 mg, 32%): $[\alpha]_D 0^\circ$ (*c* 1.00, CHCl₃), NMR and IR data in agreement with **3a**.

Acknowledgment. We thank Professor Torbjörn Frejd and Ian Sarvary for help with the ee measurements of the Δ^2 -thiazolines (Chiralcel OD-H). We are grateful to the Swedish Natural Science Research Council, the Knut and Alice Wallenberg Foundation, and the foundation for technology transfer in Umeå for financial support.

Supporting Information Available: ¹³C NMR spectra of **1a–c**, **2c**, and **3a–e**. Chiral HPLC chromoatogram of **1a–c** and **3a–e**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO015794U