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ABSTRACT 

Two libraries of substituted benzimidazoles were designed using a ‘scaffold-hopping’ approach 

based on reported MDM2-p53 inhibitors. Substituents were chosen following library enumeration 

and docking into an MDM2 X-ray structure. Benzimidazole libraries were prepared using an efficient 

solution-phase approach, and screened for inhibition of the MDM2-p53 and MDMX-p53 protein-

protein interactions. Key examples showed inhibitory activity against both targets. 
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INTRODUCTION 

The design of small molecule inhibitors of protein-protein interactions has received 

considerable interest in recent years.(1-4) In particular, the interaction of p53 with the regulatory 

proteins MDM2 and MDMX have provided a focus for efforts because of their importance in a 

number of cancers, and the prospect that inhibition of these interactions may provide new 

therapies. Overexpression of the regulatory proteins MDM2 and MDMX has been demonstrated to 

silence the tumor suppressor function of p53. MDM2 amplification occurs in around 11% of all 

tumors, and is most common in hepatocellular carcinoma (44%), osteosarcomas (20%), and soft 

tissue sarcomas (31%). Similarly, MDMX (MDM4) occurs in approximately 10-25% of tumors, e.g. 

brain (11%), breast (5-40%), and sarcomas (17%).(5-8) 

 

Expression of MDM2 is p53-dependent, and forms a regulatory feedback loop with p53 by 

binding to the p53 transactivation domain. Acting as an E3-ligase, MDM2 promotes proteasomal 

degradation of p53.(9-12) MDMX expression is not p53-dependent and MDMX levels remain 

constant. The protein inhibits p53 transcriptional activity, but does not act as an E3 ligase 

independently of MDM2.(13) Thus, MDM2 and MDMX both regulate p53, but their functions are 

different and non-redundant.(14) 

 

The X-ray crystal structure of MDM2 bound to a p53-derived peptide reveals the α-helical 

peptide bound into a deep groove on the surface of the protein, and key interactions are formed 

with three hydrophobic residues of p53 (Figure 1).(15) Inhibitors of MDM2 with diverse chemotypes 

have been reported.(16, 17) X-ray crystal structures of a range of potent MDM2-p53 inhibitors have 

been published, such as Nutlin-3 (1), spirooxindoles, e.g. MI-63 (2) and pyrrolidones (3).(18-21) 

Inhibitors show cellular activity and in vivo antitumor activity.(18, 22) Recently, potent MDM2-p53 

inhibitors have entered clinical trials, including RG7112,(23, 24) RG7388(25) and MI-773(26) (Chart 

1). 

 

The p53 transactivation loop binds in a cleft on the surface of MDMX similar to that 

identified for MDM2 but with a closed conformation for Tyr99.(27, 28). Steric hindrance of Met53 in 

the Leu23 pocket for MDMX may be responsible for the lack of potency against MDMX for MDM2-

p53 inhibitors such as the Nutlins and spirooxindoles.(29) A high degree of flexibility has been 

measured in computational studies of MDMX, and significant conformational differences, owing to 

the induced fit of ligands are observed in crystal structures.(30-32) Reports of small-molecule 

MDMX-p53 inhibitors have not been as numerous as for MDM2.(21) The selective MDMX inhibitor 
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5-oxo-pyrazolylidene SJ-172550 (4) was identified in an MDMX high-throughput assay.(33) The 3-

imidazolylindole 5 is a mixed MDM2- and MDMX-p53 inhibitor with modest potency against 

MDMX.(29) Recently, indolylhydantoins, e.g. (6) have been reported as MDM2-p53 and MDMX-p53 

inhibitors.(34)  

 

In this paper, we describe the application of a scaffold-hopping approach to design new 

inhibitor chemotypes for MDM2 and MDMX(35, 36) based on heterocycle replacement, and derived 

from two MDM2-p53 inhibitors with significantly different core structures. In particular, starting 

from cis-imidazoline (1),(18) and a class of oxindoles (7),(37, 38) benzimidazole derivatives were 

designed and evaluated through docking studies. The benzimidazole heterocycle was chosen as a 

‘privileged structure’ in medicinal chemistry that is readily synthetically accessible.(39) The synthesis 

of small libraries yielded mixed MDM2-p53 and MDMX-p53 inhibitors with promising potency. 

 

MATERIALS AND METHODS 

MDM2-p53 ELISA assay. Compounds were assayed for MDM2-p53 inhibitory activity using ELISA 

assays in a 96-well format using the published method.(40)  

 

MDMX-p53 ELISA assay. MDMX-p53 inhibitory activity was determined using an analogous method 

incorporating a pCMV-XL5-MDMX cDNA construct (OriGene Technologies) for the in vitro coupled T7 

transcription and rabbit reticulocyte lysate translation of MDMX, and a rabbit anti-MDMX antigen 

affinity-purified polyclonal antibody (Bethyl Laboratories Inc, via UK supplier Cambridge Bioscience, 

UK, Cat No. A300-287 A).(41)  

 

Docking experiments. Docking calculations were performed with the GOLD software.(42) Ligands 

were docked within the p53 binding site of MDM2, using the crystal structure of human MDM2 in 

complex with the small molecule inhibitor Nutlin-2 (PDB code: 1RV1).(18) A single protein chain was 

selected from the unit cell. The binding site was defined by hydrophobic fitting points calculated on 

the target for a 8Å radius around the co-crystallized ligand. GoldScore was used as a fitness function, 

while default genetic algorithm parameter settings were applied. 30 poses were generated for each 

ligand, early termination being allowed when the top 10 solutions were within 1.5Å R.M.S.D. 
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Chemical Synthesis. 

General Procedure A – Synthesis of compounds (14). 

 A mixture of the appropriate aldehyde (1.2 eq.), sodium dithionite (86% purity; 1.98 g, 9.78 mmol, 3 

eq.) and 13 (1.16 g, 3.26 mmol, 1.0 eq.) in methanol (12 mL) and water (3 mL) was heated in a 

microwave reactor for 10 minutes at 100 oC. The sample was diluted with ethyl acetate (20 mL) and 

washed with water (20 mL) and brine (20 mL). The organic layer was dried (MgSO4), and evaporated. 

Chromatography (silica; ethyl acetate, petrol) gave compound 14. 

 

General Procedure B. Compound 14 was dissolved in DCM (2 mL) and TFA (3 mL) and the mixture 

stirred at rt for 1 hour, then evaporated. The residue was diluted with DCM (20 mL) and neutralised 

with sodium carbonate (sat.; 20 mL). The organic layer was dried (MgSO4) to give 15 which was used 

without further purification.  

 

General procedure C. Either an aliquot of a solution of 15 in dry DCM (1 mL, 0.049 M), or weighed 15 

in dry DCM (1 mL) was treated with the named isocyanate (1.5 eq.). The mixture was quenched with 

NH2-silica and filtered through a plug of NH2-silica. Evaporation gave 8 without further purification.  

 

 (S)-Ethyl 3-(3-(5-chloro-2-(3-methoxybenzyl)-1H-benzo[d]imidazol-1-yl)piperidine-1-

carboxamido)benzoate 8{3,7}. 

General procedure C: 15{3} (1 mL, 49.3 µmol) and ethyl 3-isothiocyanatobenzoate (12 µl, 76 µmol). 

8{3,7} (26 mg, 96%) as a white solid; HPLC purity (as area %) > 98; 1H NMR (300MHz, CDCl3) 1.38 (1H, 

t, J 7.2, CH2CH3), 1.54 (1H, qt, J 3.6 and 13.1), 1.72 (1H, app.dd), 1.87 (1H, app.d), 2.20 (1H, qd, J 4.0 

and 12.7), 2.80 (1H, td, J 2.2 and 13.1), 3.38(1H, app.t), 3.63 (3H, s, OCH3), 3.77 (1H, app. dd), 4.21 

(1H, app.d), 4.30 (2H, s, CH2), 4.36 (2H, q, J 7.2), 6.54 (1H, br.d), 6.65-6.69 (1H, m, Ar), 6.77 (2H, d, J 

8.3, Ar), 7.17 (1H, app.t, Ar), 7.20 (1H, m, Ar), 7.32-7.39 (2H, m, Ar), 7.67-7.81 (4H, m, Ar); 13C NMR 

(100MHz, CDCl3) 14.3, 24.8, 28.6, 35.0, 44.1, 47.2, 53.5, 55.2, 61.1, 112.2, 112.5, 114.3, 119.8, 120.5, 

121.0, 122.7, 124.4, 124.7, 127.7, 128.9, 129.9, 131.0, 132.1, 137.5, 138.9, 144.0, 154.2, 154.7, 

160.0, 166.3. 

 

 (S)-Ethyl 3-(3-(5-chloro-2-(4-methoxybenzyl)-1H-benzo[d]imidazol-1-yl)piperidine-1-

carboxamido)benzoate 8{4,7}. 

General procedure C: 15{4} (1 mL, 49 µmol) and 3-isocyanatobenzoate (12 µl, 76 µmol). 8{4,7} (23 

mg, 85%), white solid; HPLC purity (as area %) > 98; 1H NMR (400MHz, CDCl3) 1.33 (3H, t, J 4.1, 

CH2CH3), 1.48 (1H, qt, J 4.1 and 13.3), 1.62 (1H, app.d), 1.82 (1H, app.d), 2.17 (1H, qd, J 4.1 and 12.8), 
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2.78 (1H, td, J 2.3 and 13.3), 3.36 (1H, app.t), 3.55 (3H, s, OCH3), 3.82 (1H, dd, J 4.1 and 12.8), 4.15 

(1H, d, J 16.0), 4.17 (1H, app.d), 4.23 (1H, d, J 16.0), 4.25-4.33 (1H, m), 4.30 (2H, q, J 7.3, CH2CH3), 

6.70-6.73 (3H, app.d), 7.04 (2H, d, J 8.7, Ar), 7.15 (1H, dd, J 1.8 and 8.7), 7.28-7.33 (2H, m, Ar), 7.59-

7.62 (1H, m, Ar), 7.63-7.70 (2H, m, Ar), 7.81 (1H, app.d, Ar); 13C NMR (100MHz, CDCl3) 14.3, 24.9, 

28.6, 34.1, 44.2, 47.2, 53.4, 55.0, 61.0, 112.2, 114.2, 119.7, 121.1, 124.4, 124.8, 127.6, 127.7, 128.9, 

129.4, 131.0, 132.2, 139.0, 144.0, 154.7, 154.9, 158.7, 166.3; MS (ESI+) m/z = 547.3 [M+H]+. 

 

 (S)-N-Benzyl-3-(2-benzyl-5-chloro-1H-benzo[d]imidazol-1-yl)piperidine-1-carbothioamide 16.  

General procedure C: 15{1} (16 mg, 49.2 µmol) and benzyl isothiocyanate (7.2 µl, 54.1 µmol). 16 (15 

mg, 64%) as a white solid; HPLC purity (as area %) > 93; 1H NMR (500 MHz, CDCl3) 1.43 (1H, qt, J 4.1 

and 13.3), 1.55 (1H, app.d), 1.77-1.80 (1H, m), 2.25 (1H, qd, J 12.8 and 4.4), 3.03 (1H, td, J 13.4 and 

2.4), 3.50 (1H, app.t), 4.35-4.46 (4H, m), 4.67-4.71 (1H,m), 4.74 (1H, dd, J 14.6 and 4.6), 4.97 (1H, dd, 

J 14.6 and 5.4), 5.65 (1H, app.t, NH), 7.15-7.22 (6H, m, Ar), 7.30-7.36 (6H, m, Ar), 7.73 (1H, d, J 2.0, 

Ar); 13C NMR (125 MHz, CDCl3) 24.5, 28.4, 35.0, 48.0, 50.4, 51.3, 52.7, 112.0, 119.9, 122.7, 127.2, 

127.7, 127.8, 127.9, 128.4, 128.8, 128.9, 132.1, 136.2, 137.8, 144.1, 154.5, 183.2. LC-MS (ESI+) m/z = 

475.3 [M+H]+. 

 

(S)- 2-Benzyl-1-(1-(benzylsulfonyl)piperidin-3-yl)-5-chloro-1H-benzo[d]imidazole 17.  

Phenylmethanesulfonyl chloride (12 mg, 60.9 µmol, 1.1 eq) was added to a solution of 15 (18 mg, 

55.4 µmol, 1eq) and triethylamine (11.6 µl, 83.1 µmol, 1.5 eq) in DCM (1mL). The mixture was stirred 

at RT for 1h, then quenched with water (3mL). The organic layer was separated, dried (MgSO4), and 

evaporated. Chromatography (5% DCM, methanol) gave 17 (25 mg, 94%) as a white solid; HPLC 

purity (as area %) > 96; 1H NMR (500 MHz, CDCl3) 1.34-1.41 (2H, m), 1.64-1.68 (1H, m), 1.94 (1H, qd, 

J 12.6 and 4.2), 2.54 (1H, td, J 12.6 and 2.6), 3.01 (1H, app.t), 3.54 (1H, dd, J 12.3 and 4.6), 3.61-3.64 

(1H, m), 4.13 (1H, d, J 14.1), 4.17 (1H, d, J 14.1), 4.19 (1H, d, J 15.9), 4.24 (1H; tt, J 12.0 and 4.1), 4.40 

(1H, d, J 15.9), 7.11 (1H, d, J 8.7, Ar), 7.14 (1H, dd, J 8.7 and 1.8, Ar), 7.18-7.23 (3H, m, Ar), 7.27-7.30 

(3H, m, Ar), 7.32-7.37 (4H, m, Ar), 7.72 (1H, d, J 1.8, Ar); LC-MS (ESI+) m/z = 480.3 [M+H]+. 

 

General Procedure E: Benzimidazole Intermediate Synthesis (20) 

A mixture 18 (0.3g, 1.41 mmol), sodium dithionite (0.67g, 3.84 mmol) and 19 (1.0 eq.) in methanol 

(16 mL) and water (4 mL) was heated by microwave for 10 mins at 100 oC, then diluted with ethyl 

acetate (20 mL), washed with water (20 mL) and brine (20 mL), dried (MgSO4) and evaporatated. 

Recrystallisation from ethyl acetate, petrol gave 20. 
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 General Procedure F: Boc deprotection (21) 

A mixture of 20 (0.40 g, 0.94 mmol ), TFA (0.6 mL) and DCM (2 mL) was stirred at rt for 4.5 h, then 

concentrated and diluted with methanol (4 mL). K2CO3 (0.2 g) was added and the suspension was 

stirred at rt, then filtered, and concentrated. Chromatography (5% DCM, MeOH) gave 21. 

Intermediates 21{2},21{3}, 21{4} were used directly in the subsequent step without purification. 

 

General Procedure G: Benzimidazole Synthesis (9) 

21 (0.01 g, 0.028 mmol) was added to a solution of the appropriate isocyanate (1.2 eq.) in DCM (2 

mL) and the mixture was stirred at rt for 1 h, then concentrated. Chromatography (NH-silica; 2% 

MeOH, DCM) gave 9 as glassy solids. 

 

N-(4-Acetylphenyl)-4-(6-chloro-1-(3-chlorobenzyl)-1H-benzo[d]imidazole-2-yl)piperidine-1-

carboxamide 9{2,2} 

General Procedure G: 21{2} (0.011 g, 0.029mmol), 4-acetylphenylisocyanate (0.005 g, 0.032 mmol). 

9{2,2} 81%; HPLC purity (as area %) > 99; 1H NMR (400 MHz ,CDCl3) 1.88 (m, 2H, CH2CH), 2.09 (m, 2H, 

CH2NCO), 2.49, (s, 3H, COCH3) 2.99 (m, 2H, CH2NCO), 3.07(m, 1H, CH2CH), 4.17 (m, 2H, CH2CH2NCO), 

5.31 (s, 2H, CH2Ar), 6.49 (s, 1H, N-H), 6.85 (m, 1H, Ar-H), 7.06 (s, 1H, Ar-H), 7.14 (d, 2H, J 8.37 Hz, Ar-

H) 7.17 (d, 1H, J 1.82 Hz, Ar-H), 7.39 (d, 3H, J 7.91 Hz Ar-H), 7.38 (d, 2H, J 8.85 Hz, Ar-H), 7.81 (d, 1H, J 

8.56 Hz, Ar-H); LC-MS (ESI+) m/z = 519 [M+H]+. 

 

4-(6-Chloro-1-(3-chlorobenzyl)-1H-benzo[d]imidazol-2-yl)-N-(3,4,5-trimethoxyphenyl)piperidine-1-

carboxamide 9{2,3} 

General Procedure G: 21{2} (0.05 g, 0.14 mmol), 3,4,5-trimethoxyphenylisocyanate (0.035 g, 0.16 

mmol). 9{2,3} 73 %; HPLC purity (as area %) > 92; 1H NMR (400 MHz ,CDCl3) 1.82 (m, br, 2H, CH2CH2-

NH), 2.10 (m, 2H, CH2CH2-NH), 2.99 (m, 3H, CH2-CH2-NH, CH-CH2), 3.73 (s, 3H, Ar-OMe), 3.77 (s, 6H, 

Ar-(OMe)2), 4.12 (m, 2H, CH2-N), 5.27 (s, 2H, CH2-N), 6.31 (s, 1H, N-H), 6.59 (s, 2H, Ar-H), 6.72 (d,1H, J 

7.21, Ar-H), 7.01 (s, 1H, Ar-H), 7.13 (m, 3H, Ar-H), 7.62 (d, 1H, 8.33 Hz, Ar-H); LC-MS (ESI+) m/z 569 

[M+H]+;  

 

Ethyl-4-(4-(6-chloro-1-(3-chlorobenzyl)-1H-benzo[d]imidazole-2-yl)piperidine-1-carboxamido) 

benzoate 9{2,8}  

General Procedure G: 21{2} (0.011 g, 0.029 mmol), ethyl 4-isocyanobenzoate (0.006 g, 0.032 mmol). 

9{2,8} 80%; HPLC purity (as area %) > 98; 1H NMR (400 MHz ,CDCl3) 1.40 (t, 3H, 7.11 Hz, OCH2CH3), 

1.89 (m, 2H, CH2CH), 2.05 (m, 2H, CH2NCO), 3.04 (m, 2H, CH2NCO), 3.08 (m, 1H, CH2CH), 4.19 (m, 2H, 
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CH2CH2NCO), 4.37 (q, 2H, J 7.12 Hz OCH2CH3), 5.35 (s, 2H, CH2Ar), 6.58 (s, 1H, N-H), 6.85 (m, 1H, Ar-

H), 7.06 (s, 1H, Ar-H), 7.21 (d, 1H, J 1.82 Hz, Ar-H), 7.38 (m, 3H, Ar-H), 7.43 (d, 2H, J 8.83 Hz, Ar-H), 

7.69 (d, 1H, J 8.56 Hz, Ar-H), 7.97 (d, 2H, J 8.77 Hz, Ar-H; LC-MS (ESI+) m/z = 549 [M+H]+.  

 

N-(4-Acetylphenyl)-4-(6-chloro-1-(4-methoxybenzyl)-1H-benzo[d]imidazol-2-yl)piperidine-1-

carboxamide 9{4,2} 

General Procedure G: 21{4} (0.097 g, 0.27 mmol), 4-acetylphenylisocyanate (0.074 g, 0.46 mmol). 

Chromatography (50% EtOAc, petrol), 9{4,2} 55 %; HPLC purity (as area %) > 96; 1H NMR (400 MHz 

,CDCl3) 1.82 (m, 2H, CH2CH2-NH), 2.05 (m, 2H, CH2CH2-NH), 2.48(s, 3H, Ar-COCH3) 2.94 (m, 3H, CH2-

CH2-NH and CH-CH2), 3.71 (s, 3H, Ar-OMe), 4.12 (m, br 2H, CH2-N), 5.22 (s, 2H, CH2-N), 6.62 (s, 1H, N-

H), 6.79 (d, 2H, J 8.7, Ar-H), 6.84 (d, 2H, J 8.7, Ar-H), 7.18 (m, 2H, Ar-H), 7.39 (d, 2H, J 8.8, Ar-H), 7.6 

(dd, 1H, J 8.1, 1.04, Ar-H), 7.89 (d, 2H, J 8.8, Ar-H).; LC-MS (ESI+) m/z 517 [M+H]+.  

 

RESULTS 

Design 

The search for MDM2–p53 inhibitors has revealed several classes of small molecules able to bind 

MDM2 at the p53 binding site and restore p53 activity.(21) Reflecting the hydrophobic nature of the 

MDM2-p53 interaction, all of these compounds are characterized by a central scaffold that directs 

hydrophobic substituents towards the three MDM2 sub-pockets, thus mimicking the key amino acid 

side-chains of p53. 

 

In an attempt to identify novel chemotypes acting as an anchor point for hydrophobic substituents, 

our attention was focused on compounds 1 and 7, taken as representative of two potent and 

structurally different classes of MDM2 inhibitors. The scaffold-hopping approach initially matched 

the two nitrogens of the Nutlin imidazoline ring 1  with the two nitrogens in the benzimidazole 

scaffold (Figure 2, red). Overlay of the Nutlin chlorophenyl rings with the benzimidazole gave two 

possible orientations of the chloro group in the scaffold (8 and 9). Positions 1 and 2 of the 

benzimidazole ring were used to append the hydrophobic piperidinyl amide substituents judged to 

be necessary for activity, resulting in two different substitution patterns, represented by general 

structures 8 and 9 (Figure 2).  

 

Docking experiments showed two separate binding modes for the enantiomers of 8{1,6}. In the case 

of the (R)-enantiomer the chlorobenzimidazole occupies the Phe19 pocket and the aryl urea fills the 

Leu26 pocket, whereas for the (S)-enantiomer the positions are reversed (Figures 3a and 3b, 

respectively). The docked pose for 9{1,6} shows the arylurea occupying the Leu26 pocket and the 
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benzyl group positioned within the Phe19 pocket (Figure 3c). Interestingly, the Trp23 subpocket is 

unoccupied for all of the binding modes generated. This pocket is known to be important from the 

published X-ray structures of small-molecule MDM2-p53 inhibitors. The other subpockets (Phe19 

and Leu26) were occupied by the hydrophobic moieties of the ligands, thus rendering both libraries 

8 and 9 worthy of exploration. For the alternative benzimidazoles 8, the (S)-enantiomers appeared 

to be more promising than (R)-enantiomers and therefore were prioritized for synthesis. 

 

Synthesis    

The rapid synthesis of benzimidazole libraries has been described recently using a number of 

approaches, including solid-phase synthesis,(43, 44) and solution-phase methods.(45-48) In this 

case, the required N1-substitution was introduced via an SNAr reaction with an o-fluoronitrobenzene, 

followed by in-situ nitro-reduction, using sodium dithionite under microwave heating, and 

cyclisation with the desired aldehyde to give the the appropriately substituted benzimidazoles 8 and 

20.(49)                                                                                        

 

The synthesis of benzimidazoles 8 bearing substituted aryl groups required the use of suitably 

substituted arylacetaldehydes (10). These were prepared from the respective benzaldehydes using a 

Wittig reaction giving the methyl enol ethers (11), which were subjected to acidic hydrolysis (Scheme 

1). The SNAr reaction of (S)-12 and 4-chloro-1-fluoro-2-nitrobenzene gave nitroaniline (13) in good 

yield. Reductive cyclisation of 13 with sodium dithionite in the presence of arylacetaldehydes 10, 

under microwave heating, provided benzimidazoles 14{1-4} cleanly and in good yields. Deprotection 

with TFA gave piperidines 15{1-4} which were reacted in parallel with a series of isocyanates to give 

the final (S)-benzimidazoles 8{1-4,1-10} (Scheme 2). Single examples of the thiourea 16 and 

sulfonamide 17 derivatives were also prepared (Scheme 3). 

 

The synthesis of 2-(piperidin-4-yl)-benzimidazoles 9 required the Boc-protected isonipecotic 

aldehyde (18), prepared according to a literature procedure (Scheme 4).(50) 

 

Reaction of 4-chloro-1-fluoro-2-nitrobenzene with the required benzylamine under microwave 

heating gave nitroanilines (19). Reductive cyclisation of 19 with sodium dithionite in the presence of 

aldehydes 14, under microwave heating gave the benzimidazoles 20{1-4} in good yields. 

Deprotection with TFA gave piperidines 21{1-4} which were reacted in parallel with a series of 

isocyanates giving the final benzimidazoles 9{1-4,1-10} (Scheme 5).  
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Biological evaluation 

We have previously demonstrated that the MDM2 and MDMX ELISA assays show good sensitivity 

over a wide range of IC50 values. In particular, compounds with low potency and poor predicted 

solubility have given reliable results.(40, 41) Compounds from libraries 8 and 9 were assayed against 

MDM2 and MDMX in parallel. The results are displayed in Tables 1 and 2. Overall, both series 

displayed limited MDM2 inhibition with only 8{4,7}, and 9{2,8} showing sub-100 μM activity (MDM2 

LE = 0.14 and 0.15, respectively). In contrast, 27/40 examples of series 8 were sub-100 μM inhibitors 

of MDMX, and two examples showed sub-50 μM activity, i.e. 8{3,4} and 8{4,7} (MDMX LE = 0.15). 

Series 9 also had a greater number of sub-100 μM MDMX inhibitors (10/30), and four examples 

showed sub-50 μM activity, i.e. 9{2,2}, 9{2,3},9{2,8} and 9{4,2} (MDMX LE = 0.15 - 0.16). 

Interestingly, the unsubstituted thiourea derivative 16 and the sulfonamide 17 showed improved 

MDMX inhibitory activity when compared with the equivalent urea 15{1,6}. 

 

DISCUSSION 

Recently, analysis of the contribution to binding of each portion of Nutlin-3 (1) has been reported, by 

the synthesis and analysis of fragments of the lead compound.(51) Systematic removal of the groups 

accessing each of the three sub-pockets of MDM2 allowed an assessment of their relative 

contribution to binding, and showed that removal of the 4-chlorophenyl group accessing the Trp23 

pocket resulted in the most significant loss of activity. For example, 22 showed a Kd for MDM2 of 1 

mM (LE = 0.10). The activity of libraries 8 and 9 are consistent with the loss of potency associated 

with leaving the Trp23 sub-pocket vacant as predicted in the docked binding modes of both series. 

Interestingly, the results for MDMX suggest that the Trp23 sub-pocket may play a somewhat less 

significant role in the overall binding affinity, as libraries 8 and 9 showed improved activity.  

 

CONCLUSIONS 

Libraries of substituted benzimidazoles based on scaffold-hopping from structures 1 and 7 have 

been docked into MDM2 and evaluated. The efficient synthesis of two libraries (8 and 9) has been 

achieved by microwave-assisted reductive cyclisation. Both libraries were assayed for inhibition of 

the MDM2-p53 and MDMX-p53 protein-protein interaction. Members of each library showed sub-

100 μM activity for MDM2 or MDMX and several mixed MDM2-MDMX inhibitors were identified 

with modest potency. 
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SUPPORTING INFORMATION 

Synthetic and analytical details for  compounds 8, 13, 14, 15, 16, 19, 20, 21. 
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TABLE CAPTIONS 

Table 1. MDM2-p53 and MDMX-p53 inhibitory activity of compound libraries 13 and 8. 

Table 2. MDM2-p53 and MDMX-p53 inhibitory activity of compound libraries 20 and 9. 

 

FIGURE CAPTIONS 

Chart 1: MDM2-p53 clinical trials candidates with disclosed structures. 

Figure 1: Structure of the p53-MDM2 complex (1RV1) (MDM2 white, p53 peptide yellow).(15) 

Figure 2: Schematic for scaffold hopping and docking approach. 

Figure 3: Putative binding modes for compounds: a) 8 (R)-enantiomers; b) 8 (S)-enantiomers; c) 9. 
 

SCHEME CAPTIONS 

Scheme 1: Synthesis of substituted phenylacetaldehydes 10.a 

a Reagents and Conditions: a) MeOCH2PPh3Br, KOt-Bu, THF, rt; b) HCO2H, DCM, rt. 

Scheme 2: Synthesis of benzimidazole library 8.a 

a Reagents and Conditions: a) DMF, Na2CO3, 70 oC; b) ArCH2CHO, 13, Na2S2O4, MeOH, H2O, MW, 100 
oC; c)i) TFA, DCM, rt; ii) K2CO3, MeOH, rt; d) R’NCO, DCM, rt.  

Scheme 3: Synthesis of benzimidazoles 16 and 17.a 

a Reagents and Conditions: a) R’NCS, DCM, rt; b) PhCH2SO2Cl, Et3N, DCM, rt. 

Scheme 4: Synthesis of piperidine 18.a 

a Reagents and Conditions: a) Boc2O, NaOH, dioxane, rt; b) BH3-THF, THF, rt; c) PCC, NaOAc, 4Å 
molecular sieves, DCM, rt. 

Scheme 5: Synthesis of benzimidazole library 9.a 

a Reagents and Conditions: a) ArNH2, K2CO3, EtOH, rt; b) 19, Na2S2O4, MeOH, H2O, MW, 100 oC; c) 
i)TFA, DCM, rt; ii) K2CO3, rt; d) R’NCO, DCM, rt. 
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Table 1. 

Compound MDM2 IC50 
(μM) 

MDMX IC50 
(μM) 

Compound MDM2 IC50 
(μM) 

MDMX IC50 
(μM) 

13{1} >500 248 8{3,1} 170 64 ± 20 
13{2} 290 ± 38 104 ± 23 8{3,2} - - 
13{3} >500 >500 8{3,3} 121 ± 40 92 ± 18 
13{4} 211 130 8{3,4} 120 ± 37 43 ± 15 
8{1,1} 183 ± 20 70 ± 19 8{3,5} 213 ± 158 74 ± 12 
8{1,2} 208 ± 33 105 ± 54 8{3,6} 191 187 
8{1,3} 202 ± 24 54 ± 14 8{3,7} 146 ± 63 77 ± 20 
8{1,4} 176 117 8{3,8} >500 116 
8{1,5} 202 ± 51 92 ± 51 8{3,9} 257 ± 146 131 ± 48 
8{1,6} 218 100 8{3,10} 177 100 
8{1,7} 203 ± 80 61 ± 30 8{4,1} - - 
8{1,8} 196 ± 61 69 ± 5 8{4,2} 201 ± 96 95 ± 13 
8{1,9} >500 156 8{4,3} 115 207 

8{1,10} 257 169 8{4,4} 166 ± 55 78 ± 16 
8{2,1} 151 86 8{4,5} 188 ± 102 173 ± 121 
8{2,2} 134 ± 86 81 ± 33 8{4,6} 188 ± 33 109 ± 39 
8{2,3} 148 ± 61 60 ± 10 8{4,7} 72 ± 20 43 ± 24 
8{2,4} 201 ± 128 154 ± 79 8{4,8} 202 ± 157 76 ± 24 
8{2,5} 114 ± 38 80 ± 13 8{4,9} 198 ± 75 99 ± 26 
8{2,6} 125 ± 35 83 ± 29 8{4,10} 131 ± 45 64 ± 13 
8{2,7} 154 ± 81 57 ± 14 16 144 ± 44 49 ± 14 
8{2,8} 153 ± 112 50 ± 6 17 212 ± 1 59 ± 36 
8{2,9} 165 ± 30 73 ± 14    

8{2,10} 103 ± 36 63 ± 35    
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Table 2. 

 

Compound MDM2 IC50 
(μM) 

MDMX IC50 
(μM) 

Compound MDM2 IC50 
(μM) 

MDMX IC50 
(μM) 

20{1} 253 >500 9{2,9} - - 
20{2} 248 217 9{2,10} 212 101 
20{3} >500 >500 9{3,1} - - 
20{4} >500 >500 9{3,2} 201 103 
21{1} 282 >500 9{3,3} 182 ± 21 81 ± 20 
9{1,1} - - 9{3,4} 291 ± 117 252 ± 136 
9{1,2} 307 ± 132 154 ± 70 9{3,5} 183 >500 
9{1,3} 256 ± 51 94 ± 37 9{3,6} 269 ± 39 200 ± 100 
9{1,4} 141 ± 22 98 ± 62 9{3,7} >500 >500 
9{1,5} >500 151 9{3,8} 149 ± 61 94 ± 38 
9{1,6} >500 231 9{3,9} 218 123 
9{1,7} >500 194 9{3,10} 218 201 
9{1,8} 151 194 9{4,1} >500 >500 
9{1,9} >500 >500 9{4,2} 314 ± 65 49 ± 22 

9{1,10} 204 ± 69 111 ± 63 9{4,3} >500 145 
9{2,1} - - 9{4,4} - - 
9{2,2} 130 ± 65 46 ± 11 9{4,5} - - 
9{2,3} 243 45 9{4,6} >500 245 
9{2,4} 156 ± 40 113 ± 74 9{4,7} - - 
9{2,5} - - 9{4,8} 180 ± 15 73 ± 16 
9{2,6} - - 9{4,9} - - 
9{2,7} 161 ± 68 68 ± 29 9{4,10} >500 184 
9{2,8} 88 ± 43 31 ± 10    
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