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Abstract

The last fifteen years have seen the emergence and overflow into the drug scene of “super-

potent” N-benzylated phenethylamines belonging to the “NBOMe” series, accompanied by

numerous research articles. Although N-benzyl substitution of 5-methoxytryptamine is

known to increase its affinity and potency at 5-HT2 receptors associated with psychedelic

activity, N-benzylated tryptamines have been studied much less than their phenethylamine

analogs. To further our knowledge of the activity of N-benzyltryptamines, we have synthe-

sized a family of tryptamine derivatives and, for comparison, a few 5-methoxytryptamine

analogs with many different substitution patterns on the benzyl moiety, and subjected them

to in vitro affinity and functional activity assays vs. the human 5-HT2 receptor subtypes. In

the binding (radioligand displacement) studies some of these compounds exhibited only

modest selectivity for either 5-HT2A or 5-HT2C receptors suggesting that a few of them, with

affinities in the 10–100 nanomolar range for 5-HT2A receptors, might presumably be psyche-

delic. Unexpectedly, their functional (calcium mobilization) assays reflected very different

trends. All of these compounds proved to be 5-HT2C receptor full agonists while most of

them showed low efficacy at the 5-HT2A subtype. Furthermore, several showed moderate-

to-strong preferences for activation of the 5-HT2C subtype at nanomolar concentrations.

Thus, although some N-benzyltryptamines might be abuse-liable, others might represent

new leads for the development of therapeutics for weight loss, erectile dysfunction, drug

abuse, or schizophrenia.

Introduction

Serotonin or 5-hydroxytryptamine (5-HT) is a bioactive compound present in a large variety

of plants and animals. In mammals it is an autacoid or mediator of important functions in the

gut and in blood platelets where it is most abundant, but in spite of its relative scarcity in the

central nervous system its most widely known functions are as a neurotransmitter. The discov-

ery of increasingly selective 5-HT receptor inhibitors has shown that serotonin is not only

involved in important peripheral functions, but is also implicated in cognition, memory, emo-

tion, the regulation of mood, the sleep-wake cycle, food intake, sexual activity, and in migraine,

obsessive-compulsive disorder, schizophrenia and hallucinations [1]. Serotonin activates a
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large number of receptor subtypes (14 to date). With the exception of the 5-HT3 receptor

which is a ligand-gated ion channel, serotonin receptors couple to G proteins, and are thus

related to the release of second messengers such as cyclic adenosine, inositol phosphate(s) and

arachidonic acid. However, signaling via β-arrestin recruitment is an important alternative sig-

naling route that may be involved in different pharmacological outcomes [2].

The 5-HT2 receptors form a close-knit trio of Gq/11 protein-coupled subtypes, with 5-HT2A

and 5-HT2C showing somewhat greater sequence identity than the 5-HT2B subtype but still

with more than 50% overall sequence similarities [3]. The 5-HT2A subtype is of particular rele-

vance to schizophrenia and hallucination, and also seems to be involved in cognition, emotion,

etc. The action of modern antipsychotic drugs such as clozapine and risperidone have a major

5-HT2A antagonist component. In contrast, many full or partial 5-HT2A agonists are well

known hallucinogens, and classic psychedelics are believed to act primarily as 5-HT2A receptor

agonists [4,5]. Although the 5-HT2B receptor is expressed in the central nervous system and

drugs affecting its activity might be of therapeutic interest, it is now generally considered an

antitarget due to the serious cardiovascular effects associated with its activation [6]. Finally,

5-HT2C receptor agonists have attracted attention over the last decade as appetite suppressants

and as possible agents for the treatment of drug abuse, erectile dysfunction, and schizophrenia

[7–9]. Very recently, positive modulators have been identified as an alternative for increasing

5-HT2C receptor signaling [10]. While a good number of 5-HT2 receptor subtype-selective

antagonists have been identified, selective agonists are relatively rare and constitute an active

field of research.

The investigation more than two decades ago of two series of N-benzyl and N-(4-substi-

tuted)benzyl derivatives of the psychedelic 4-bromo-2,5-dimethoxyphenethylamine (2C-B)

and 5-methoxytryptamine suggested that these modifications induced mostly insignificant

changes in 5-HT2A receptor binding. Significant losses in affinity were observed with the

5-HT2C receptor, leading to slight preferences for the 5-HT2A subtype (in only some cases up

to 10-fold or little more) [11]. In contrast, the finding that N-benzylation caused a 4 to 5-fold

increase in potency of the weak partial agonist 3-aminoethyl-2,4-(1H,3H)-quinazolinedione at

5-HT2A receptors, and that this effect was more marked with 2-methoxybenzyl substitution,

led to the synthesis of a small set of tryptamine and phenethylamine derivatives [12–19], result-

ing in the discovery of the now notorious NBOMe drugs. A search in PubMed for the item

“nbome” showed that at most two articles were published each year before 2010, the rate of

publication rose to 25 by 2015, fell somewhat the next year, and then reached 32 in 2017, and

15 until mid-2018. Extensive structure-activity studies showed that most of the “superpotent”

N-benzylated 2,5-dimethoxy-4-X-phenethylamines had negligible selectivity between 5-HT2A

and 5-HT2C receptors [13,16–20]. This led to a quest for more 5-HT2A-selective agonists,

which was successful in very few cases [15,16].

The older literature records limited exploration of N-benzyl and N-4-substituted benzyl-

5-methoxytryptamines [11], and doctoral theses addressing N-2-hydroxy- or–methoxybenzyl

derivatives of tryptamine and 5-methoxytryptamine [12,14,21]. The only recent, systematic

study, is the paper by Nichols [19] showing for the first time that introduction of a meta-meth-

oxyl, methylthio or methyl group, or a chlorine, bromine or iodine atom on the benzyl substit-

uent, is equally effective in raising 5-HT2A receptor affinities to low nanomolar Ki values, while

ortho-methoxy or -bromo substitution are somewhat less favorable. Also, both agonist and

antagonist radioligand displacement from the 5-HT2A receptor is usually favored minimally

(by a factor of 2 to 4) over the 5-HT2C subtype. In vitro (Ca2+ mobilization) functional assays

showed that almost all these compounds are high efficacy partial to full agonists at both recep-

tor subtypes, in most cases with a tenfold or greater preference for the 5-HT2A receptor, and

up to 40-fold for the 3-iodobenzyl derivative.

N-Benzyltryptamines and 5-HT2 receptors
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The literature records only three N-benzylated tryptamine derivatives lacking the 5-meth-

oxy substituent, comparing them with the corresponding 5-methoxytryptamines in a rat tail

artery assay [12,14]. These compounds were partial agonists at the 5-HT2A receptor, and were

2–4 times less potent than the 5-methoxy analogs, results that might be reasonably attributed

to the absence of a hydrogen bond accepting methoxyl group on the indole moiety. It should

be pointed out that the orthosteric binding site of 5-HT2 receptors contains serine, threonine

and tyrosine residues that form hydrogen bonds with agonist and antagonist ligands [22,23]. It

could be further conjectured that N-benzylated compounds with less interactions in the

5-HT2A receptor’s orthosteric site might more clearly reveal effects due to unmapped interac-

tions in the extended binding site described for the highly homologous 5-HT2B and 5-HT2C

receptor crystal structures [22–24]. In fact Halberstadt [25], citing Braden et al. [13], points

out that “compounds having low-to-moderate affinity tend to be the most sensitive to the (N-

benzyl) substitution”. We therefore decided to use tryptamine instead of its 5-methoxy deriva-

tive as the starting point for the synthesis and evaluation of a more extensive series of N-benzyl

compounds. Nevertheless, we also prepared and assayed a small number of 5-methoxytrypta-

mine derivatives for comparison of our data with the literature, and to see if this substitution

on the indole ring is responsible for any consistent changes in affinity or potency (Fig 1).

For specific substitution patterns, see Tables 1 and 2.

Results and discussion

Chemistry

All the compounds (thirty-six N-benzylated tryptamine derivatives and seven N-benzylated

5-methoxytryptamine derivatives, four of the latter described previously [11,19], were synthe-

sized by treating appropriate benzaldehydes with tryptamine or 5-methoxytryptamine (free

base) in methanol and reducing the unisolated imine intermediate with sodium borohydride,

as described for phenethylamines and 5-methoxytryptamines and shown in Fig 2 [16,19,26]:

The secondary amines thus obtained in good yields, and not requiring extensive purifica-

tion, were used as their water-soluble salts (usually hydrochlorides) in receptor binding and

functional pharmacological studies.

It is worth noting that the 1H NMR spectra (in DMSO-d6) of some salts with an ortho-

hydroxyl group on the N-benzyl moiety indicate the presence of an intramolecular hydrogen

bond between the protonated amine and the hydroxyl group (Fig 3).

Fig 1. General structure and numbering of the N-benzyltryptamines. R5 = H, tryptamines; R5 = MeO,

5-methoxytryptamines.

https://doi.org/10.1371/journal.pone.0209804.g001
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Table 1. Human 5-HT2 receptor subtype binding affinities (pKi ± SEM, and Ki in parentheses) and 5-HT2A/2C and (in parentheses) 5-HT2C/2A selectivities of seroto-

nin, tryptamine, and the synthesized compounds.

Compound R5 RX RY 5-HT2A

pKi ± S.E.M.

(Ki)

5-HT2B

pKi ± S.E.M.

(Ki)

5-HT2C

pKi ± S.E.M.

(Ki)

Selectivity

5-HT2A/2C

(5-HT2C/2A)

5-HT OH 6.03 N.D. N.D. N.D.

Tryptamine H 5.39 ± 0.25

(4073.80)

6.96 ± 0.06

(109.65)

7.02 ± 0.08

(95.50)

0.021

(46.7)

1 H H H 6.61 ± 0.11

(245.47)

7.00 ± 0.06

(100)

6.73 ± 0.06

(186.21)

0.75

(1.33)

2 H 2-OH H 6.94 ± 0.20

(114.82)

7.17 ± 0.05

(67.61)

7.07 ± 0.10

(85.11)

0.73

(1.37)

3 H 2-OMe H 7.05 ± 0.14

(89.13)

7.33 ± 0.11

(46.77)

6.65 ± 0.11

(223.87)

2.56

(0.39)

4 H 2-Me H 48 ± 1� 6.47 ± 0.07

(338.84)

6.18 ± 0.05

(660.69)

N.D.

5 H 2-Cl H 7.92 ± 0.12

(12.02)

7.63 ± 0.04

(23.44)

7.61 ± 0.03

(24.55)

2.04

(0.49)

6 H 2-Br H 6.71 ± 0.08

(194.98)

7.13 ± 0.07

(74.13)

6.47 ± 0.12

(338.84)

1.74

(0.57)

7 H 3-OH H 7.12 ± 0.07

(75.86)

7.43 ± 0.07

(37.15)

7.59 ± 0.06

(25.70)

0.36

(2.8)

8 H 3-Me H 7.84 ± 0.06

(14.45)

7.77 ± 0.03

(16.98)

7.13 ± 0.03

(74.13)

5.10

(0.20)

9 H 3-F H 6.59 ± 0.08

(257.04)

6.90 ± 0.05

(125.89)

6.67 ± 0.06

(213.80)

0.84

(1.19)

10 H 3-Cl H 7.35 ± 0.07

(44.67)

7.46 ± 0.06

(34.67)

7.01 ±0.08

(97.72)

2.17

(0.46)

11 H 3-Br H 8.09 ± 0.14

(8.13)

7.66 ± 0.07

(21.88)

7.12 ± 0.07

(75.86)

8

(0.13)

12 H 4-OH H 6.04 ± 0.12

(912.01)

6.31 ± 0.08

(489.78)

6.00 ± 0.08

(1000)

1.09

(0.92)

13 H 4-OMe H 6.34 ± 0.10

(457.09)

7.16 ± 0.10

(69.18)

6.45 ± 0.08

(354.81)

0.78

(1.28)

14 H 4-Me H 6.38 ± 0.08

(416.87)

7.13 ± 0.04

(74.13)

6.48 ± 0.04

(331.13)

0.81

(1.23)

15 H 4-OEt H 6.56 ± 0.09

(275.42)

6.57 ± 0.06

(269.15)

6.13 ± 0.11

(741.31)

2.66

(0.36)

16 H 4-Cl H 6.15 ± 0.10

(707.95)

6.65 ± 0.14

(223.87)

6.02 ± 0.08

(954.99)

1.37

(0.73)

17 H 4-Br H 6.00 ± 0.06

(1000)

6.58 ± 0.09

(263.03)

5.97 ± 0.08

(1071.52)

1.09

(0.92)

18 H 4-NO2 H 5.58 ± 0.07

(2630.27)

6.70 ± 0.11

(199.53)

5.85 ± 0.11

(1412.54)

0.54

(1.85)

19 H 2-OH 3-OMe 7.58 ± 0.06

(26.30)

7.88 ± 0.06

(13.18)

7.78 ± 0.06

(16.60)

0.58

(1.72)

20 H 2-OMe 3-OMe 5.82 ± 0.16

(1513.56)

6.71 ± 0.03

(194.98)

5.95 ± 0.07

(1122.02)

0.73

(1.37)

21 H 2-OH 3-Br 7.85 ± 0.05

(14.13)

7.81 ± 0.07

(15.49)

6.86 ± 0.08

(138.04)

9.8

(0.10)

22 H 2-OH 3-F 6.68 ± 0.05

(208.93)

6.89 ± 0.04

(128.82)

6.75 ± 0.07

(177.83)

0.82

(1.22)

23 H 2-OH 5-Me 6.13 ± 0.06

(741.31)

6.81 ± 0.04

(154.88)

6.57 ± 0.08

(269.15)

0.36

(2.77)

24 H 2-OH 5-F 6.12 ± 0.04

(758.58)

7.11 ± 0.07

(77.62)

6.98 ± 0.07

(104.71)

0.14

(7.15)

(Continued)
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This steric constraint may help to understand differences in binding affinities and func-

tional activities. A similar bond does not seem to be present in the ortho-methoxybenzylated

compounds, possibly disfavored by the bulk of the O-methyl group.

Pharmacology

Binding assays. The affinities of the products for human 5-HT2A, 5-HT2B, and 5-HT2C

receptors were evaluated by radioligand displacement from cultured cells expressing the

appropriate human receptors (CHO h5-HT2A, CHO h5-HT2B, HeLa h5-HT2C). [3H]Ketan-

serin was used for 5-HT2A, [3H]LSD for 5-HT2B, and [3H]mesulergine for 5-HT2C (Table 1).

Table 1. (Continued)

Compound R5 RX RY 5-HT2A

pKi ± S.E.M.

(Ki)

5-HT2B

pKi ± S.E.M.

(Ki)

5-HT2C

pKi ± S.E.M.

(Ki)

Selectivity

5-HT2A/2C

(5-HT2C/2A)

25 H 2-OMe 5-F 6.44 ± 0.08

(363.08)

7.02 ± 0.07

(95.50)

6.82 ± 0.14

(151.36)

0.42

(2.40)

26 H 2-OH 5-Br 6.51 ± 0.09

(309.03)

N.D. 6.14 ± 0.06

(724.44)

2.39

(0.42)

27 H 2-OMe 5-Br 5.95 ± 0.09

(1122.02)

7.04 ± 0.05

(91.20)

6.87 ± 0.09

(134.90)

0.12

(8.22)

28 H 2-OMe 5-Cl 6.01 ± 0.09

(977.24)

6.10 ± 0.06

(794.33)

5.88 ± 0.06

(1318.26)

1.35

(0.74)

29 H 2-OMe 5-OMe 6.48 ± 0.09

(331.13)

7.24 ± 0.04

(57.54)

7.06 ± 0.06

(87.10)

0.26

(3.85)

30 H 2-OH 5-NO2 8 ± 4� 6.05

(891.25)

31 ± 4� N.D.

31 H 2-OH 4-Br 5.81 ± 0.10

(1548.82)

6.96 ± 0.04

(109.65)

6.22 ± 0.05

(602.56)

0.38

(2.63)

32 H 2-OMe 4-OMe 6.18 ± 0.09

(660.69)

6.63 ± 0.04

(234.42)

6.57 ± 0.09

(269.15)

0.41

(2.44)

33 H 2-OH 6-Br 5.78 ± 0.05

(1659.59)

7.16 ± 0.02

(69.18)

6.95 ± 0.09

(112.20)

0.067

(15)

34 H 2-OH 6-F 6.64 ± 0.06

(229.09)

6.94 ± 0.04

(114.82)

6.81 ± 0.08

(154.88)

0.95

(1.05)

35 H 2-OH 3,5-diBr 12 ± 4� 5.22

(6025.60)

26 ± 4� N.D.

36 H 3-OMe 4-OMe 5.89 ± 0.10

(1288.25)

6.54 ± 0.07

(288.40)

5.92 ± 0.11

(1202.26)

0.92

(1.09)

37 OMe H H 7.48 ± 0.07

(33.11)

7.78 ± 0.11

(16.60)

7.02 ± 0.05

(95.50)

2.93

(0.34)

38 OMe 2-OMe H 7.35 ± 0.05

(44.67)

7.80 ± 0.06

(15.85)

7.16 ± 0.07

(69.18)

1.55

(0.65)

39 OMe 2-Cl H 7.87 ± 0.06

(13.49)

7.43 ± 0.09

(37.15)

7.13 ± 0.08

(74.13)

5.51

(0.18)

40 OMe 2-Br H 7.91 ± 0.09

(12.30)

7.54 ± 0.05

(28.84)

7.15 ± 0.07

(70.79)

5.66

(0.18)

41 OMe 4-Br H 6.41 ± 0.04

(389.05)

6.81 ± 0.07

(154.88)

6.42 ± 0.04

(380.19)

0.98

(1.02)

42 OMe 2-OH 5-OMe 6.87 ± 0.04

(134.90)

7.69 ± 0.05

(20.42)

7.39 ± 0.07

(40.74)

0.30

(3.31)

43 OMe 2-OH 5-F 8.40 ± 0.16

(3.98)

8.05 ± 0.07

(8.91)

7.40 ± 0.09

(39.81)

9.66

(0.10)

�Binding inhibition at 10 μM

https://doi.org/10.1371/journal.pone.0209804.t001
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Table 2. Human 5-HT2 receptor subtype Ca2+ mobilization potencies (pEC50 ± SEM, and EC50 in parentheses) and relative efficacies (% of response to 5-HT), and

5-HT2A/2C and (in parentheses) 5-HT2C/2A selectivities of serotonin, tryptamine, and the synthesized compounds.

Compound R5 RX RY 5-HT2A 5-HT2C Selectivity

pEC50 % Emax pEC50 % Emax 5-HT2A/2C

(5-HT2C/2A)

5-HT OH — — 8.09 ± 0.06

(8.13)

99.72 ± 1.93 9.87 ± 0.07

(0.13)

98.29 ± 2.03 0.016

(62.5)

Tryptamine H — — 7.76 ± 0.07

(17.38)

97.60 ± 2.34 8.93 ± 0.13

(1.17)

107.8 ± 3.43 0.067

(14.9)

1 H H H 6.79 ± 0.24

(162.18)

61.65 ± 5.17 7.30 ± 0.15

(50.12)

121.4 ± 6.58 0.31

(3.24)

2 H 2-OH H 6.70 ± 0.11

(199.53)

94.13 ± 4.59 7.47 ± 0.12

(33.88)

85.85 ± 2.83 0.17

(5.89)

3 H 2-OMe H 5.81 ± 0.07

(1548.82)

62.98 ± 1.95 7.45 ± 0.10

(35.48)

94.24 ± 3.75 0.023

(43.7)

4 H 2-Me H 5.7 ± 0.15

(1995.26)

44.44 ± 2.79 6.86 ± 0.09

(138.04)

106.9 ± 2.90 0.069

(14.5)

5 H 2-Cl H 6.33 ± 0.10

(467.74)

25.52 ± 1.16 6.71 ± 0.14

(194.98)

87.07 ± 4.96 0.42

(2.40)

6 H 2-Br H 5.65 ± 0.27

(2238.72)

29.33 ± 5.93 6.63 ± 0.13

(234.42)

108.6 ± 5.20 0.10

(9.55)

7 H 3-OH H 7.25 ± 0.23

(56.23)

52.75 ± 4.63 8.17 ± 0.20

(6.76)

96.34 ± 4.02 0.12

(8.32)

8 H 3-Me H 7.21 ± 0.18

(61.66)

32.98 ± 2.11 7.53 ± 0.06

(29.51)

82.61 ± 2.11 0.48

(2.09)

9 H 3-F H 6.41 ± 0.26

(389.05)

33.82 ± 4.01 6.95 ± 0.10

(112.20)

112.1 ± 4.84 0.29

(3.47)

10 H 3-Cl H 6.92 ± 0.2

(120.23)

57.91 ± 4.15 6.55 ± 0.11

(281.84)

117.3 ± 4.82 2.34

(0.43)

11 H 3-Br H 7.23 ± 0.14

(58.88)

32.59 ± 1.64 7.26 ± 0.07

(54.95)

106.7 ± 2.78 0.93

(1.07)

12 H 4-OH H N.D. N.D. 6.84 ± 0.10

(144.54)

99.65 ± 2.81 N.D.

13 H 4-OMe H 7.34 ± 0.06

(45.71)

108.2 ± 2.78 8.08 ± 0.06

(8.32)

91.44 ± 2.03 0.18

(5.49)

14 H 4-Me H N.D. N.D. 5.92 ± 0.14

(1202.26)

100.5 ± 5.36 N.D.

15 H 4-OEt H 6.44 ± 0.34

(363.08)

36.73 ± 6.13 7.93 ± 0.17

(11.75)

93.15 ± 3.26 0.032

(30.9)

16 H 4-Cl H 7.23 ± 0.15

(58.88)

79.96 ± 4.54 7.30 ± 0.11

(50.12)

98.34 ± 4.18 0.85

(1.17)

17 H 4-Br H N.D. N.D. 5.17 ± 0.08

(6760.83)

110.2 ± 4.30 N.D.

18 H 4-NO2 H N.D. N.D. 6.28 ± 0.19

(524.81)

92.05 ± 8.69 N.D.

19 H 2-OH 3-OMe 7.31 ± 0.34

(48.98)

26.16 ± 2.34 7.03 ± 0.15

(93.33)

107.4 ± 6.91 1.91

(0.52)

20 H 2-OMe 3-OMe N.D. N.D. 5.44 ± 0.26

(3630.78)

117.3 ± 9.18 N.D.

21 H 2-OH 3-Br 4.80 ± 0.24

(15848.93)

40.38 ± 6.23 7.56 ± 0.10

(27.54)

98.83 ± 2.83 0.0017

(575)

22 H 2-OH 3-F 6.79 ± 0.18

(162.18)

53.62 ± 4.49 7.77 ± 0.15

(16.98)

103.5 ± 4.96 0.105

(9.55)

23 H 2-OH 5-Me 6.96 ± 0.06

(109.65)

43.57 ± 0.90 7.00 ± 0.08

(100)

89.38 ± 3.86 0.91

(1.10)

(Continued)
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It should be noted that the affinities at 5-HT2A and 5-HT2C receptors were determined by

displacement of antagonist radioligands, and therefore reflect binding to both active and inac-

tive receptor conformations, while an agonist, presumably binding to an active conformation,

was used for the 5-HT2B affinity determinations. Therefore, the 5-HT2B affinities are not

strictly comparable to the others, and were not considered in the selectivity estimates.

The vast majority of the our products revealed submicromolar affinities at all three receptor

subtypes, and a small number gave Ki values in the 10 nanomolar range, although these values

did not seem to follow any general trend. N-benzyltryptamine (1) bound to the 5-HT2A and

5-HT2C receptors with rather similar affinities to those reported for N,N-dimethyltryptamine

(237 and 424 nM, respectively), but significantly better than N,N-diisopropyltryptamine (1.2

and 6.5 μM, respectively) [27]. N-Benzyl-5-methoxytryptamine (37) bound to both receptors

Table 2. (Continued)

Compound R5 RX RY 5-HT2A 5-HT2C Selectivity

pEC50 % Emax pEC50 % Emax 5-HT2A/2C

(5-HT2C/2A)

24 H 2-OH 5-F 7.12 ± 0.09

(75.86)

71.64 ± 1.95 7.58 ± 0.12

(26.30)

105.2 ± 2.19 0.35

(2.88)

25 H 2-OMe 5-F 7.22 ± 0.09

(60.26)

57.98 ± 1.95 7.28 ± 0.12

(52.48)

109.7 ± 2.19 0.87

(1.15)

26 H 2-OH 5-Br N.D. N.D. 6.15 ± 0.08

(707.95)

107.8 ± 2.88 N.D.

27 H 2-OMe 5-Br 4.75 ± 0.08

(17782.79)

69.04 ± 3.51 6.58 ± 0.14

(263.03)

110.8 ± 4.63 0.015

(67.6)

28 H 2-OMe 5-Cl 5.05 ± 0.07

(8912.51)

69.21 ± 2.67 6.62 ± 0.10

(239.88)

109.7 ± 3.35 0.027

(37.2)

29 H 2-OMe 5-OMe 5.46 ± 0.04

(3467.37)

38.97 ± 0.67 6.88 ± 0.09

(131.83)

118.4 ± 4.45 0.038

(26.3)

31 H 2-OH 4-Br 4.61 ± 0.21

(24547.09)

62.53 ± 10.79 6.09 ± 0.09

(812.83)

74.75± 2.60 0.033

(30.2)

32 H 2-OMe 4-OMe N.D. N.D. 6.62 ± 0.13

(239.88)

117.2 ± 4.59 N.D.

33 H 2-OH 6-Br 5.23 ± 0.67

(5888.44)

34.40 ± 1.37 6.10 ± 0.08

(794.33)

103.5 ± 2.91 0.13

(7.41)

34 H 2-OH 6-F 7.40 ± 0.16

(39.81)

49.28 ± 3.23 7.73 ± 0.19

(18.62)

91.67 ±6.60 0.47

(2.13)

36 H 3-OMe 4-OMe 5.65 ± 0.35

(2238.7)

50.52 ± 8.27 7.24 ± 0.11

(57.54)

100.5 ± 2.85 0.026

(38.9)

37 OMe H H 7.69 ± 0.10

(20.42)

63.19 ± 1.44 7.84 ± 0.13

(14.45)

112.7 ± 3.47 0.71

(1.41)

38 OMe 2-OMe H 8.70 ± 0.20

(1.99)

83.66 ± 3.42 8.42 ± 0.16

(3.80)

88.69 ± 4.22 1.91

(0.53)

39 OMe 2-Cl H 7.92± 0.11

(12.02)

47.74 ± 1.57 7.09 ± 0.09

(81.28)

106.2 ± 4.32 6.76

(0.15)

40 OMe 2-Br H 7.53 ± 0.06

(29.51)

44.79 ± 0.99 7.56 ± 0.14

(27.54)

105.1± 4.32 0.93

(1.07)

41 OMe 4-Br H 5.73 ± 0.10

(1862.09)

60.53 ± 2.41 6.88 ± 0.15

(131.83)

93.52 ± 3.05 0.071

(14.1)

42 OMe 2-OH 5-OMe 6.96 ± 0.06

(109.65)

43.57 ± 0.90 7.00 ± 0.08

(100)

89.38 ± 3.86 0.91

(1.1)

43 OMe 2-OH 5-F 8.86 ± 0.10

(1.38)

83.26 ± 2.26 8.44 ± 0.12

(3.63)

106.1 ± 3.05 2.63

(0.38)

https://doi.org/10.1371/journal.pone.0209804.t002
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5–15 times more strongly than N-isopropyl-N-methyl-5-methoxytryptamine (165 nM and

1.3 μM, respectively) [27].

Comparison of our tryptamine derivatives with the corresponding 5-methoxylated analogs

seemed to indicate some degree of parallelism. Thus, compounds 38, 40, and 41, described

recently [19], which in our hands gave similar binding results to those published, are the

5-methoxytryptamine analogs of the 2-methoxy-, 2-bromo- and 4-bromobenzyltryptamines 3,

6, and 17, respectively. While in our case the human receptors were expressed in CHO (Chi-

nese hamster ovary) cells, and in the paper by Nichols et al. [19] in human embryonic kidney

(HEK) cells, our results for compounds 40 and 41 agree with theirs within a factor of 2. In the

case of 38 our results do not differ by more than 2.7 times, which seems reasonable for data

from different laboratories and determined in different biological substrates.

Compounds 3 and 17, lacking the indole 5-methoxy group showed 2–4 times lower affini-

ties than their indole-methoxylated counterparts 38 and 41, at all three receptor subtypes, in

line with the observations of Heim [12] and Silva et al. [14] for 1 vs. 37. Contrary to expecta-

tions, the rather strongly binding N-(2-chlorobenzyl)tryptamine (5) had slightly greater affin-

ity than its 5-methoxytryptamine analog 39, at least at the 5-HT2B and 5-HT2C receptors. (Fig

1). It may be pointed out that, as noted by Jensen [21] and Nichols [19], the supposedly very

high-affinity [11] N-4-bromobenzyl-5-methoxytryptamine (41) was not at all exceptional.

Compounds 8, 10 and 11, bearing a single hydrophobic substituent at the meta position of

the benzyl group (CH3, Cl, or Br), bound rather strongly to the 5-HT2 receptors with 2 to

8-fold 5-HT2A/2C selectivity, as had been seen for their 5-methoxytryptamine counterparts

(respectively 5j, 5h and 5e in that paper) [19]. Intriguingly, however, the 3-chlorobenzyl deriv-

ative 10 had somewhat lower affinity than the 2-chloro analog 5. In contrast, 5-fluoro-2-hydro-

xybenzyl substitution gave profoundly different results in the tryptamine and the

5-methoxytryptamine series: the 5-methoxytryptamine derivative (43) had the highest 5-HT2A

Fig 2. Synthesis of N-(substituted)benzyltryptamines. a: MeOH, r.t., overnight; b: NaBH4 in small portions, r.t.

https://doi.org/10.1371/journal.pone.0209804.g002

Fig 3. Intramolecular hydrogen bond in N-(2’-hydroxybenzyl)tryptamines.

https://doi.org/10.1371/journal.pone.0209804.g003
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affinity (pKi = 8.4) of the whole series, while N-(5-fluoro-2-hydroxybenzyl)tryptamine (24)

bound quite poorly to this receptor (pKi = 6.1), and was slightly selective for the 2C subtype.

Almost half of our compounds bear an ortho-oxygen substituent on the benzyl moiety,

which was introduced as a test of Heim’s “structure-activity concept” regarding the increased

activity of 2-methoxybenzyl derivatives [12]. Comparing the N-benzyl- (1), N-2-hydroxyben-

zyl- (2) and N-2-methoxybenzyl- (3) tryptamines, 5-HT2A (and also 5-HT2B) affinity appeared

to increase slightly in that order, although at most by a factor of 2.7. At the 5-HT2C receptor

the affinities fluctuated in the same range. These changes can hardly be considered significant.

Similarly, in several pairs of compounds in which binding could be compared, introduction of

an ortho hydroxyl or methoxyl group had at most a very minor effect. The only exceptions

were the N-3-chlorobenzyl- (10) and N-3-bromobenzyl- (11) tryptamines, where substitution

to afford the N-5-chloro-2-methoxybenzyl (28) and N-5-bromo-2-methoxybenzyl (11) and to

a lesser extent N-5-bromo-2-hydroxybenzyl (26) analogs, was markedly damaging, at least for

5-HT2A receptor binding. Thus, the presence of an ortho-oxygen substituent on the benzyl

ring does not seem to be generally beneficial and, with the exceptions of the 2-hydroxy-

3-methoxybenzyl and the 2-hydroxy-3-bromobenzyl derivatives 19 and 21, the N-disubsti-

tuted benzyltryptamines showed rather low affinities. On the other hand, in our limited

5-methoxytryptamine series, the 2-hydroxy-5-fluoro derivative 43 showed surprisingly strong

5-HT2A receptor binding, and it also bound fairly strongly to the 5-HT2C receptor.

Functional assays

The functional activities of our compounds at human 5-HT2A and 5-HT2C receptors were

determined fluorometrically as calcium mobilization in CHO h5-HT2A and HeLa h5-HT2C

cells (Table 2).

Comparison of our results for the N-2-methoxybenzyl- (38), N-2-bromobenzyl- (40), and N-
4-bromobenzyl- (41) 5-methoxytryptamine derivatives with those of Nichols et al. [19] indicates

complete agreement in functional potencies in one case, and differences of somewhat more

than an order of magnitude in the others, although practically full agonism at the 5-HT2C recep-

tor seems to be the norm. The use of different cell lines is probably responsible in part for these

discrepancies, but it must be kept in mind that 5-HT2 receptors display differential functional

selectivity [28,29] and β-arrestin signaling bias [24] which are other factors to be considered.

Comparing tryptamine with 5-methoxytryptamine derivatives, the N-2-methoxybenzyl

(NBOMe) derivative 3 was several hundred times less potent than its 5-methoxytryptamine

analog 38 in the h5-HT2A receptor functional assay, and the N-2-chlorobenzyl 5 was almost 40

times less potent than its counterpart 39. A comparison of 17 with 41 was not possible because

the functional activity of the former was too low for quantification. At the h5-HT2C receptor, 3

and 5 were only 2–9 times less potent than the corresponding 5-methoxytryptamine deriva-

tives. It seems likely that while a 5-methoxyl group on the indole moiety can result in consider-

ably higher potency at the h5-HT2A subtype, it may have a less significant effect at the

h5-HT2C receptor.

Almost two decades ago we found that the electrophysiologically determined rank poten-

cies of several hallucinogenic and non-hallucinogenic phenylisopropylamines were consistent

with the 5-HT2A and 5-HT2C affinities obtained in radioligand displacement assays, and the

2C/2A affinity ratios paralleled the potency ratios reported in that work [30]. Although both

the voltage-clamp assay used then and the fluorescence assay used in the present work depend

on intracellular calcium release, other mechanisms are active in cells and the final result of

receptor activation may not show such correlations. As far back as 1997 a modified ternary
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receptor model was invoked to explain discrepancies [31], and it has recently been shown that

the binding profile alone can reasonably predict strong hallucinogenic effects in vivo [18,32].

As seen with respect to the affinities of these compounds for the three receptor subtypes,

apparently similar molecules sometimes behave quite differently, defying interpretation. Many

of these substances seem uninteresting as 5-HT2 agonists because of their low potencies. How-

ever, a few of them exhibit low nanomolar EC50 values, at either subtype, without following

any obvious rule. Interest in N-benzylated phenethylamines and indoleamines has focused

mainly on their possible psychedelic activities related to full or partial agonism at 5-HT2A

receptors [4]. In this regard, it is worth noting that the reported 5-HT2A affinities of N-benzyl-

5-methoxytryptamines were generally several times lower than those of the correspondingly

N-benzylated 2-(2,5-dimethoxy-4-iodophenyl)ethylamines, with the sole exception (30x) of

the “superpotent” N-(2-methoxybenzyl) analog (25I-NBOMe), but their in vitro functional

potencies did not follow this trend [19]. The rodent head twitch response is commonly

believed to distinguish 5-HT2A agonists that are psychedelic in humans from others that are

not [25]. The EC50 values determined for those N-benzyl-5-methoxytryptamines which elicited

the response (not all did) indicated potencies at least 30 times lower than that of 25I-NBOMe

[19]. One could therefore expect that very few (e.g. 38 and 43, Fig 3) of these compounds

might be human hallucinogens in the low milligram dose range, significantly higher than the

commonly abused NBOMe phenethylamines. Considering the binding affinities instead of the

calcium mobilization data, a fair number of our compounds exhibit pKi values greater than 7

and might show psychedelic properties at doses of a few tens of milligrams (Fig 4).

It may be noted that compound 38 was described by Nichols [19] (as 5a) and found to be

the most potent 5-HT2A receptor agonist in his series of N-benzyl-5-methoxytryptamines,

with Ki = 16.6 nM, EC50 = 1.9 nM and Emax = 81% (our values are 44.7 nM, 2.0 nM and 84%,

respectively, in quite good agreement). It also gave an ED50 = 3.15 mg/kg in the mouse head

twitch response (HTR) assay which is commonly viewed as a predictor of human psychedelic

activity [25]. For the sake of comparison, the potent psychedelic 25I-NBOMe (4-iodo-

2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine) exhibits a much lower Ki = 0.52 nM,

almost identical IC50 and relative efficacy data, but its HTR result, ED50 = 0.078 mg/kg, sug-

gests a 40-fold higher in vivo potency. Assuming that the HTR is a trustworthy model, we

again see that the binding affinity seems to be a better predictor of psychedelic activity than

functional potency, at least when determined as calcium mobilization.

A result that appeared with striking regularity was that almost all the compounds were par-

tial agonists at the h5-HT2A and full agonists at the h5-HT2C receptor (or possibly “super ago-

nists” eliciting a stronger response than serotonin). Moreover, a small number of these showed

significant 5-HT2C selectivity, sometimes coupled with EC50 values below 100 nM.

N-(3-Bromo-2-hydroxybenzyl)tryptamine (21), which in spite of its modest 5-HT2A

affinity is an extremely weak h5-HT2A partial agonist (pEC50 = 4.8) and a full agonist with

a pEC50 of 7.6 (EC50 = 27 nM) at the h5-HT2C receptor, is an extreme case that might be a

Fig 4. Possibly psychedelic N-benzyl-5-methoxytryptamines.

https://doi.org/10.1371/journal.pone.0209804.g004
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particularly interesting candidate for in vivo studies. Other, less conspicuous examples, are the

N-2-methoxybenzyl 3, the N-4-ethoxybenzyl 15, and the N-3,4-dimethoxybenzyl 36. These

compounds are 30 to 40-fold selective with EC50 values between 12 and 60 nM (pEC50 7.95 to

7.24). Less potent, but still selective, are the 2’-methoxy-5´-halo derivatives 27 and 28 (Fig 5).

Although not very potent, these N-benzylated tryptamines are more 5-HT2C/5-HT2A selec-

tive than the approved 5-HT2C agonist appetite suppressant lorcaserin (1(R)-8-chloro-

1-methyl.2,3,4,5-tetrahydro-(1H)-3-benzazepine): Ki(2A/2C) about 8, and EC50(2A/2C) about 20

[33] (Fig 6).

Lorcaserin is the first drug in its class to be approved by the FDA [34] as an anorexic. Like

our N-benzylated tryptamine derivatives, lorcaserin is a full 5-HT2C agonist, and a partial ago-

nist (about 70% efficacy) at 5-HT2A receptors [35]. Because of its modest 5-HT2C/5-HT2A

selectivity, lorcaserin is recommended exclusively for patients meeting specific criteria and has

been placed in Schedule IV (prescription only) due to its presumed ability “to produce halluci-

nations, euphoria, and positive subjective responses at supratherapeutic doses” [34]. While 21

is about 3 times less potent than lorcaserin, it is much more selective vs. 5-HT2A receptors, at

which it also exhibits low efficacy, and therefore might not be expected to produce the above-

mentioned side effects at any reasonable dose level. Unfortunately, its appreciable affinity for

the 5-HT2B receptor militates against its acceptance, at least for prolonged use.

To summarize, our large series of N-benzylated tryptamines revealed a very broad range of

affinities for the serotonin 5-HT2 receptor subtypes spread over three orders of magnitude and

generally showing little selectivity (tenfold at most, but usually much less) between the 2A and

2C subtypes. The ability of these compounds to elicit calcium mobilization was also quite vari-

able and with no obvious correlation with their affinity. Unlike the binding studies, the func-

tional assays exhibited significant selectivity with an unexpected bias favoring the 5-HT2C

receptor. Besides, our compounds were generally full 2C agonists and only partial agonists,

sometimes with rather low efficacy, at the 2A subtype. This fact, coupled with the selective acti-

vation of 5-HT2C receptors by several of these substances points them out as possible leads for

the development of a novel series of compounds of interest in the areas of appetite reduction

and the treatment of drug abuse, schizophrenia and sexual dysfunctions.

Fig 5. 5-HT2C-selective N-benzyltryptamines.

https://doi.org/10.1371/journal.pone.0209804.g005
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Materials and methods

Chemistry

The tryptamine used was a generous gift from Prof. Michel Lebœuf, Faculté de Pharmacie de

Châtenay-Malabry, Université de Paris XI, France. 5-Methoxytryptamine and most of the

aldehydes were purchased from AK Scientific Inc. (Palo Alto, CA). Some aldehydes were pre-

pared by standard aromatic bromination or O-methylation from the above precursors. Sol-

vents were of synthesis grade, purchased from Merck S.A. (Santiago, Chile), and were used

without additional purification. Melting points were determined on a Stuart SMP 10 appara-

tus, and NMR spectra were recorded on a Bruker Avance 400 instrument using the residual

solvent signal as the internal standard.

The appropriate aromatic aldehyde (approx. 5 mmol) and the equivalent amount of trypt-

amine or 5-methoxytryptamine, each dissolved in MeOH (5 mL each) were placed in a 100

mL flask and allowed to react at r.t. for at least 120 min. Then solid NaBH4 (a small molar

excess) was added in small portions with stirring, and the resulting solution was stirred at r.t.

for another 12 h The MeOH was removed, the solid taken up in dilute HCl, the solution made

alkaline and extracted with CH2Cl2. The organic extract was washed with water and dried over

Na2SO4, the solvent was removed and the N-benzylated amine was purified by ball-to-ball dis-

tillation or column chromatography if necessary (Scheme 1).

The free bases were dissolved in the smallest possible volume of 2-PrOH, acetone, or

MeOH, depending on their solubility. A small excess of 37% HCl diluted with 2-propanol was

Fig 6. Structure and 5-HT2A and 5-HT2C functional potencies of lorcaserin.

https://doi.org/10.1371/journal.pone.0209804.g006
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added, followed by Et2O (at least three volumes). The precipitated salt was filtered off, washed

with Et2O and vacuum dried. Some hydroxyl-containing bases gave hygroscopic hydrochlo-

rides, but their succinic or fumaric acid salts crystallized satisfactorily. To prepare them, the

free bases were dissolved as above in acetone or MeOH, and treated dropwise, with stirring,

with one equivalent or half an equivalent of a concentrated MeOH solution of succinic or

fumaric acid to obtain the acid (hemisuccinate and hemifumarate) or the neutral (fumarate)

salts. The resulting solutions were concentrated to dryness and the products recrystallized in

acetone, CHCl3 or CH2Cl2, filtered, and vacuum dried.

N-Benzyl-[2-(1H-indol-3-yl)ethyl]amine (1) hydrochloride. 75% yield, m.p. 188–189˚C.
1H-NMR (400 MHz, DMSO-d6) δ = 10.96 (1H, s, NH-1), 9.33 (2H, brs, NH2

+), 7.57 (3H, m,

H3’, H5’, H7), 7.44 (3H, m, H2’, H4’, H6’) 7.36 (1H, dd, J� 8 Hz, H4), 7.22 (1H, s, H2), 6.94–

7.18 (2H, m, H5, H6), 4.19 (2H, unresolved t, α’-CH2), 3.13 (4H, brs, 2CH2).

N-(2-Hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (2) hydrochloride. 68% yield, m.

p. 222–223˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.94 (1H, s, NH-1), 10.20 (1H, s, OH),

8.85 (2H, brs, NH2
+), 7.53 (1H, dd, H7), 7.37 (2H, m, H4, H3’) 7.25 (1H, dd, H6’), 7.22 (1H, s,

H2), 7.10 (1H, dd, H4’), 6.96 (2H, m, H6, H5’), 6.85 (1H, ddd, H5), 4.15 (2H, unresolved t, α’-

CH2), 3.12 (4H, brs, 2CH2).

N-(2-Methoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (3) hydrochloride. 72% yield, m.

p. 229–230˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.98 (1H, s, NH-1), 9.04 (2H, brs, NH2
+),

7.55 (1H, dd, H7), 7.46 (2H, m, H3’, H4’), 7.39 (1H, dd, H4), 7.22 (1H, s, H2), 7.11 (2H, m, H6,

H5’), 7.00 (2H, m, H5, H6’), 4.17 (2H, t, α’-CH2), 3.82 (3H, s, OCH3), 3.14 (4H, brs, 2CH2).

N-(2-Methylbenzyl)-[2-(1H-indol-3-yl)ethyl]amine (4) hydrochloride. 78% yield. m.

p. 209–210˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.99 (1H, s, NH-1), 9.41 (2H, brs, NH2
+),

7.61 (1H, dd, H7), 7.57 (1H, dd, H6’), 7.37 (1H, dd, H4), 7.30 (1H, ddd, H3’), 7.27 (2H, m, H4’,

H5’), 7.24 (1H, d, H2), 7.09 (1H, ddd, H6), 7.01 (1H, ddd, H5), 4.18 (2H, unresolved t, α’-

CH2), 3.21 (4H, m, 2CH2), 2.40 (3H, s, CH3).

N-(2-Chlorobenzyl)-[2-(1H-indol-3-yl)ethyl]amine (5) hydrochloride. 85% yield. m.

p. 225–226˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 11.00 (1H, s, NH-1), 9.70 (2H, brs, NH2
+),

7.84 (1H, dd, H3’), 7.59 (1H, dd, H7), 7.55 (1H, ddd, H4’), 7.45 (2H, m, H5’, H6’), 7.37 (1H,

dd, H4), 7.24 (1H, s, H2), 7.09 (1H, ddd, H6), 7.00 (1H, ddd, H5), 4.32 (2H, unresolved t, α’-

CH2), 3.20 (4H, m, 2CH2).

N-(2-Bromobenzyl)-[2-(1H-indol-3-yl)ethyl]amine (6) hydrochloride. 87% yield. m.

p. 228–229˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.98 (1H, s, NH-1), 9.51 (2H, brs, NH2
+),

7.79 (1H, dd, H7), 7.73 (1H, dd, H3’), 7.59 (1H, dd, H4), 7.50 (1H, td, H6’), 7.38 (2H, m, H4’,

H5’), 7.25 (1H, s, H2), 7.10 (1H, ddd, H6), 7.01 (1H, ddd, H5), 4.32 (2H, unresolved t, α’-

CH2), 3.21 (4H, brs, 2CH2).

N-(3-Hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (7) neutral fumarate. 68% yield. m.

p. 206–207˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.84 (1H, s, NH-1), 7.50 (1H, dd, H7),

7.33 (1H, dd, H4), 7.10 (1H, unresolved dd, H6’), 6.82 (1H, unresolved d, H2’), 6.80 (1H, dd,

H5’), 6.68 (1H, dd, H4’), 7.15 (1H, s, H2), 7.06 (1H, ddd, H6), 6.96 (1H, ddd, H5), 3.83 (2H,

unresolved t, α’-CH2), 2.93 (4H, brs, 2CH2), 6.47 (1H, s, fumarate).

N-(3-Methylbenzyl)-[2-(1H-indol-3-yl)ethyl]amine (8) hydrochloride. 85% yield. m.

p. 189–190˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.98 (1H, s, NH-1), 9.43 (2H, brs, NH2+)

7.56 (1H, dd, H7), 7.37 (3H, m, H4’, H5’, H6’), 7.34 (1H, dd, H4), 7.26 (1H, d, H2’), 7.22 (1H,

s, H2), 7.09 (1H, ddd, H6), 6.99 (1H, ddd, H5), 4.14 (2H, unresolved t, α’-CH2), 3.13 (4H, brs,

2CH2), 2.32 (3H, s, CH3).

N-(3-Fluorobenzyl)-[2-(1H-indol-3-yl)ethyl]amine (9) hydrochloride. 86% yield. m.

p. 223–225˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.97 (1H, s, NH-1), 9.58 (2H, brs, NH2
+)

7.57 (1H, dd, H7), 7.55 (1H, ddd, H4’), 7.49 (1H, unresolved dd, H5’), 7.44 (1H, unresolved d,

N-Benzyltryptamines and 5-HT2 receptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0209804 January 10, 2019 13 / 20

https://doi.org/10.1371/journal.pone.0209804


H2’), 7.36 (1H, dd, H4), 7.27 (1H, unresolved dd, H6’), 7.23 (1H, s, H2), 7.09 (1H, ddd, H6),

7.00 (1H, ddd, H5), 4.21 (2H, unresolved t, α’-CH2), 3.14 (4H, brs, 2CH2).

N-(3-Chlorobenzyl)-[2-(1H-indol-3-yl)ethyl]amine (10) hydrochloride. 83% yield. m.

p. 209–211˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.98 (1H, s, NH-1), 9.62 (2H, brs, NH2
+)

7.74 (1H, s, H2’), 7.58 (2H, m, H7, H4’), 7.47 (2H, unresolved signals, H5’, H6’), 7.36 (1H, dd,

H4), 7.22 (1H, s, H2), 7.09 (1H, ddd, H6), 7.00 (1H, ddd, H5), 4.20 (2H, unresolved t, α’-CH2),

3.14 (4H, brs, 2CH2).

N-(3-Bromobenzyl)-[2-(1H-indol-3-yl)ethyl]amine (11) hydrochloride. 88% yield. m.

p. 216–218˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.98 (1H, s, NH-1), 9.54 (2H, brs, NH2+)

7.86 (1H, s, H2’), 7.59 (3H, m, H7, H4’, H5’), 7.40 (2H, unresolved signals, H4, H6’), 7.22 (1H,

s, H2), 7.10 (1H, ddd, H6), 6.97 (1H, ddd, H5), 4.20 (2H, unresolved t, α’-CH2), 3.14 (4H, brs,

2CH2).

N-(4-Hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (12) (free base). 95% yield. m.p. n.

d. 1H-NMR (400 MHz, DMSO-d6) δ = 10.76 (1H, s, NH-1), 7.48 (1H, dd, H7), 7.32 (1H, dd,

H4), 7.09 (1H, s, H2), 7.08 (2H, d, H2’, H6’), 7.05 (1H, ddd, H6), 6.95 (1H, ddd, H5), 6.68 (2H,

d, H3’, H5’), 3.61 (2H, s, α’-CH2), 2.84 (2H, t, CH2), 2.76 (2H, t, CH2).

N-(4-Methoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (13) hydrochloride. 78% yield. m.

p. 199–200˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.98 (1H, s, NH-1), 9.26 (2H, brs, NH2+),

7.55 (1H, dd, H7), 7.49 (2H, d, H2’, H6’), 7.36 (1H, dd, H4), 7.22 (1H, s, H2), 7.09 (1H, ddd,

H6), 6.99 (3H, m, H5, H3’, H5’), 4.11 (2H, unresolved t, α’-CH2), 3.77 (3H, s, OCH3), 3.10

(4H, brs, 2CH2).

N-(4-Methylbenzyl)-[2-(1H-indol-3-yl)ethyl]amine (14) hydrochloride. 73% yield. m.

p. 213–214˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.97 (1H, s, NH-1), 9.41 (2H, brs, NH2+),

7.56 (1H, dd, H7), 7.46 (2H, d, H2’, H6’), 7.36 (1H, dd, H4), 7.23 (2H, d, H3’, H5’), 7.21 (1H, s,

H2), 7.09 (1H, ddd, H6), 6.98 (1H, ddd, H5), 4.13 (2H, unresolved t, α’-CH2), 3.12 (4H, brs,

2CH2), 2.32 (3H, s, CH3).

N-(4-Ethoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (15) hydrochloride. 82% yield. m.

p. 206–208˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.98 (1H, s, NH-1), 9.38 (2H, brs, NH2+),

7.56 (1H, dd, H7), 7.49 (2H, d, H2’, H6’), 7.36 (1H, dd, H4), 7.21 (1H, s, H2), 7.09 (1H, ddd,

H6), 6.98 (3H, m, H5, H3’, H5’), 4.07 (2H, unresolved t, α’-CH2), 4.00 (2H, unresolved qua-

druplet, ethoxyl CH2) 3.11 (4H, brs, 2CH2), 1.32 (3H, t, ethoxyl CH3).

N-(4-Chlorobenzyl)-[2-(1H-indol-3-yl)ethyl]amine (16) hydrochloride. 85% yield. m.

p. 229–230˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.97 (1H, s, NH-1), 9.52 (2H, brs, NH2+),

7.62 (2H, overlapping d, H3’, H5’), 7.58 (1H, overlapping dd, H7), 7.50 (2H, overlapping d,

H2’, H6’), 7.36 (1H, dd, H4), 7.22 (1H, s, H2), 7.09 (1H, ddd, H6), 6.99 (1H, ddd, H5), 4.19

(2H, unresolved t, α’-CH2), 3.13 (4H, brs, 2CH2).

N-(4-Bromobenzyl)-[2-(1H-indol-3-yl)ethyl]amine (17) hydrochloride. 86% yield. m.

p. 238–240˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.96 (1H, s, NH-1), 9.43 (2H, brs, NH2+),

7.65 (2H, d, H3’, H5’), 7.55 (3H, m, H2’, H6’, H7), 7.36 (1H, dd, H4), 7.22 (1H, s, H2), 7.09

(1H, ddd, H6), 7.00 (1H, ddd, H5), 4.17 (2H, unresolved t, α’-CH2), 3.13 (4H, brs, 2CH2).

N-(4-Nitrobenzyl)-[2-(1H-indol-3-yl)ethyl]amine (18) hydrochloride. 90% yield. m.p. 212–

214˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.99 (1H, s, NH-1), 9.80 (2H, brs, NH2+), 8.28 (2H,

d, H3’, H5’), 7.89 (2H, d, H2’, H6’), 7.59 (1H, dd, H7), 7.36 (1H, dd, H4), 7.23 (1H, s, H2), 7.09

(1H, ddd, H6), 7.00 (1H, ddd, H5), 4.35 (2H, unresolved t, α’-CH2), 3.17 (4H, brs, 2CH2).

N-(2-Hydroxy-3-methoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (19) neutral succinate.

58% yield. m.p. 109–111˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.83 (1H, s, NH-1), 7.49

(1H, dd, H7), 7.33 (1H, dd, H4), 7.15 (1H, s, H2), 7.06 (1H, ddd, H6), 6.97 (1H, ddd, H5), 6.86

(1H, dd, H5’), 6.71 (2H, overlapping dd, H4’, H6’), 3.94 (2H, unresolved t, α’-CH2), 3.75 (3H,

s, OCH3), 2.91 (4H, brs, 2CH2), 2.32 (2H, s, succinate).
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N-(2,3-Dimethoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (20) hydrochloride. 70% yield.

m.p. 210–212˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.99 (1H, s, NH-1), 9.35 (2H, brs, NH2

+), 7.56 (1H, dd, H7), 7.36 (1H, dd, H4), 7.22 (1H, s, H2), 7.20 (1H, overlapping dd, H5’), 7.12

(2H, overlapping dd, H4’, H6’), 7.09 (1H, overlapping ddd, H6), 6.99 (1H, ddd, H5), 4.17 (2H,

unresolved t, α’-CH2), 3.83 (3H, s, OCH3-3’), 3.79 (3H, s, OCH3-2’), 3.14 (4H, brs, 2CH2).

N-(3-Bromo-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (21) neutral succinate.

75% yield. m.p. 141–142˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.83 (1H, s, NH-1), 7.50

(1H, dd, H7), 7.37 (1H, dd, H4’), 7.33 (1H, dd, H4), 7.17 (1H, s, H2), 7.05 (2H, overlapping

ddd, H6, H6’), 6.96 (1H, ddd, H5), 6.64 (1H, t, H5’), 3.99 (2H, unresolved t, α’-CH2), 2.89 (4H,

brs, 2CH2), 2.39 (2H, s, succinate).

N-(3-Fluoro-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (22) neutral succinate.

72% yield. m.p. 151–152˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.82 (1H, s, NH-1), 7.50

(1H, dd, H7), 7.33 (1H, dd, H4), 7.16 (1H, s, H2), 7.06 (2H, overlapping ddd, H6, H4’), 6.97

(1H, ddd, H5), 6.91 (1H, dd, H5’), 6.70 (1H, quadruplet, H6’), 3.99 (2H, unresolved t, α’-CH2),

2.90 (4H, brs, 2CH2), 2.35 (2H, s, succinate).

N-(2-Hydroxy-5-methylbenzyl)-[2-(1H-indol-3-yl)ethyl]amine (23) acid fumarate. 48%

yield. m.p. 183–185˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.89 (1H, s, NH-1), 7.51 (1H, dd,

H7), 7.35 (1H, dd, H4), 7.17 (1H, s, H2), 7.07 (1H, ddd, H6), 7.01 (1H, d, H6’), 6.97 (1H, over-

lapping ddd, H5), 6.93 (1H, overlapping dd, H4’), 6.70 (1H, d, H3’), 3.95 (2H, unresolved t, α’-

CH2), 2.96 (4H, brs, 2CH2), 2.17 (3H, s, CH3-5’), 6.49 (2H, s, fumarate).

N-(5-Fluoro-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (24) hydrochloride. 62%

yield. m.p. 185–186˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.82 (1H, s, NH-1), 7.50 (1H, dd,

H7), 7.33 (1H, dd, H4), 7.16 (1H, s, H2), 7.07 (1H, ddd, H6), 7.01 (1H, dd, H3’), 6.98 (1H, ddd,

H5), 6.91 (1H, ddd, H4’), 6.72 (1H, dd, H6’), 3.90 (2H, s, α’-CH2), 2.90 (4H, brs, 2CH2).

N-(5-Fluoro-2-methoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (25) hydrochloride. 70%

yield. m.p. 179–180˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.99 (1H, s, NH-1), 9.32 (2H,

brs, NH2+), 7.55 (1H, dd, H7), 7.47 (1H, dd, H4’), 7.36 (1H, dd, H4), 7.23 (2H, m, H2, H6’),

7.09 (2H, m, H6, H3’), 6.99 (1H, ddd, H5), 4.15 (2H, unresolved t, α’-CH2), 3.80 (3H, s,

OCH3), 3.14 (4H, brs, 2CH2).

N-(5-Bromo-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (26) hydrochloride. 45%

yield. m.p. 188–189˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.95 (1H, s, NH-1), 7.53 (1H, dd,

H7), 7.47 (1H, d, H3’), 7.32 (1H, dd, H4), 7.13 (2H, m, H6, H4’), 7.05 (1H, ddd, H5), 6.96 (1H,

s H2,), 5.98 (1H, s, H6’), 3.43 (2H, unresolved t, α’-CH2), 3.07 (4H, m, 2CH2).

N-(5-Bromo-2-methoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (27) hydrochloride. 50%

yield. m.p. 192–193˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 11.00 (1H, s, NH-1), 9.29 (2H,

brs, NH2+), 7.76 (1H, d, H6’), 7.57 (2H, overlapping dd, H7, H4’), 7.37 (1H, dd, H4), 7.23 (1H,

s, H2), 7.09 (2H, m, H6, H3’), 7.00 (1H, ddd, H5), 4.15 (2H, t, α’-CH2), 3.81 (3H, s, OCH3),

3.14 (4H, brs, 2CH2).

N-(5-Chloro-2-methoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (28) hydrochloride. 72%

yield. m.p. 184–185˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 11.00 (1H, s, NH-1), 9.29 (2H, brs,

NH2+), 7.65 (1H, d, H6’), 7.57 (1H, dd, H7), 7.46 (1H, dd, H4’), 7.37 (1H, dd, H4), 7.23 (1H, s,

H2), 7.09 (2H, m, H6, H3’), 7.00 (1H, ddd, H5), 4.15 (2H, unresolved t, α’-CH2), 3.82 (3H, s,

OCH3), 3.15 (4H, brs, 2CH2).

N-(2,5-Dimethoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (29) hydrochloride. 86% yield.

m.p. 175–176˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.99 (1H, s, NH-1), 9.22 (2H, brs,

NH2
+), 7.55 (1H, dd, H7), 7.36 (1H, dd, H4), 7.22 (1H, s, H2), 7.21 (1H, overlapping d, H6’),

7.09 (1H, ddd, H6,), 6.99 (2H, overlapping dd, H3’, H4’), 6.95 (1H, ddd, H5), 4.13 (2H, s, α’-

CH2), 3.76 (3H, s, OCH3-2’), 3.73 (3H, s, OCH3-5’), 3.13 (4H, brs, 2CH2).
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N-(5-Nitro-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (30) hydrochloride. 76%

yield. m.p. 194–196˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.95 (1H, s, NH-1), 8.00 (1H, s,

H6’), 7.88 (1H, dd, H4’), 7.53 (1H, dd, H7), 7.35 (1H, dd, H4), 7.22 (1H, s, H2), 7.08 (1H, ddd,

H6,), 6.98 (1H, ddd, H5), 6.29 (1H, dd, H3’), 4.02 (2H, unresolved t, α’-CH2), 3.05 (4H, brs,

2CH2).

N-(4-Bromo-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (31) hydrochloride. 66%

yield. m.p. 192–194˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.81 (1H, s, NH-1), 8.99 (2H,

brs, NH2+), 7.54 (1H, dd, H7), 7.36 (2H, overlapping dd, H4, H5’), 7.22 (1H, s, H2), 7.16 (1H,

d, H3’), 7.09 (1H, overlapping ddd, H6), 7.04 (1H, overlapping dd, H6’), 7.00 (1H, overlapping

dd, H5), 4.11 (2H, unresolved t, α’-CH2), 3.12 (4H, brs, 2CH2).

N-(2,4-Dimethoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (32) hydrochloride. 73% yield.

m.p. 184–186˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.99 (1H, s, NH-1), 9.03 (2H, brs, NH2

+), 7.54 (1H, dd, H7), 7.38 (2H, overlapping dd, H4, H5’), 7.22 (1H, s, H2), 7.09 (1H, overlap-

ping ddd, H6), 6.99 (1H, overlapping ddd, H5), 6.61 (1H, d, H3’), 6.57 (1H, d, H6’), 4.07 (2H,

unresolved t, α’-CH2), 3.80 (3H, s, OCH3-2’), 3.78 (3H, s, OCH3-4’), 3.11 (4H, brs, 2CH2).

N-(6-Bromo-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (33) hydrochloride. 62%

yield. m.p. 195–196˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 11.07 (1H, s, NH-1), 11.01 (1H, s,

OH), 9.09 (2H, brs, NH2
+), 7.55 (1H, dd, H7), 7.36 (1H, dd, H4), 7.23 (1H, s, H2), 7.19 (1H,

dd, H5’), 7.13 (1H, dd, H4’), 7.08 (1H, ddd, H6), 7.07 (1H, dd, H3’), 7.00 (1H, ddd, H5), 4.29

(2H, s, α’-CH2), 3.17 (4H, brs, 2CH2).

N-(6-Fluoro-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (34) neutral succinate.

58% yield. m.p. 159–161˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.82 (1H, s, NH-1), 7.49

(1H, dd, H7), 7.33 (1H, dd, H4), 7.15 (1H, s, H2), 7.11 (1H, dd, H5’), 7.06 (1H, ddd, H6), 6.97

(1H, ddd, H5), 6.58 (2H, overlapping dd, H3’, H4’), 3.97 (2H, unresolved t, α’-CH2), 2.90 (4H,

brs, 2CH2), 2.35 (2H, s, succinate).

N-(3,5-Dibromo-2-hydroxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (35) hydrochloride.

65% yield. m.p. 183–184˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.97 (1H, s, NH-1), 7.82

(1H, d, H4’), 7.71 (1H, d, H6’), 7.57 (1H, dd, H7), 7.38 (1H, dd, H4), 7.24 (1H, s, H2), 7.10

(1H, ddd, H6), 7.02 (1H, ddd, H5), 4.23 (2H, unresolved t, α’-CH2), 3.18 (2H, unresolved t,

CH2), 3.11 (2H, unresolved t, CH2).

N-(3,4-Dimethoxybenzyl)-[2-(1H-indol-3-yl)ethyl]amine (36) hydrochloride. 83% yield.

m.p. 238–240˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.97 (1H, s, NH-1), 9.34 (2H, brs, NH2

+), 7.56 (1H, dd, H7), 7.36 (1H, dd, H4), 7.31 (1H, dd, H2’), 7.22 (1H, s, H2), 7.08 (1H, over-

lapped d, H6’), 7.06 (1H, overlapping ddd, H6), 7.00 (1H, d, H5’), 6.97 (1H, overlapped ddd,

H5), 4.10 (2H, unresolved t, α’-CH2), 3.78 (3H, s, OCH3-3’), 3.76 (3H, s, OCH3-4’), 3.12 (4H,

brs, 2CH2).

N-Benzyl-[2-(5-methoxy-1H-indol-3-yl)ethyl]amine (37) hydrochloride. 84% yield. m.

p. 233–234˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.80 (1H, s, NH-1), 9.51 (2H, brs, NH2+),

7.60 (2H, m, H2’, H6’), 7.42 (3H, m, H3’, H4’, H5’), 7.24 (1H, d, H7), 7.16 (1H, s, H2), 7.10

(1H, d, H4), 6.73 (1H, dd, H6), 4.18 (2H, t, α’-CH2), 3.76 (3H, s, OCH3-5), 3.10 (4H, brs,

2CH2).

N-(2-Methoxybenzyl)-[2-(5-methoxy-1H-indol-3-il)ethyl]amine (38) hydrochloride.

71% yield. m.p. 240–241˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.81 (1H, s, NH-1), 8.79

(2H, brs, NH2+), 7.49 (1H, dd, H6’), 7.39 (1H, ddd, H5’), 7.25 (1H, d, H7), 7.16 (1H, s, H2),

7.06 (2H, m, H4, H3’), 6.98 (1H, ddd, H4’), 6.74 (1H, dd, H6), 4.10 (2H, s, α’-CH2), 3.79 (3H,

s, OCH3-2’), 3.75 (3H, s, OCH3-5), 3.07 (4H, brs, 2CH2).

N-(2-Chlorobenzyl)-[2-(5-methoxy-1H-indol-3-yl)ethyl]amine (39) hydrochloride. 85%

yield. m.p. 193–194˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.82 (1H, s, NH-1), 9.64 (2H,

brs, NH2+), 7.83 (1H, ddd, H4’), 7.56 (1H, ddd, H5’), 7.45 (2H, overlapped dd, H3’, H6’), 7.25
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(1H, d, H7), 7.19 (1H, d, H2), 7.12 (1H, s, H4), 6.75 (1H, dd, H6), 4.32 (2H, s, α’-CH2), 3.77

(3H, s, OCH3-5), 3.17 (4H, m, 2CH2).

N-(2-Bromobenzyl)-[2-(5-methoxy-1H-indol-3-yl)ethyl]amine (40) hydrochloride. 83%

yield. m.p. 206–207˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.79 (1H, s, NH-1), 9.56 (2H,

brs, NH2+), 7.80 (1H, dd, H3’), 7.73 (1H, dd, H6’), 7.50 (1H, ddd, H4’), 7.37 (1H, ddd, H5’),

7.26 (1H, d, H7), 7.20 (1H, s, H2), 7.11 (1H, d, H4), 6.75 (1H, dd, H6), 4.32 (2H, s, α’-CH2),

3.77 (3H, s, OCH3-5), 3.17 (4H, m, 2CH2).

N-(4-Bromobenzyl)-[2-(5-methoxy-1H-indol-3-yl)ethyl]amine (41) hydrochloride. 80%

yield. m.p. 240–241˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.80 (1H, s, NH-1), 9.36 (2H, brs,

NH2+), 7.66 (2H, dd, H3’, H5’), 7.53 (2H, dd, H2’, H6’), 7.25 (1H, d, H7), 7.17 (1H, s, H2),

7.06 (1H, d, H4), 6.74 (1H, dd, H6), 4.18 (2H, s, α’-CH2), 3.76 (3H, s, OCH3-5), 3.09 (4H, brs,

2CH2).

N-(2-Hydroxy-5-methoxybenzyl)-[2-(5-methoxy-1H-indol-3-yl)ethyl]amine (42) acid

fumarate. 48% yield. m.p. 196–197˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.74 (1H, s, NH-

1), 7,22 (1H, d, H7), 7.13 (1H, s, H2), 7.00 (1H, d, H4), 6.92 (1H, d, H6’), 6.78 (2H, m, H3’,

H4’), 6.72 (1H, dd, H6), 6.53 (2H, s, fumarate), 4.02 (2H, s, α’-CH2), 3.74 (3H, s, OCH3-5’),

3.66 (3H, s, OCH3-5), 3.00 (4H, brs, 2CH).

N-(5-Fluoro-2-hydroxybenzyl)-[2-(5-methoxy-1H-indol-3-yl)ethyl]amine (43) neutral

fumarate. 55% yield. m.p. 200–201˚C. 1H-NMR (400 MHz, DMSO-d6) δ = 10.66 (1H, s, NH-

1), 7.22 (1H, d, H7), 7.11 (1H, s, H2), 7.04 (1H, dd, H4’), 6.97 (1H, d, H4), 6.90 (1H, d, H3’),

6.73 (2H, m, H6, H6’), 6.51 (1H, s, fumarate), 3.92 (2H, unresolved t, α’-CH2), 3.74 (3H, s,

OCH3-5), 2.89 (4H, brs, 2CH2).

Pharmacology

Binding studies

Competition binding to the human 5-HT2A receptor. Serotonin 5-HT2A receptor com-

petition binding experiments were carried out in polypropylene 96-well plates. In each well

were incubated 60 μg of membranes from a CHO-5-HT2A cell line prepared in our laboratory,

1 nM [3H]ketanserin (47.3 Ci/mmol, 1 mCi/ml, Perkin Elmer NET791250UC), studied com-

pounds and standard. Non-specific binding was determined in the presence of methysergide

1 μM (Sigma M137). The reaction mixture (Vt: 250 μL/well) was incubated at 37˚C for 30 min,

200 μL was transferred to a GF/B 96-well plate (Millipore, Madrid, Spain) pretreated with

0.5% of PEI and treated with binding buffer (Tris-HCl 50 mM, pH = 7.4), and was filtered and

washed six times with 250 μL wash buffer (Tris-HCl 50 mM, pH = 6.6), and 35 μL of Universol

Scintillation cocktail (Perkin Elmer, Alcobendas, Spain) were added to each well before count-

ing in a microplate beta scintillation counter (Microbeta Trilux, PerkinElmer, Madrid, Spain).

Competition binding to the human 5-HT2B receptor. Serotonin 5-HT2B receptor com-

petition binding experiments were carried out in polypropylene 96-well plates. In each well

were incubated 5 μg of membranes from a CHO-5-HT2B cell line prepared in our laboratory, 1

nM [3H]LSD (75.9 Ci/mmol, 1 mCi/ml, Perkin Elmer NET638250UC), studied compounds

and standard. Non-specific binding was determined in the presence of 5-HT 50 μM (Sigma

H9523). The reaction mixture (Vt: 250 μL/well) was incubated at 37˚C for 30 min, 200 μL was

transferred to a GF/C 96-well plate (Millipore, Madrid, Spain) pretreated with 0.5% of PEI and

treated with binding buffer (Tris-HCl 50 mM, ascorbic acid 0.1%, CaCl2 4 mM, pH = 7.4), and

was filtered and washed four times with 250 μL wash buffer (Tris-HCl 50 mM, pH = 7.4), and

35 μL of Universol Scintillation cocktail (Perkin Elmer, Alcobendas, Spain) were added to each

well before counting in a microplate beta scintillation counter (Microbeta Trilux, PerkinElmer,

Madrid, Spain).
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Competition binding to the human 5-HT2C receptor. Serotonin 5-HT2C receptor com-

petition binding experiments were carried out in polypropylene 96-well plates. In each well

were incubated 3 μg of membranes from a Hela-5-HT2C cell line prepared in our laboratory,

1.25 nM [3H]mesulergine (83.1 Ci/mmol, 1 mCi/ml, Perkin Elmer NET1148250UC), studied

compounds and standard. Non-specific binding was determined in the presence of mianserin

10 μM (Sigma M2525). The reaction mixture (Vt: 250 μL/well) was incubated at 27˚C for 60

min, 200 μL was transferred to a GF/C 96-well plate (Millipore, Madrid, Spain) pretreated

with 0.5% of PEI and treated with binding buffer (Tris-HCl 50 mM, pH = 7.5), and was filtered

and washed four times with 250 μL wash buffer (Tris-HCl 50 mM, pH = 6.6), and 35 μL of

Universol Scintillation cocktail (Perkin Elmer, Alcobendas, Spain) were added to each well

before counting in a microplate beta scintillation counter (Microbeta Trilux, PerkinElmer,

Madrid, Spain).

Functional studies

Functional activities were assessed by measuring Ca2+ release in CHO-5-HT2A or HeLa-

5-HT2C cells. The day before the assay, 2000 (5-HT2A) or 10000 (5-HT2C) cells/well were

seeded in 384 well black plates (Greiner 781091). The cells were incubated with 25 μL of Fura-

2 QBTTM Calcium Kit (Molecular Devices), in buffer supplemented with 5 mM probenecid

(Invitrogen) for 1 h at 37˚C. Changes in fluorescence due to intracellular Ca2+ mobilization

(λex = 340 nm, λex = 380 nm; λem = 540 nm) were measured using a calcium imaging plate

reader system (FDSS7000EX, Hamamatsu) every second after the establishment of a baseline.

The agonist Ca2+ peak in response to agonist addition occurred from 10 to 20 s following

stimulation.

Statistics

Data were adjusted to non-linear fitting using Prism V2.1 software (Graph Pad Inc., Chicago,

USA). Ki values were calculated using the Cheng-Prusoff equation.
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substitutents on 5-HT2A versus 5-HT2C binding of phenylalkyl- and indolylalkylamines. J Med Chem

1994; 37: 1929–1935. PMID: 8027974.

12. Heim R. Synthese und Pharmakologie potenter 5-HT2A Rezeptoragonisten mit N-2-Methoxybenzyl-

Partialstruktur. Entwicklung eines neuen Struktur-Wirkungskonzepts. Ph.D. Thesis, Freie Universität

Berlin. 2003. Extensively cited in Silva et al. 2011 [14].

13. Braden MR, Parrish JC, Naylor JC, Nichols DE. Molecular interaction of serotonin 5-HT2A receptor resi-

dues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol Pharma-

col 2006, 70: 1956–1964. https://doi.org/10.1124/mol.106.028720 PMID: 17000863.

14. Silva ME, Heim R, Strasser A, Elz S, Dove S. Theoretical studies on the interaction of partial agonists

with the 5-HT2A receptor. J Comput Aided Mol Des 2011; 25: 51–66. https://doi.org/10.1007/s10822-

010-9400-2 PMID: 21088982.

15. Juncosa JI Jr, Hansen M, Bonner LA, Cueva JP, Maglathlin R, McCorvy JD, et al. Extensive rigid ana-

logue design maps the binding conformation of potent N-benzylphenethylamine 2-HT2A receptor ago-

nist ligands. ACS Chem Neurosci 2013; 4: 96–109. https://doi.org/10.1021/cn3000668 PMID:

23336049.

16. Hansen M, Phonekeo K, Paine JS, Leth-Petersen S, Begtrup M, Bräuner-Osborne H, et al. Synthesis
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