W Very Important Publication

Diastereoselective Intramolecular Aldol-Type Trapping of Zwitterionic Intermediates by Ketones for the Synthesis of Spiro[chroman-4,3'-oxindole] Derivatives

Shikun Jia,^a Yubing Lei,^a Longlong Song,^a A. Gopi Krishna Reddy,^a Dong Xing,^a and Wenhao Hu^{a,*}

^a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China

1

E-mail: whu@chem.ecnu.edu.cn

Received: September 9, 2016; Revised: October 24, 2016; Published online:

Abstract: A simple, mild and efficient rhodium-catalyzed aromatic C–H functionalization of α -phenoxy ketones by 3-diazooxindoles for the synthesis of the spiro[chroman-4,3'-oxindole] ring system is described. A series of functionalized spiro[chroman-4,3'-oxindole] derivatives bearing two adjacent quaternary carbon centers have been attained in a highly diastereoselective manner with very good yields. Control experiments suggested the possibility of an intramolecular aldol-type trapping of zwitterionic intermediates after the C–H functionalization. Furthermore, the applicability of this method has been tested by a gram-scale synthesis. A facile treatment with base enabled the access to both *syn*and *anti*-diastereomers *via* isomerization.

Keywords: aromatic C–H functionalization; rhodium; spiro[chroman-4,3'-oxindole] derivatives; trapping; zwitterionic intermediates

Heterocyclic spirooxindoles architectures have drawn the attention of many medicinal chemists in organic synthesis due to their existence as privileged scaffolds of important pharmacophores in pharmaceuticals and also as the core structure of alkaloid natural products.^[1] Among them the oxindole structure with a tetrahydropyran ring junction at the C-3 position (Figure 1a) is one of the synthetic targets.^[2] Recently, some efficient strategies have been successfully developed towards the synthesis of these spirooxindole analogues including [Pd]-catalyzed carbosilylation followed by cyclization of N-[2-(1,3-carbamoylbutenyl)aryl] chlorides,^[3] formal [5+1] annulation of oxindoles and ester-linked bisenones,^[4] the Prins cascade reaction of 4-hydroxy-*N*-methyl-2-methylene-*N*-phenylbutanamide and aldehydes,^[5] and multi-component

Adv. Synth. Catal. 0000, 000, 0-0Wiley Online LibraryThese are not the final page numbers!

reactions (MCRs).^[6] Nevertheless, a thorough literature survey indicated that there were limited developments in order to access the fused chroman-3-ol moiety at the C-3 position, although chroman-3-ol is also an important skeleton in natural/unnatural compounds of biological interest (Figure 1b).^[7] It is worth mentioning that the two adjacent quaternary stereocenters present in the oxindole fused chroman-3-ol moiety at the C-3 position make this moiety difficult to construct. A few methods comprising a tandem Friedel–Crafts-type reaction of 2-naphthol^[8a] or cas-

Figure 1. Spiro[tetrahydropyran-4,3'-oxindole] and chroman-3-ol skeletons in natural products and drugs.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

cade Michael-addition of 8-hydroxyquinoline^[8b] have been targeted to accomplish the key chroman ring in spiro[chroman-4,3'-oxindole] (Scheme 1a). However, the development of a straightforward and sensible method to access such skeletons from simple starting materials is highly desirable for drug development.

In this context multi-component reactions have become powerful tools in recent years to achieve complex molecules from corresponding simple units. Our research group has developed some important multi-component reactions through a metal carbeneinduced active intermediate trapping process in which oxonium ylides^[9] (generated from water or alcohols) or ammonium ylides^[10] (generated from amines) as

(a) Reported method for preparation of spiro[chroman-4,3'-oxindole] derivatives

(b) Asymmetric functionalization of aromatic C-H bonds by intramolecular trapping of zwitterionic intermediates

(c) Divergent synthesis of polyfunctional heterocycles *via* intermolecular trapping of ylides by Moody and our group

$$\mathbb{R}^{1} \xrightarrow[\mathbb{R}^{2}]{} \mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} \mathbb{CO}_{2}\mathbb{R}^{4} \xrightarrow{\mathbb{R}^{3}} \mathbb{CO}_{2}\mathbb{R}^{4} \xrightarrow{\mathbb{R}^{3}} \mathbb{CO}_{2}\mathbb{R}^{4}$$

(d) Synthesis of indanol derivatives *via* gold-catalyzed sequential C-H functionalization and aldol annulation by Zhang

(e) This work: Construction of spiro[chroman-4,3'-oxindole] derivatives by intermolecular trapping of zwitterionic intermediates

Scheme 1. Strategies for the synthesis of spiro[chroman-4,3'-oxindole] derivatives.

Adv. Synth. Catal. 0000, 000, 0-0

well as zwitterionic intermediates^[11] (generated from indoles, pyrroles, N-substituded anilines etc.,) could be trapped by electrophiles such as aldehydes, ketones, imines, or α,β -unsaturated carbonyl compounds. Among them, we have achieved the asymmetric functionalization of aromatic C-H bonds through a three-component reaction of N,N-disubstituted anilines with diazo compounds and imines in the presence of Rh(II)/chiral phosphoric acid cocatalysts (Scheme 1b).^[12] Recently, Moody^[13] and our group^[14] reported an intramolecular aldol-type trapping of oxonium/ammonium ylides for the synthesis of tetrahydrofurans/pyrrolidines from diazo compounds and β -hydroxy ketones/ β -amino ketones (Scheme 1c). Similarly a gold-catalyzed sequential C-H functionalization and aldol annulation strategy was developed by Zhang^[15] for the synthesis of indanol derivatives. However, in application to this method, only one example of a spirooxindole has been obtained, albeit possessing low diastereoselectivity (Scheme 1d). With our ongoing interest in the construction of polyfunctional heterocycles on the basis of these trapping tactics and aromatic C-H functionalizations, herein we have designed an intramolecular aldol-type trapping (not a sequential) of metal carbene-induced zwitterionic intermediates which could be generated *in-situ* from 3-diazooxindole and α phenoxy ketones, to establish the spirooxindole fused chroman-3-ol moiety (Scheme 1e). This strategy shows the dual role of α -phenoxy ketones as both zwitterionic intermediate precursor and also as the intramolecular trapping reagent. It has been observed that the results with N,N-dibenzylaniline are better than those with other N-substituted aniline substrates in an intermolecular zwitterionic intermediate trapping process.^[12] Hence, we decided to introduce dibenzylamino substitution on the phenyl ring of the α phenoxy ketone to enrich the electronic density of the aromatic C-H bond.

Thus the synthetic strategy was initiated with the reaction of 2-[3-(dibenzylamino)phenoxy]-1-phenylethanone 1a and 1-benzyl-3-diazoindolin-2-one 2a in the presence of $[Rh_2(OAc)_4]$ catalyst and 4Å molecular sieves at 0°C in dichloromethane. To our delight, the desired product 3a was obtained in 52% yield and with 90:10 diastereoselectivity (Table 1, entry 1). Both the yield and diastereoselectivity of 3a were improved with an increase in temperature, but further increases in temperature reduced the yield (Table 1, entries 2 and 3). Various solvents were also screened in order to further improve the yield of 3a. The reactions in toluene, xylene and CHCl₃ showed decrements in the vield of **3a** (Table 1, entries 4, 5 and 7). However, the desired product 3a was obtained in 90% yield and 95:5 diastereoselectivity when the reaction was performed in 1, 2-dichloroethane (DCE) at 25°C in the presence of 4 Å molecular sieves (Table 1, entry 6).

asc.wiley-vch.de

	Rh ₂ (OAc) ₄ (1 mol%)	Bn ₂ N O OH
N2 N Bn	solvent, temp. 4 Å MS	Bn 3a
2a		

Table 1. Optimization	of the	reaction	condit	ions. ^[a]
Bn ₂ N O				

Entry	Solvent	Temp. [°C]	Yield [%] ^[b]	dr (syn:anti) ^[c]
1	DCM	0	52	90:10
2	DCM	25	89	94:6
3	DCM	40	81	94:6
4	PhCH ₃	25	77	94:6
5	Xylene	25	57	93:7
6	DCE	25	90	95:5
7	CHCl ₃	25	66	83:17

[a] Reactions were conducted by adding 2a (0.11 mmol) in 1 mL of the solvent to the mixture of 1a (0.1 mmol) and catalyst in 1 mL of the solvent via syringe pump over 1 h.

^[b] Isolated yield after column chromatography.

^[c] Determined by ¹H NMR of crude mixture.

With the optimized reaction conditions in hand, the substrate scope of this transformation for the synthesis of spiro[chroman-4,3'-oxindole] derivatives **3** was examined. The current strategy showed very good substrate scope tolerating different aryl (from electron-donating to electron-withdrawing and heterocyclic) substituted α -phenoxyarylethanones 1 and resulted in the desired products 3 in very good yields with excellent diastereoselectivities. For example, excellent yield and diastereoselectivity were obtained in the case of electron-donating substituents on the aryl rings (Table 2, 3b, 3c, 3d). A heterocyclic substituted substrate gave the corresponding product 3e in 92% yield along with >95:5 diastereoselectivity. Naphthylsubstituted substrates also resulted in good yields (Scheme 2, 3f). Meanwhile, the 2,4-dichlorophenyl substrate was also tolerated well, affording 79% yield and >95:5 diastereoselectivity (Table 2, 3g). Notably, 4-CF₃-phenyl-substitution gave 72% yield and 24:76 diastereoselectivity (Table 2, 3h). For this substrate, anti-3h was the major product, which perhaps was the

Scheme 2. Gram-scale reaction.

Adv. Synth. Catal. 0000, 000, 0-0

stereoselectivities (Table 3, entries 1–6). Replacing the N-benzyl substituent of 3-diazooxindole by N-Cbz and N-Me slightly reduced the yield and diastereoselectivity (3r vs. 3a, 3s vs. 3a, 3t vs. 3l).

Furthermore, the scope with respect to the 3-diazo-

oxindoles 2 was further investigated. Substituents on the C-5 and C-6 positions of 3-diazooxindoles 2 gave the desired products **3l-q** in good yields with high dia-

result of partial isomerization of syn-3h under the standard reaction conditions. Crucially, methyl- and ethyl-substitution were also compatible with the standard conditions (Table 2, 3i, 3j). The more bulky butyl-substitution afforded the corresponding spiro-[chroman-4,3'-oxindole] in good yield with relatively low diastereoselectivity (Table 2, 3k). In addition to other spectroscopic studies, the relative configuration of the desired product was unambiguously determined

by X-ray analysis of **3b**.^[16]

To gain some insight into the reaction pathway of this intramolecular aldol-type trapping process, a control experiment was conducted to verify whether the current reaction proceeds via a stepwise or a concerted reaction pathway.^[17] Thus the C-H insertion product 4a was isolated and then treated under the identical reaction conditions of the current reaction, but no 3a was observed. In this manner the control experiment excluded the possibility of a stepwise C-H insertion/aldol-type addition pathway. To demonstrate the synthetic efficiency of this process, a gram-scale reaction was carried out by using 2 mmol of 1a and 2.2 mmol 2a. To our delight the reaction proceeded smoothly under standard conditions to give the desired product 3a in 86% yield (1.09 g) with 95:5 diastereoselectivity (Scheme 2). Interestingly, on treatment with an equivalent of K₂CO₃ in toluene and MeOH at room temperature, syn-3a isomerized to its diastereomer anti-3a totally in 95% yield. The isomerization of syn-3a might be possibly due to an intramolecular retro-aldol reaction via transition state I to give the thermodynamically stable *anti-3a* (Scheme 3). On the other hand, similar K₂CO₃ treatment on insertion product 4a did not result anti-3a, which revealed that the anti-3a was not produced from the insertion

Scheme 3. Diastereomer switching experiment.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

Table 2. Scope of the α -phenoxy ketones.^{[a],[b],[c]}

^[a] Reactions were conducted by adding **2a** (0.11 mmol) in 1 mL of the solvent to the mixture of **1a** (0.1 mmol) and catalyst in 1 mL of the solvent via syringe pump over 1 h.

^[b] Isolated yield after column chromatography.

[c] Determined by ¹H NMR of crude mixture.^[a] Unless otherwise noted, all reactions were conducted by adding 2a (0.33 mmol) and 1 (0.3 mmol) under standard conditions *via* syringe pump over 1 h, and the reaction mixture was stirred for another 10 min.

^[b] Isolated yield after column chromatography.

^[c] The *dr* was determined by ¹H NMR of the crude mixture.

product **4a**.^[17] Furthermore, this *syn* to *anti* isomerization broadens the scope of the current strategy as we could accomplish both the diastereomers conveniently in a highly diastereoselctive manner.

A plausible reaction pathway is proposed in Scheme 4 based on the control experiments. Firstly, 3diazooxindole **2a** formed metal carbene **A** in the presence of $Rh_2(OAc)_4$. Then active metal carbene-induced zwitterionic intermediate **B-1**^[18] or its enolate form **B-2** was generated by the interaction between **1a** and metal carbene **A**. A traditional 1,2-H shift gave the C–H insertion product **4a**, while a novel intramolecular electrophilic trapping went ahead to afford the intermediate **C**. Finally, the desired product **3a** was obtained by a delayed H-transfer and aromatization of the aromatic ring. The observed stereoselective control of the reaction could be explained by comparing the transition states I and II. The interaction between the rhodium species and the carbonyl of **1a** facilitated the favored TS I compared to TS II which was disfavored.

In summary, we have developed an efficient method for the construction of spiro[chroman-4,3'-oxindole] derivatives in very good yields with excellent diastereoselectivities through aromatic C–H functionalization. Notably, α -phenoxyalkyl ketone substrates also underwent the reaction effectively and resulted in corresponding spiro systems in very good yields. This transformation offers a straightforward way for the construction of both the diastereomers of the spiro[chroman-4,3'-oxindole] skeleton and also enriches our trapping strategy in the functionalization of aro-

Adv. Synth. Catal. 0000, 000, 0-0

4

Scheme 4. Plausible reaction mechanism.

$R^{2} \xrightarrow{I_{1}} V_{2} \xrightarrow{N_{2}} O$ R^{1}			4 Å MS, DCE, 25 °C R ² N R ¹ 3		
Entry	3	\mathbb{R}^1	\mathbf{R}^2	Yield [%] ^[b]	dr (syn:anti) ^[c]
1	31	Bn	5-Me	87	95:5
2	3m	Bn	5-F	83	>95:5
3	3n	Bn	5-Cl	93	>95:5
4	30	Bn	5-Br	86	94:6
5	20	Dn	6 C1	99	> 05.5

Bn 6-Cl 88 >95:5 зp 6 3q Bn 6-Br 85 93:7 93:7 3r 76 Cbz Η 8 35 Η 82 94:6 Me 3t Me 5-Br 79 91:9

[a] Reactions were conducted by adding 2 (0.33 mmol) in 1 mL of the solvent to the mixture of 1a (0.3 mmol) and catalyst in 1 mL of the solvent via syringe pump over 1 h.

[b] Isolated yield after column chromatography.

[c] Determined by ¹H NMR of crude mixture.

Adv. Synth. Catal. 0000, 000, 0-0

7

9

matic C-H bonds. The asymmetric version based on a Brønsted acid catalyst to activate the carbonyl group is currently investigated in our laboratory.

Experimental Section

Typical Procedure for Intramolecular Aldol-Type Trapping of Zwitterionic Intermediates

A mixture of Rh₂(OAc)₄ (0.003 mmol), 1 (0.3 mmol),and 4Å MS (100 mg) in 1 mL of DCE under an argon atmosphere was stirred at room temperature. Diazo compound 2 (0.33 mmol) in 1 mL or 2 mL of DCE was then added over 1 h via a syringe pump. After completion of the addition, the reaction mixture was stirred for another 0.5 h, then filtered and evaporated under vacuum to give the crude product. The crude product was purified by flash chromatography on silica gel (EtOAc/light petroleum ether=1:10-1:5) to give the pure product.

Acknowledgements

We are grateful for financial support from NSFC of China (21332003 and 21402051).

References

- [1] a) C. Marti, E. M. Carreira, Eur. J. Org. Chem. 2003, 2209-2219; b) H. Lin, S. J. Danishefsky, Angew. Chem. 2003, 115, 38-53; Angew. Chem. Int. Ed. 2003, 42, 36-51; c) C. V. Galliford, K. A. Scheidt, Angew. Chem. 2007, 119, 8902-8912; Angew. Chem. Int. Ed. 2007, 46, 8748-8758; d) Y. Zhao, L. Liu, W. Sun, J. Lu, D. McEachern, X. Li, S. Yu, D. Bernard, P. Ochsenbein, V. Ferey, J.-C. Carry, J. R. Deschamps, D. Sun, S. Wang, J. Am. Chem. Soc. 2013, 135, 7223-7234; e) Y. Zhao, S. Yu, W. Sun, L. Liu, J. Lu, D. McEachern, S. Shargary, D. Bernard, X. Li, T. Zhao, P. Zou, D. Sun, S. Wang, J. Med. Chem. 2013, 56, 5553-5561; f) G. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112, 6104-6155; g) L. Hong, R. Wang, Adv. Synth. Catal. 2013, 355, 1023-1052; h) L. Wang, D. Yang, D. Li, X. Liu, Q. Zhao, R. Zhu, B. Zhang, R. Wang, Org. Lett. 2015, 17, 4260-4263; i) L. Zhu, Q. Chen, D. Shen, W. Zhang, C. Shen, X. Zeng, G. Zhong, Org. Lett. 2016, 18, 2387–2390.
- [2] a) S.-S. Ma, W.-L. Mei, Z.-K. Guo, S.-B. Liu, Y.-X. Zhao, D.-L. Yang, Y.-B. Zeng, B. Jiang, H.-F. Dai, Org. Lett. 2013, 15, 1492–1495; b) X.-H. Cai, Q.-G. Tan, Y.-P. Liu, T. Feng, Z.-Z. Du, W.-Q. Li, X.-D. Luo, Org. Lett. 2008, 10, 577–580; c) P. Eastwood, J. González, E. Gómez, F. Caturla, N. Aguilar, M. Mir, J. Aiguadé, V. Matassa, C. Balagué, A. Orellana, M. Domínguez, Bioorg. Med. Chem. Lett. 2011, 21, 6253–6257; d) N. Kumarswamyreddy, V. Kesavan, Org. Lett. 2016, 18, 1354–1357.
- [3] S. M. Hande, M. Nakajima, H. Kamisaki, C. Tsukano, Y. Takemoto, Org. Lett. 2011, 13, 1828–1831.
- [4] S. Zhao, J. B. Lin, Y. Y. Zhao, Y. M. Liang, P. F. Xu, Org. Lett. 2014, 16, 1802–1805.
- [5] B. V. Subba Reddy, V. Swathi, M. Swain, M. P. Bhadra, B. Sridhar, D. Satyanarayana, D. Jagadeesh, *Org. Lett.* 2014, 16, 6267–6269.
- [6] Y. B. Wagh, Y. A. Tayade, S. A. Padvi, B. S. Patil, N. B. Patil, D. S. Dalal, *Chin. Chem. Lett.* **2015**, *26*, 1273– 1277.
- [7] a) B. S. Min, T. D. Cuong, T. M. Hung, B. K. Min, B. S. Shin, M. H. Woo, *Bioorg. Med. Chem. Lett.* 2012, 22, 7436–7439; b) L.-C. Fu, X.-A. Huang, Z.-Y. Lai, Y.-J. Hu, H.-J. Liu, X.-L. Cai, *Molecules* 2008, 13, 1923–1930.

- [8] a) S. Muthusamy, M. Prakash, C. Ramakrishnan, M. M. Gromiha, V. Kesavan, *ChemCatChem* 2016, *8*, 1708–1712; b) R.-G. Shi, C.-G. Yan, *Chin. Chem. Lett.* 2016, 27, 575–578.
- [9] a) X. Guo, W. Hu, Acc. Chem. Res. 2013, 46, 2427–2440; b) T. Shi, X. Guo, S. Teng, W. Hu, Chem. Commun. 2015, 51, 15204–15207; c) M. Tang, Y. Wu, Y. Liu, M. Cai, F. Xia, S. Liu, W. Hu, Acta Chim. Sin. 2016, 74, 54–60.
- [10] a) C. Ma, D. Xing, C. Zhai, J. Che, S. Liu, J. Wang, W. Hu, Org. Lett. 2013, 15, 6140–6143; b) C. Jing, D. Xing, W. Hu, Chem. Commun. 2014, 50, 951–953; c) X. Ma, J. Jiang, S. Lv, W. Yao, Y. Yang, S. Liu, F. Xia, W. Hu, Angew. Chem. 2014, 126, 13352–13355; Angew. Chem. Int. Ed. 2014, 53, 13136–13139.
- [11] a) H. Qiu, M. Li, L.-Q. Jiang, F.-P. Lv, L. Zan, C.-W. Zhai, M. P. Doyle, W.-H. Hu, *Nat. Chem.* 2012, *4*, 733–738; b) D. Zhang, H. Qiu, L. Jiang, F. Lv, C. Ma, W. Hu, *Angew. Chem.* 2013, *125*, 13598–13602; *Angew. Chem. Int. Ed.* 2013, *52*, 13356–13360; c) D. Zhang, J. Zhou, Z. Kang, W. Hu, *Nat. Commun.* 2015, *6*, 5801–5808; d) D. Xing, C.-C. Jing, X.-F. Li, H. Qiu, W. Hu, *Org. Lett.* 2013, *15*, 3578–3581.
- [12] S. Jia, D. Xing, D. Zhang, W. Hu, Angew. Chem. 2014, 126, 13314–13317; Angew. Chem. Int. Ed. 2014, 53, 13098–13101.
- [13] a) S. M. Nicolle, W. Lewis, C. J. Hayes, C. J. Moody, *Angew. Chem.* 2015, 127, 8605–8609; *Angew. Chem. Int. Ed.* 2015, 54, 8485–8489; b) S. M. Nicolle, W. Lewis, C. J. Hayes, C. J. Moody, *Angew. Chem.* 2016, 128, 3813–3817; *Angew. Chem. Int. Ed.* 2016, 55, 3749–3753.
- [14] C. Jing, D. Xing, L. Gao, J. Li, W. Hu, Chem. Eur. J. 2015, 21, 19202–19207.
- [15] Z. Yu, H. Qiu, L. Liu, J. Zhang, Chem. Commun. 2016, 52, 2257–2260.
- [16] CCDC 1480020 (3b) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [17] For details, see the Supporting Information.
- [18] a) B. Xu, M.-L. Li, X.-D. Zuo, S.-F. Zhu, Q.-L. Zhou, J. Am. Chem. Soc. 2015, 137, 8700–8703; b) E. Tayama, M. Ishikawa, H. Iwamoto, E. Hasegawa, Tetrahedron Lett. 2012, 53, 5159–5161.

Adv. Synth. Catal. **0000**, 000, 0-0

COMMUNICATIONS

Diastereoselective Intramolecular Aldol-Type Trapping of Zwitterionic Intermediates by Ketones for the Synthesis of Spiro[chroman-4,3'-oxindole] Derivatives

Mov. Synth. Catal. **2016**, 358, 1–7

Shikun Jia, Yubing Lei, Longlong Song, A. Gopi Krishna Reddy, Dong Xing, Wenhao Hu*

rapid construction of the 7 spiro[chroman-4,3'-oxindole] skeleton via direct C-H functionalization Bn₂N Bn_2N Rh₂(OAc)₄ OH OR [⊕]NBn₂ R R 20 examples up to 93% yield up to >95:5 *dr* R = aryl or alkyl **ORhL**_n Ŕ Bn

7