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A B S T R A C T

This study aimed to investigate the effect of substituents on the photophysical properties of four 10-ethyl-3-styryl-phenothiazine derivatives with CH3O (PVBMA),
COOMe (PVBM), CHO (PVBA), or NO2 (NSP) moieties in solution and in crystal state. The responses of the derivatives to mechanical force stimuli were also
investigated. Results suggested that the absorption and emission wavelengths of the compounds in solutions were strongly dependent on the electron-withdrawing
(EW) abilities of the substituent groups. Electrochemical investigations indicated that the derivatives had identical HOMO energy levels, and the substituents only
influenced the LUMO energy levels of the derivatives. The crystals of the derivatives emitted blue, green, yellow, and orange-red fluorescence. The introduction of a
strong EW group resulted in the emission of wavelengths with increased length. Single-crystal structures illustrated that PVBM and PVBA crystals adopted antiparallel
π-stacking, whereas NSP adopted a T-type arrangement with weak π-stacking. All four compounds could change fluorescence color under mechanical force stimuli.
PVBA presented the largest spectral shift of 46 nm and PVBM exhibited the smallest shift of 27 nm after grinding. Notably, PVBM and PVBA could spontaneously
recover their fluorescence within 1 h at room temperature. Meanwhile, PVBMA may retain mechanically written text for at least 1 day.

1. Introduction

Functional organic materials that respond to external stimuli have
attracted immense interest given their extensive applications in che-
mical sensors for various analytes [1–5], field-effect transistors [6,7],
solar cells [8–10], light-emitting diodes [11–13], electronic skin [14],
and smart windows [15]. Among them, some luminescent organic
molecules exhibit luminescent mechanochromism (MC), which is de-
fined as alterations in emission color, intensity, or lifetime under me-
chanical force, such as shearing, grinding, crushing, rubbing, or hy-
drostatic pressure [16–21]. These smart molecules with MC may change
their molecular structure [22–27] or transform their intermolecular
stacking from pristine to other stacking types [28–33]. Various func-
tional organic molecules with mechanofluorochromic (MFC) properties
have been developed. These organic molecules include te-
trephenylethene [34–38], 9,10-divinylanthracene [39–44], triphenyla-
mine [45–48], β-diketone boron complexes [49–51], borondiiminates
[52], and cyano-ethylene [53–58]. The phenothiazine moiety has been
used as a building block of MFC molecules too because of its unique
butterfly-like configuration and strong electron-donating instinct. Some
D-π-A phenothiazine derivatives have been prepared, and their MFC
behaviors have been investigated [59–64]. Previously obtained results
have suggested that MFC properties of phenothiazine derivatives could

be strongly affected by slight modifications in molecular structure. For
example, we found that a higher fluorescence color contrast could be
observed through introducing an additional bromine atom [28]. Alkyl
chain lengths and bridged bond differences also have substantial roles
in adjusting responsive behaviors to force stimuli [40,65,66]. However,
it is still lack to systematically investigate how the electron-with-
drawing (EW) substituents affect MFC of phenothiazine derivatives
[67].

Based on the above consideration, four D-π-A phenothiazine deri-
vatives containing CH3O (PVBMA), COOMe (PVBM), CHO (PVBA), or
NO2 (NSP) moieties with different EW abilities were synthesized in this
work (Scheme 1), and the regulation of the MFC activities and photo-
physical properties of the derivatives in solid state and in solution by
EW substituents was investigated. As expected, the four compounds
exhibited distinct photophysical properties in solution and solid states.
The introduction of a strong EW group induced absorption and emission
bands with increased wavelengths. Moreover, single-crystal structure
analysis illustrated that the crystal forms of the derivatives showed
different stacking modes. PVBM and PVBA crystals exhibited anti-
parallel π-stacking, whereas NSP crystals presented T-type packing with
weak π–π interaction although NO2 had the strongest EW ability. Fur-
thermore, all four molecules could change their fluorescence under
mechanical force stimulus. This characteristic is indicative of MFC
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activity. Thermal annealing events suggested that the four amorphous
solids possessed different recovery rates at the same temperature when
ground. PVBM and PVBA in ground state self-recovered their fluores-
cence after 1 h at room temperature. NSP and PVBMA ground powder
could keep their fluorescence for longer times. These results show that
EW groups could not only regulate fluorescence in solid state but could
also affect the responsive features of the derivatives to mechanical
force.

2. Results and discussion

2.1. Design and synthesis

Because those phenothiazine derivatives with EW groups always
exhibited obvious spectral shift under a mechanical force stimuli [68],
CHO, COOMe, NO2 with different EW abilities were selected. In addi-
tion, to obtain a weaker EW effect than that of COOMe, an additional
OCH3 unit was introduced in PVBA to provide PVBMA. Firstly,
phenothiazine was reacted with bromoethane in presence of NaH to
give 1, which further transform into 2 by a Vilsmeier-Haack reaction
(Scheme 2). 3 was obtained by a Wittig's reaction of 2. The terminal
products were achieved by a Heck reaction from of 3 and corresponding
bromide substrates and characterized by various spectra.

2.2. Photophysical properties in solution

First, the photophysical properties of the derivatives were in-
vestigated by using absorption and emission spectra. As shown in
Fig. 1a, all four compounds have absorbance values above 400 nm. This
result implies that the solutions were colored (Fig. S1). PVBMA had a
wide absorption band with a maximum at 365 nm, whereas PVBM had
a red-shifted band at 385 nm. The maximal absorption peak of the al-
dehyde analog further red-shifted to 398 nm. NSP, which had the
strongest EW group, had the longest wavelength peak at 418 nm. In
general, increased intramolecular charge transfer (ICT) induces long
absorption wavelength [69,70]. Spectral changes suggest that the EW
abilities of the four molecules with the same electron-donating group
followed the order PVBMA < PVBM < PVBA < NSP. The emission
spectra provided in Fig. 1b also followed the same order (Table 1).
PVBMA emitted weak blue fluorescence with a maximum at 462 nm.

Although PVBM and PVBA also emitted blue fluorescence, their max-
imal emission peaks shifted to 479 and 493 nm, respectively. NSP
emitted green fluorescence, and its emission peak was located at
521 nm. Solvent-dependent absorption and emission spectra were also
measured to confirm ICT transition. As shown in Fig. S2, the absorption
spectra of four compounds in different solvents are similar, but gradual
bathochromic shifts in emission spectra with increasing solvent polarity
were observed. Moreover, stronger EW group induced more obvious
red-shift in polar solvents (Fig. S1, right Fig.s), and the fluorescence
quantum yields in more polar solvents are low (Table S1). These results
further confirmed that their emission bands are from ICT transition.

Cyclic voltammetry measurements and quantum chemical calcula-
tions were performed to further understand the differences in the
electron transition behaviors of the four compounds. The results are
shown in Table 1, Fig. S1, and Table S2. As illustrated in Fig. S1, the
four compounds had similar oxidation potentials. Then, their HOMO
energy levels were extracted through comparison with an external re-
ference (Fc/Fc+). The four compounds had almost-identical HOMO
energy levels (ca. 4.83 eV) because they possess an identical electron-
donating group, that is, phenothiazine. The LUMO energy levels of the
derivatives could be determined through combination with the electron
transition spectra. The results indicate that the presence of a strong EW
group would reduce LUMO energy levels [71–73]. Quantum chemical
calculations were performed to determine the origin of transition. The
maximal absorption peaks of PVBA, PVBM, and NSP were mainly as-
cribed to the HOMO-to-LUMO transition. Although the longest wave-
length transition of PVBMA was attributed to the HOMO-to-LUMO
transition, its associated oscillator strength was small (Table S1).
Therefore, the absorption band observed in the absorption spectrum
should originate from the transition of S0→S2 (from HOMO to LUMO
+1). The frontier orbitals in Fig. 2 illustrated that HOMO mainly dis-
tributed on phenothiazine and vinyl moieties and LUMO or LUMO+1
density is mainly observed at vinyl and electron-withdrawing moieties,
indicating that these transitions should belong to the intramolecular
charge-transfer transition [74–76]. This result corresponds to the D-π-A
structures of the compounds.

2.3. Photophysical properties in crystals

First, the crystal forms of the four compounds were obtained
through slow solvent volatilization at room temperature. Subjecting
PVBMA solutions (CH2Cl2/hexane, CH2Cl2/methanol, or THF/hexane)
to solvent volatilization yielded thin and long yellowish fibers that
emitted strong blue fluorescence under 365 nm light (Fig. 3) and pre-
sented the maximum emission at 467 nm (Fig. 4). Solvent removal
provided yellow PVBM bulk crystals with green emission. The emission
band of PVBM crystals was broad and had a peak at 517 nm. The ob-
tained PVBA crystals were orange, needle-like, and emitted strong
yellow fluorescence. A narrow emission band with a maximum at
545 nm emerged when PVBA crystals were excited. Numerous red

Scheme 1. Molecular structures of four compounds.

Scheme 2. Synthesis route of four compounds.
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sheet-like crystals of NSP were acquired from its CH2Cl2/hexane solu-
tion. These crystals emitted weak red fluorescence after UV light ex-
citation. The emission peak of NSP crystals was located at 579 nm. This
result indicates that similar to solutions, crystals with a strong EW
group possessed long emission wavelengths. Thus, crystals with full-
color fluorescence from blue to red were easily obtained by adjusting
the EW groups.

Single-crystal structures were resolved to determine the relationship
between the EW group and intermolecular stacking in crystals. PVBMA
crystals were frail and had an unknown single-crystal structure. The
single crystals of the other three compounds were sufficient for X-ray

structural analysis. The crystal systems of PVBA and NSP were or-
thorhombic and had a Z value of 8. As expected, the phenothiazine
moiety adopted a V-shaped configuration in three crystals. The twisted
angles between vinyl and two adjacent phenyl rings in PVBM crystals
were 6.14° and 6.97°, and the dihedral angle between A and B rings
(Fig. 5a) was 12.61°. These results suggest that phenothiazine and
methyl benzoate moieties were almost coplanar. Moreover, one-di-
mensional (1D) π-stacking was observed (Fig. 5b). Two kinds of anti-
parallel arrangements existed in 1D stacking (Fig. 5c): One consisted of
two molecules and is indicative of a dimer. Two molecules extensively
overlapped. The interplanar distance was 3.25 Å. The proximity be-
tween the EW ester group and electron-donating phenothiazine moiety

Fig. 1. (a) Absorption and (b) fluorescence spectra of four compounds in cyclohexane (10−5M).

Table 1
Photophysical data of four compounds.

Compound λabsa (nm) λemb (nm) HOMO (eV)c LUMO (eV)d Eg (eV)e

PVBMA 365 462 −4.84 −1.93 2.91

PVBM 385 479 −4.83 −2.05 2.78

PVBA 398 493 −4.83 −2.13 2.70
NSP 418 521 −4.82 −2.28 2.54

a Maximal absorption peak in cyclohexane.
b Maximal emission peak in cyclohexane.
c Electrochemical method was used to obtain the HOMO energy levels by

comparing with an external reference, the ferrocene/ferrocenium (Fc/Fc+,
4.8 eV relative to vacuum).

d The LUMO energy level was estimated by the equation:
ELUMO=EHOMO + Eg.

e Eg was determined from the edge of the absorption spectrum.

Fig. 2. Energy levels, band gap and corresponding frontier orbitals (HOMO and LUMO) of four compounds.

Fig. 3. Photos of crystals in natural light and 365 nm light.
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observed from the top view of the structure (Fig. 5d) indicates that the
electrostatic attraction between donor and acceptor groups may be
responsible for antiparallel packing [77–81]. The other antiparallel
arrangement was formed through stacking between two dimers and had
an interplanar distance of 3.40 Å.

Fig. 6 shows the molecular configuration and stacking of PVBA in
crystals [82]. A small dihedral angle of 18.37° suggests improved π-
conjugation. An isolated antiparallel dimer was found, and the inter-
planar distances between the two phenyl rings of phenothiazine moi-
eties and two benzaldehyde units were the same and were as high as
4.22 Å (Fig. 6d). The shortest C–C distance between two molecules was
3.29 Å (Fig. S3). Indeed, the electrostatic attraction between phe-
nothiazine and aldehyde moieties may also be responsible for the for-
mation of the antiparallel dimer. Many dimers were first arranged in 1D
column, and then two columns stacked together in a T-type order
(Fig. 6c).

Similar to that in PVBM and PVBA, π-conjugation may be present in
NSP because of the small dihedral angle of 19.5°. Given that NO2 groups
have the strongest EW ability, NSP should possess the largest polarity,
which will induce the molecule to adopt an antiparallel arrangement.

However, face-to-face antiparallel stacking, similarly to in PVBM and
PVBA was not observed in NSP crystal, and two kinds of T-type stacking
emerged (Fig. 7b–d). One consisted of a parallel array, which only
contained weak C–H⋯H–C interaction. The other is in an antiparallel
arrangement in which short C–H⋯H–C, C–H⋯C, C–H⋯N, and C⋯C
contacts existed between nitrobenzene and phenothiazine units. Thus,
only weak exciton couple within two antiparallel NSP molecules may be
present. Therefore, the EW group may regulate π-stacking types.

2.4. Response to mechanical force

The four compounds were expected to approach MFC given their V-
shaped configuration and D-π-A electron characteristics. As expected,
all four pristine crystals showed changes in their fluorescence color
after breakage through mechanical crushing. The detailed MFC beha-
viors were investigated through absorption, emission, and XRD spec-
troscopy. The data for absorption and fluorescence spectral peaks be-
fore and after grinding are listed in Table 2. Fig. 8a shows the
fluorescence spectra of PVBMA solids in different states. Pristine
PVBMA crystals emitted strong blue fluorescence with a maximum at
467 nm. The emission peak red-shifted to 512 nm after grinding and the
ground solid showed green emission under 365 nm light. The spectral
shift value was 45 nm. Fluorescence recovered to its original blue color
and the emission band was restored when the ground powder was ex-
posed to common solvent vapors, such as THF, CH2Cl2, CHCl3, and
toluene, for 1min (Fig. 8a). Moreover, fluorescence color conversion
could be repeated numerous times (Fig. S4). This behavior implies that
MC is reversible [30,53,83–88].

The XRD and absorption spectra of pristine and ground solids were
acquired to further understand the MC mechanism of the compounds.
As shown in Fig. 9a, pristine PVBMA crystals exhibited several strong
and sharp diffraction peaks. This characteristic is suggestive of good
crystallinity [89,90]. The weakening of some diffraction peaks and the
almost disappearance of the peak at 5.23° indicate that the crystals are
in amorphous state [91–94]. Strong and sharp peaks re-emerged after
fuming and were similar to those of pristine solids. However, the dif-
fraction peak at 5.23° remained weak. This result implies that the di-
rectional growth along the crystal plane that corresponds to 5.23° was
suppressed. The reversible conversion of diffraction peaks also confirms
that MFC was reversible and was accompanied by a reversible phase

Fig. 4. Fluorescence spectra of four compounds in cyclohexane.

Fig. 5. (a) Molecular conformation of PVBM in crystal, (b) 1D stacking, (c) π-stacking with interplanar distances in front view, (d) face-to-face dimer in top-view and
(c) heat-to-tail stacking in top view.
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transition between crystalline and amorphous states. The absorption
peak of pristine crystals was located at 360 nm. Face-to-face H-ag-
gregates may have formed as indicated by the presence of an absorption

peak at 365 nm in cyclohexane solution [95]. The shifting of this ab-
sorption peak to 378 nm after grinding suggests that mechanical force
stimuli induced head-to-tail J-aggregation [96]. Thus, MFC originates
from the transition of π-stacking from H- to J-aggregate.

Yellow-green PVBM crystals were transformed into yellow powder
after grinding. The fluorescence color of the crystals changed from
green to yellow after grinding. The maximal emission peak had a small
red-shift of 27 nm from 517 nm to 544 nm. Fuming the ground solid
with saturated CH2Cl2 vapor for 5 s rapidly restored the yellow fluor-
escence to the original green fluorescence. This spectral change could
be repeated many times and is suggestive of a reversible MFC process.
XRD patterns were used to investigate phase transition under me-
chanical force stimuli. As shown in Fig. 9, pristine PVBM crystals ex-
hibited sharp diffraction peaks that disappeared or weakened after
grinding. Strong peaks also emerged after fuming. In addition, the

Fig. 6. Molecular conformation of PVBA in crystal in (a) front view and (b) top view, (c) herringbone stacking, antiparallel π-stacking with interplanar distances in
(d) front and (e) top view.

Fig. 7. (a) Molecular conformation of NSP in crystal, (b) T-type stacking, and four molecules in 1D direction in (c) front (d) left views.

Table 2
Absorption and fluorescence data of four compounds before and after me-
chanical force stimuli.

λabs (nm) Δλabs (nm) λem (nm) Δλem (nm)

pristine ground pristine ground

PVBMA 360 378 18 467 512 45
PVBM 387 404 17 517 544 27
PVBA 422 432 18 545 591 46
NSP 446 462 16 579 616 37
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diffraction peaks at 6.26° and 12.53°, which corresponded to the 002
and 004 crystal planes, respectively, of fumed PVBM solid were weaker
than those of pristine crystals. Thus, preferred growth along the 001
plane during fuming was not observed. As shown in Fig. 3b, PVBM in
the absorption spectra also had a red-shift of 17 nm from 387 nm to
404 nm after grinding. Crystal structure resolution revealed the pre-
sence of antiparallel π-stacking in pristine crystals; thus, the red-shift
observed in the absorption spectra of the ground crystals may originate
from the change in slipped angle and the formation of J-aggregates.

The MC behavior of PVBA was also examined. The yellow needle-
like PVBA crystals emitted yellow fluorescence and were converted into
orange-red crystals after grinding. The maximal emission peak was lo-
cated at 591 nm (Fig. 8c). Fuming and regrinding the solid resulted in
the recovery of yellow fluorescence and the reappearance of orange-red
fluorescence. These results indicate that PVBA exhibited reversible
MFC. XRD measurements proved that PVBA underwent phase transition
from crystalline to amorphous states after mechanical force stimulus.
The red-shifted absorption peak (422 nm) of pristine PVBA crystals
relative to that (398 nm) of PVBA in cyclohexane solution confirmed
that the antiparallel π-packing ascribed to J-aggregation. The further
red-shift of an absorption band after grinding proved that the packing
mode had changed (Fig. S5c).

Similar to the other three compounds, NSP exhibited a fluorescence
spectral redshift. Its emission peak shifted by 37 nm from 579 nm to
616 nm. The XRD patterns of pristine, ground, and fumed solids also
indicate that the MFC of NSP occurred after the phase transition from
crystal to amorphous powder (Fig. 9d). The maximal absorption peak of
pristine NDP crystals was located at 446 nm and further shifted to
462 nm (Fig. S5d).

The π-stacking transformation that occurred during MFC is illu-
strated in Fig. 10 on the basis of the above results. Considering that
PVBMA had a weak EW group, antiparallel π-stacking may be present in

its crystals. The bathochromic shift in the absorption spectra of the
three compounds under mechanical force stimuli is indicative of J-ag-
gregate formation. Hence, the application of mechanical force to PVBM
and PVBA crystals promotes the reduction in sliding angle that results
in the formation of metastable J-aggregates (Fig. 10a). After solvent
fuming, molecules were rearranged into a crystal-state structure with
increased stability. The close proximity of molecules (Fig. 10b) in NSP
crystals after grinding implies loose T-type packing and close-packed T-
type array. This metastable close packing will transform into loose T-
type stacking after fuming.

The four compounds have potential applications in the security field
given their excellent MFC properties. The solid films were used as
writing paper to demonstrate their potential applications. As shown in
Fig. 11, the four solid films emitted blue, green, yellow, and orange red
fluorescence before mechanical force application. Text, for example
“TJ,” could be written on the films by using a ballpoint pen and then
erased through solvent fuming. The written text on PVBM film gradu-
ally disappeared within 10min at room temperature. The self-erasure of
the text on PVBA film lasted for 50min. The text on the NSP film had
almost disappeared after 6 h. Meanwhile, the text on the PVBMA film
remained visible after 1 day. These results indicate that the compounds
have different fluorescence thermal recovery speeds at the same tem-
perature. Thus, the thermal recoveries of the four compounds at dif-
ferent temperatures were investigated. As shown in Fig. S6, PVBA had
the shortest recovery times at the same temperature. A high tempera-
ture consistently resulted in rapid fluorescence recovery. For example,
text on the PVBA film immediately disappeared within 1 s. Considering
that high temperatures may accelerate molecular thermal motion,
molecules can gradually form highly stable crystals through weak in-
termolecular interactions within a short duration. PVBMA required the
longest time to recover its fluorescence at the same temperature. This
result indicates that the substituent influences not only emission color

Fig. 8. Fluorescence spectra of (a) PVBMA, (b) PVBM, (c) PVBA and (d) NSP in different states.
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but also thermal recovery time. In addition, it was found that four
compounds emitted similar fluorescence colors to corresponding
ground solids when they were heated to melt and cooled to room
temperature (Fig. S7). It suggested that intermolecular π-stacking
models in such cooled solids were similar to those in ground solids.

3. Conclusions

Four D-π-A phenothiazine derivatives were synthesized. The effect
of substituents on the photophysical properties of the derivatives in
solution and crystal state was investigated. The response of the deri-
vatives to mechanical force stimuli was also studied. Absorption and
emission spectra and electrochemical measurements suggest that the

Fig. 9. XRD patterns of four compounds in different states.

Fig. 10. Changes of π-stacking model for (a) PVBMA, PVBM and PVBA, and (b)
NSP.

Fig. 11. Photographic images of (a) PVBMA, (b) PVBM, (c) PVBA and (d) NSP films on pieces of weighing paper in response to grinding, fuming under 365 nm light.
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EW abilities of substituent groups may determine the photophysical
properties of the compounds in solution by regulating molecular LUMO
energy levels. The crystals of the compounds emitted fluorescence that
ranged in color from blue to orange-red, and the results of their π-
packing models differed on the basis of their strong EW groups. MFC
measurements suggest that all four compounds exhibited reversible
fluorescence conversion after grinding and solvent fuming. The com-
pounds exhibited different fluorescence recovery times under thermal
annealing. PVBM and PVBA could spontaneously recover their fluor-
escence within 1 h at room temperature. PVBMA and NSP may retain
mechanically written information for long durations. The obtained re-
sults indicate that molecular MFC features can be easily regulated
through mild substituent adjustment.

4. Experiment sections

4.1. Measurements and instruments

1H and 13C NMR spectrum was recorded using a Bruker Avance
400MHz spectrometer at 400MHz and 100MHz in DMSO‑d6. FT-IR
spectra were recorded using a Nicolet-360 FT-IR spectrometer by
casting samples into a KBr crystal. UV–Vis spectra were obtained on a
Mapada UV-1800pc spectrophotometer. Fluorescence emission spectra
were obtained on a FL-3 fluorescence spectrophotometer. C, H, and N
elemental analyses were performed on a PerkinElmer 240C elemental
analyzer. XRD patterns were obtained on a Bruker D8 Advance X-ray
diffraction instrument equipped with graphite-mono-chromatized
CuKα radiation (λ=1.5418 Å), by employing a scanning rate of
0.0261° s−1 in the 2θ range from 5° to 30°. Heating recovery of ground
solids was employed using a temperature-controlled heating board.
Cyclic voltammetry was employed using a three-electrode cell and an
electrochemistry work station (CHI 604) at room temperature at a scan
rate of 50mV s−1. The working electrode was a glass carbon disc, the
auxiliary electrode was a Pt wire, and Ag/Ag+ was used as reference
electrode. Tetrabutylammonium tetrafluoroborate (TBABF4, 0.1M) was
used as the supporting electrolyte in dry CH2Cl2 and the ferrocenium/
ferrocene (Fc/Fc+) redox couple was used as an internal potential re-
ference. Geometrical optimization was performed by density functional
theory (DFT) calculations at B3LYP/6-31G(d) level with the Gaussian
09W program package. Electronic transition data of PVBMA, PVBM,
and PVBA were obtained by the TD/DFT-mpw1pw91/6-31G(d) calcu-
lation based on the configuration at ground state. Electronic transition
of NSP is from TD/DFT-b3lyp/6-311G(d) calculation.

Single crystals of two compounds were obtained by slowing solvent
evaporation (CH2Cl2 and n-hexane mixture) and selected for X-ray
diffraction analysis on in a Rigaku RAXIS-RAPID diffractometer using
graphite-monochromated Mo-Kα radiation (λ=0.71073 Å). The crys-
tals were kept at room temperature during data collection. The struc-
tures were solved by the direct methods and refined on F2 by full-
matrix least-square using the SHELXTL-97 program. The C, N, O and H
atoms were easily placed from the subsequent Fourier-difference maps
and refined anisotropically. CCDC 1906762 and 1906792 contain the
supplementary crystallographic data for PVBM and NSP.

4.1.1. (E)-5-(2-(10-ethyl-10H-phenothiazin-3-yl)vinyl)-2-
methoxybenzaldehyde (PVMBA)

10-ethyl-3-vinyl-10H-phenothiazine (1.5 g, 5.92mmol), 5-bromo-2-
methoxybenzaldehyde (1.27 g, 5.92mmol), K2CO3 (1.8 g, 13mmol),
and tetrabutylammonium bromide (4.0 g, 12.4 mmol) were dispersed in
dry DMF (20mL) and then 1.0mg PdCl2 was added. The mixture was
heated at 120 °C under N2 for 12 h, and poured into 200mL water. The
crude product was obtained by suction. Product was achieved by
column chromatography on silica gel using CH2Cl2/petroleum ether
(V/V=1:2) as eluent. Yield: 89%. m.p: 177–178 °C. 1H NMR
(400MHz, CDCl3) δ 10.47 (s, 1H), 7.95 (d, J=2.4 Hz, 1H), 7.63 (dd,
J=8.7, 2.4 Hz, 1H), 7.23 (dd, J=8.3, 2.1 Hz, 1H), 7.18–7.09 (m, 2H),

6.97 (d, J=8.7 Hz, 1H), 6.94–6.79 (m, 5H), 3.94 (s, 5H), 1.42 (t,
J=6.9 Hz, 3H). 13C NMR (101MHz, CDCl3) δ 189.74, 189.70, 161.09,
144.49, 144.25, 133.68, 131.67, 130.49, 127.37, 127.30, 127.07,
125.86, 125.81, 125.24, 124.87, 124.75, 124.60, 123.83, 122.44,
115.06, 112.01, 55.87, 55.83, 41.96, 12.97. Elemental Analysis: C,
74.39; H, 5.46; N, 3.61; found: C, 74.45; H, 5.66; N, 3.57.

4.1.2. (E)-methyl 4-(2-(10-ethyl-10H-phenothiazin-3-yl)vinyl)benzoate
(PVBM)

PVBM was obtained through the same procedure as that of PVBMA.
Yield: 88%. m.p: 133–135 °C. 1H NMR (400MHz, CDCl3) δ 8.04–7.95
(m, 2H), 7.56–7.45 (m, 2H), 7.30–7.22 (m, 2H), 7.18–7.10 (m, 2H),
7.06 (d, J=16.3 Hz, 1H), 6.95 (d, J=16.8 Hz, 1H), 6.90 (d,
J=7.5 Hz, 1H), 6.86 (d, J=8.1 Hz, 1H), 6.82 (d, J=8.4 Hz, 1H), 3.91
(s, 5H), 1.41 (t, J=6.9 Hz, 3H). 13C NMR (101MHz, CDCl3) δ 166.91,
144.78, 144.32, 142.02, 131.24, 130.03, 129.97, 128.60, 127.38,
127.35, 126.29, 126.10, 125.81, 125.11, 124.64, 123.71, 122.57,
115.12, 115.00, 52.06, 52.01, 41.99, 12.98. Elemental Analysis: C,
74.39; H, 5.46; N, 3.61; found: C, 74.40; H, 5.62; N, 3.54.

4.1.3. (E)-4-(2-(10-ethyl-10H-phenothiazin-3-yl)vinyl)benzaldehyde
(PVBA)

PVBA was obtained through the same procedure as that of PVBMA.
Yield: 91%. m.p: 165–166 °C. 1H NMR (400MHz, CDCl3) δ 9.98 (s, 1H),
7.91–7.78 (m, 2H), 7.61 (d, J=8.2 Hz, 2H), 7.37–7.27 (m, 2H),
7.20–7.08 (m, 3H), 7.06–6.79 (m, 4H), 3.95 (s, 2H), 1.44 (t, J=6.9 Hz,
3H). 13C NMR (101MHz, CDCl3) δ 191.54, 143.64, 135.10, 131.11,
131.04, 131.03, 130.24, 127.38, 125.54, 125.19, 124.71, 123.66,
122.66, 115.16, 115.01, 42.04, 13.05. Elemental Analysis: C, 77.28; H,
5.36; N, 3.92; found: C, 77.21; H, 5.46; N, 3.99.

4.1.4. (E)-10-ethyl-3-(4-nitrostyryl)-10H-phenothiazine (NSP)
PVBA was obtained through the same procedure as that of PVBMA.

Yield: 91%. m.p: 165–166 °C. 1H NMR (400MHz, CDCl3) δ 8.16 (d,
J=8.9 Hz, 2H), 7.54 (d, J=8.9 Hz, 2H), 7.28 (s, 1H), 7.27 (dd,
J=8.2, 2.4 Hz, 1H), 7.15 (td, J=8.0, 1.6 Hz, 1H), 7.11 (dd, J=8.0,
1.6 Hz, 1H), 7.09 (d, J= 16.8, 1H), 6.94 (d, J= 16.8, 1H), 6.92 (t,
J=8.0 Hz, 1H), 6.88 (d, J=8.0 Hz, 1H), 6.84 (d, J=8.2 Hz, 1H), 3.92
(q, J=7.0 Hz, 2H), 1.42 (t, J=6.9 Hz, 3H). 13C NMR (101MHz,
CDCl3) δ 146.47, 145.27, 144.07, 132.05, 130.64, 130.62, 127.45,
127.39, 126.70, 126.56, 125.28, 124.72, 124.69, 124.43, 124.14,
123.52, 123.49, 122.76, 115.23, 115.02, 42.17, 42.12, 12.94, 12.92.
Elemental Analysis: C, 70.57; H, 4.85; N, 7.48; found: C, 70.67; H, 4.81;
N, 7.41.
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