pubs.acs.org/joc

Diaryliodonium Salt-Based Synthesis of *N*-Alkoxyindolines and Further Insights into the Ishikawa Indole Synthesis

Kouhei Shibata, Ken-ichi Takao,* and Akihiro Ogura*

first systematic synthesis of rarely accessible *N*-alkoxyindolines. Mechanistic analyses suggested that the reaction likely involves reductive elimination of iodobenzene from iodaoxazepine via a four-membered transition state, followed by Meisenheimer rearrangement. Substrates with *N*-carbamate protection afforded indole in a manner similar to that of the Ishikawa indole synthesis. Preinstallation of a stannyl group as an iodonium salt precursor greatly expanded the substrate scope, and further mechanistic insights are discussed.

■ INTRODUCTION

Diaryliodonium salts have emerged as precursors for new bond formation strategies due to their high reactivity, sufficient stability, and low toxicity.^{1–10} Various reactions are enabled by metal catalysts,^{11–13} whereas diaryliodonium salts are useful for metal-free carbon–heteroatom bond formation, offering an attractive metal-free alternative to the Buchwald–Hartwig reaction.¹⁴ A variety of reactions using the iodonium salt have been developed for *O*-arylation with aliphatic alcohols,^{15–19} carboxylic acids,^{20–23} and phenols,^{16,23–26} as well as *N*-arylation with amines,^{27–29} amides,^{30–33} anilines,^{20,26,34,35} and heteroaromatics.^{36–40}

Intramolecular aryl-heteroatom bond formation is particularly practical and enables efficient construction of bicyclic heterocycles. Chemoselectivity is often a problem with asymmetric diaryliodonium salts⁴¹ but can be minimized due to the strong tendency to give the cyclic product over its linear counterpart. The Chi group reported the metal-free intramolecular *N*-arylation of diaryliodonium salts (Scheme 1A).⁴² Copper-mediated intramolecular C–O bond formation from the diaryliodonium salt generated in situ was achieved by the Zakarian group (Scheme 1B).⁴³ Very recently, Ishikawa and co-workers reported an elegant indole synthesis using boronmasked *N*-hydroxyamides utilizing the diaryliodonium salt generated in situ (Scheme 1C).⁴⁴ Although the substrate scope of this strategy is limited to electron-rich aromatic derivatives, this efficient one-pot procedure afforded indoles in good yield.

In this context, we initially intended to synthesize benzoxazine via diaryliodonium salt-based C-O bond formation (Scheme 1D). However, treatment of diaryliodonium salts with a fluorine source resulted in the synthesis of *N*-alkoxyindolines, which are rarely synthesized hydrogenated congeners of *N*-alkoxyindoles, via C-N bond formation. Further examination of this strategy revealed that indoles could be obtained by changing the substituent on the nitrogen atom, vastly expanding the utility of the Ishikawa indole synthesis. We describe the details of these findings below.

RESULTS AND DISCUSSION

The substrate was prepared as shown in Scheme 2. Commercially available 2-(2-bromophenyl)ethyl alcohol (1) was converted to stannane 2a and condensed with a hydroxylamine derivative^{45,46} by the Mitsunobu reaction to afford 3a after the removal of the Ns group.⁴⁷ The resulting amine was benzylated, and 4a was subsequently treated with the Koser reagent⁴⁸ to afford iodonium salt 5a as the sole product.⁴⁹ Other substrates were similarly synthesized, although the corresponding iodonium salts are unstable upon storage even in a freezer and should be used immediately for the next reaction.

With the substrate in hand, **5a** was treated with tetrabutylammonium fluoride (TBAF). Contrary to our initial expectation, a small amount of *N*-benzyloxyindoline **6a** was obtained along with a trace amount of a compound that was likely benzoxazine **7a** (Table 1, entry 1).⁵⁰ Mild heating of the reaction mixture improved the yield of **6a** to 48% (entry 2). Solvent and reagent screening revealed that the initially chosen

 Received:
 April 9, 2021

 Published:
 July 1, 2021

Scheme 1. Diaryliodonium Salt-Based Indole/Indoline Synthesis

(A) Indoline synthesis from diaryliodonium salt by Chi

(B) Dihydrobenzofuran synthesis via in situ-generated diaryliodonium salt by Zakarian

Scheme 2. Substrate Preparation

combination of TBAF and dimethylformamide (DMF) worked best (entries 3-9). The addition of molecular sieves (MS) did not improve the yield (entry 10). Despite their very simple structure, 2-unsubstituted-*N*-alkoxyindolines have rarely been synthesized^{51,52} as the oxidation of indolines easily leads to aromatization to indoles or over-oxidation to nitrones and hydroxamic acids.⁵³ Although *N*-alkoxyindoline **6a** gradually converted to indole during silica gel purification, isolated **6a** could be stored at room temperature (rt) as a CDCl₃ solution for 1 week or for more than 2 months in a freezer without decomposition. The reason for the difference in stability between *N*-alkoxyindolines and *N*-hydroxyindolines⁵⁴ remains

Table 1. Optimization for N-Alkoxyindoline Synthesis

Ph _l	OTs OTBS ✓ N. Bn	solvent (0.05 M) 60 °C, 2 h	OBn N 6a	7a (trace)			
entry	reagent (equiv)	additive (equiv)	solvent	yield of 6a (%) ^a			
1 ^b	TBAF (1.5)		DMF	2			
2	TBAF (1.5)		DMF	48			
3	TBAF (1.5)		THF	29			
4	TBAF (1.5)		toluene	18			
5 [°]	TBAF (1.5)		CH_2Cl_2	18			
6	CsF (1.5)		DMF	17			
7	$NH_{4}F(1.5)$		DMF	28			
8	TASF (1.5)		DMF	45			
9	PPTS (1.5)		DMF	0			
10	TBAF (1.5)	MS 4 Å (500 g/mol)	DMF	34			
^{<i>a</i>} Isolated yield. ^{<i>b</i>} rt, 6 h. ^{<i>c</i>} Reflux.							

unclear but could be related to known differences between *N*-alkoxyindoles and *N*-hydroxyindoles.^{55,56}

Having optimized the reaction conditions, we moved on to investigate the substrate scope (Table 2). Substitutions on benzene were tolerated, but substitution with an electrondonating methoxy group gave lower yield (entry 4), which might be attributed to the instability of the product 6d to oxidation due to the increased electron density of the benzene ring. The use of a naphthyl ring as the main core leads to multiple spots on thin-layer chromatography (TLC), possibly due to complex radical recombination (entry 7; the reaction mechanism is discussed below). We also screened substitutions on the nitrogen. The use of a *p*-nitrobenzyl group led to lower yield, apparently due to instability of the substrate (entry 8). N-Allyl substitution worked well and afforded the corresponding product (entry 9). Remarkably, the N-prenylated substrate afforded O-reverse-prenylated 6j as the sole product (entry 10). In contrast to previous hypervalent iodine-based syntheses

Table 2. Substrate Scope for N-Alkoxyindoline Synthesis

pubs.acs.org/joc

of *N*-alkoxyanilines, 5^{57-61} our method does not require electron-withdrawing group incorporation on the nitrogen atom of the final product.

We propose that the reaction proceeds as described in Scheme 3A. After deprotection of the hydroxy group, the oxygen atom attacks the iodine center to afford iodaoxazepine B. This proposed attack is supported by computational analysis of a model compound since the corresponding six-membered iodazine N-oxide (N-attack product) is more unstable by 50 kJ/mol (Scheme 3B, also see the Supporting Information (SI)). Subsequently, intramolecular ipso-attack by nitrogen leads to the four-membered ring transition state C, which undergoes the elimination of iodobenzene to afford the fivemembered N-oxide intermediate D (also, see time-course analysis in the SI). Calculations using the model compound suggested that although N-oxide is thermodynamically unfavorable compared with benzoxazine, a four-membered ring transition state is strongly advantageous over a threemembered ring transition state (Scheme 3B).⁶² Subsequent Nto-O benzyl migration likely proceeds via a radical-mediated [1,2]-Meisenheimer rearrangement pathway^{63,64} since the addition of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) remarkably inhibited the reaction and benzylated TEMPO 8 was obtained instead (Scheme 3A, also the Experimental Section). [2,3]-Meisenheimer rearrangement of N-allyl or Nprenyl substrates (5i and 5j) is likely sigmatropic.

With this mechanism in mind, we envisaged that decreasing the electron density on the nitrogen atom would favor conversion to the initially expected benzoxazine, and we therefore synthesized N-Boc-protected diaryliodonium salt 9a(see the preparation in the Experimental Section). Treatment with TBAF, however, afforded indole 10a in 73% yield, without the formation of benzoxazine 11a (Table 3, entry 1), and a stoichiometric amount of iodobenzene was generated. Interestingly, a small amount (ca. 10%) of 5-substituted indoline 12a was detected during each optimization reaction (discussed below). The solvent screening revealed that DMF is the optimum solvent, likely due to the good solubility of the iodonium salt (entries 2–4). We next examined fluoride

Scheme 3. Proposed Reaction Mechanism

Table 3. Optimization for Indole Synthesis

Ph	OTS OTBS ad N.Boc solven 9a	agent ditive t (0.05 M) , 4 h	H N 10a	O.N.Boc 11a (not obtained)	0c0 (12	H N 2a
					yield	(%) ^a
entry	reagent (equiv)	additive	e (equiv)	solvent	10a	12a
1	TBAF (1.2)			DMF	73	6
2	TBAF (1.2)			THF	58	20
3	TBAF (1.2)			toluene	60	2
4	TBAF (1.2)			CH_2Cl_2	71	17
5	CsF (1.5)			DMF	23	3
6	$NH_{4}F$ (1.2)			DMF	62	5
7	TASF (1.2)			DMF	83	6
8	TASF (1.2)	MS 4 Å (500 g/mol	l) DMF	87	_b
9	TBAF (1.2)	MS 4 Å (500 g/mol	l) DMF	89	_b
^{<i>a</i>} Isolat bv-pro	ed yield. ^b Obtaiı ducts.	ned as an ir	nseparable	e mixture with u	ıniden	tified

sources and found that tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) provided the best result (entries 5– 7). The addition of molecular sieves improved the yield, giving an excellent yield with TBAF and TASF (entries 8 and 9). For operational simplicity, we chose a combination of TBAF and MS 4 Å as the optimal conditions (entry 9).

With the optimized conditions in hand, we next examined the substrate scope (Table 4). Various indoles with substituents at the 4-, 5-, and 6-positions were obtained, showing the robustness of this transformation. In particular, the electron-donating methoxy group and electron-withdrawing fluorine group were both tolerated (entries 4-6). Interestingly, benzoindole 10g and biaryl-type indole 10h were also obtained in good yield (entries 7 and 8). 3-Substitution resulted in lower yield (entry 9). The N-Cbz-protected substrate afforded indole in moderate yield (entry 10). It is important to note that while diaryliodonium salt-based indole synthesis was originally discovered by Ishikawa and coworkers,⁴⁴ their substrate scope has been limited to electronrich aromatic substrates because in situ nucleophilic aromatic substitution is required to prepare the diaryliodonium salt. The stepwise preparation of diaryliodonium salts via stannane developed herein allowed great expansion of the substrate scope of the indole synthesis via diaryliodonium salts. Additionally to note, we were unable to prepare iodonium salts from acyl-protected substrates (N-Ac or N-Piv), which are

Table 4. Substrate Scope for Indole Synthesis

^aFrom the N-Cbz-protected substrate.

Scheme 4. Control Experiments

direct congeners for Ishikawa's original substrates, likely due to rapid decomposition during purification.

We performed several control reactions to clarify the reaction mechanism (Scheme 4). When protected hydroxylamine 13 was treated with TBAF, 14 was isolated as the sole product and the corresponding O-Boc product 15 was not detected (Scheme 4A). One-pot methylation afforded only O-Me product 16. This is in accord with our brief calculation with a model compound (see the SI), showing essentially no equilibrium between the N-carbamate and the corresponding O-carbonate due to the large energy difference (see the SI). These results suggest that N-to-O acyl migration⁶⁵ is unlikely to be involved in the initiation step of the reaction. Furthermore, the addition of TEMPO had little effect on yield and no prominent new by-products were observed, showing that the reaction is unlikely to be mediated by radical chemistry (Scheme 4B).

From the above results and comparison with Ishikawa's hypothesis,⁴⁴ we propose the reaction mechanism shown in Scheme 5. Upon deprotection of the oxygen atom, intramolecular attack of the anionic oxygen on the iodine center leads to seven-membered ring intermediate H. The recombination of the chemical bond is accompanied by reductive elimination of iodobenzene to afford $I_{1,29,62,66,67}$ which undergoes N-to-O acyl migration to provide O-Boc intermediate J.^{57,68} Subsequent intramolecular hydrogen subtraction affords K, which isomerizes quickly to indole 10a. Although direct decomposition of N-Boc intermediate I to Nhydroxyindoline L can also be postulated, successful transformation of Cbz-protected hydroxylamine is inconsistent with a mechanism involving β -hydrogen elimination. This is further supported by gas chromatography (GC) analysis: a nearly equal amount of tert-butyl alcohol was detected in the reaction mixture, which cannot be generated by a β -elimination pathway. It should be emphasized that the formation of side product 12a can be accounted for by sequential [3,3]sigmatropic rearrangements via M^{69} or N_{r}^{70} which also strongly indicates the presence of acyl migration intermediate J.⁵⁷ The role of molecular sieves can be attributed to the removal of water, which could hydrolyze intermediates such as I or J.

Scheme 5. Proposed Reaction Mechanism

CONCLUSIONS

In conclusion, we have discovered a novel method for the synthesis of rarely accessible *N*-alkoxyindolines via diaryliodonium salt-based transformation. This is the first systematic synthetic study of *N*-alkoxyindolines to date, despite their simple structures. Further examination greatly expands both the substrate scope of the Ishikawa indole synthesis and the understanding of its mechanism. Our method is characterized by operational simplicity and a broad substrate scope. Application of this strategy to other heteroaromatics, as well as further mechanistic analyses, will be reported in due course.

EXPERIMENTAL SECTION

General Methods. The reactions were carried out under Ar unless otherwise noted. Melting points are uncorrected. ¹H HMR spectra were recorded at 400 or 500 MHz with tetramethylsilane as an internal standard on a JEOL JNM-ECS400 (400 MHz), JEOL JNM-ECZ400 (400 MHz), or JEOL JNM-ECA500 (500 MHz) spectrometer unless otherwise noted. ¹³C{¹H} NMR spectra were recorded at 100 or 125 MHz. High-resolution mass spectra (HRMS) were measured by the electrospray ionization (ESI) mode (TOF analyzer) on a Waters LCT Premier XE spectrometer. Thin-layer chromatography (TLC) was performed on Merck Kieselgel 60 F254 plates. An oil bath was used as the heating source for the reactions that require heating. The crude reaction mixtures and extracted materials were purified by chromatography on silica gel (Fuji Silysia, PSQ-100B) or PTLC (Merck). Combined organic extracts were dried over anhydrous Na2SO4. Solvents were removed from the reaction mixture and the combined organic extracts by concentration under reduced pressure using an evaporator with a water bath at 35-45 °C.

To a stirred solution of $S1^{71}$ (1.61 g, 5.66 mmol), (3,5dimethylphenyl)boronic acid (933 mg, 6.22 mmol), and K₂CO₃ (1.80 g, 13.0 mmol) in 1,2-dimethoxyethane (DME) (50 mL) was added tetrakis(triphenylphosphine)palladium (144 mg, 0.124 mmol). After being stirred at 70 °C for 12 h, the mixture was diluted with H_2O (100 mL) and extracted with EtOAc (50 mL \times 3). The combined extracts were washed with saturated brine (50 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:19-1:2) to provide 1.39 g (quant.) of S2a as a white solid: TLC R_f 0.74 (EtOAc/ hexane, 1:6); IR (neat) 1584, 1515, 1335, 846, 831, 694 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, 1H, J = 8.0 Hz), 7.52 (d, 1H, J = 8.0 Hz), 7.52 (s, 1H), 7.21 (s, 2H), 7.07 (s, 1H), 2.69 (s, 3H), 2.40 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 147.9, 146.5, 139.0, 138.8 (2C), 134.4, 131.5, 130.4, 125.6, 125.5, 125.3 (2C), 21.5 (2C), 21.2; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₅H₁₅NO₂ 242.1181; found 242.1180.

To a cooled (0 °C) stirred solution of 2-methyl-1-nitronaphthalene (S2b) (4.00 g, 21.3 mmol) and formalin (35% solution, 3.80 mL, 36.1 mmol) in dimethyl sulfoxide (DMSO) (40 mL) was added aqueous KOH (17.9 M solution, 2.02 mL, 36.1 mmol). After being stirred at 0 °C for 30 min and at room temperature for 30 min, the mixture was quenched with saturated aqueous NH₄Cl (40 mL), diluted with H₂O (20 mL), and extracted with EtOAc (70 mL \times 4). The combined extracts were washed with saturated brine (100 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:1) to provide 3.31 g (71%) of S3a as yellow crystals: mp 79-84 °C; TLC R_f 0.32 (EtOAc/hexane, 1:1); IR (neat) 3546, 1523, 1361, 1056, 818, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, 1H, J = 8.0 Hz), 7.89 (d, 1H, J = 8.0 Hz), 7.72 (d, 1H, J = 8.4 Hz), 7.63 (td, 1H, J = 8.0, 1.2 Hz), 7.57 (td, 1H, J = 8.0, 1.2 Hz), 7.46 (d, 1H, J = 8.4 Hz), 3.98 (q, 2H, J = 6.4 Hz), 3.03 (t, 2H, J = 6.4 Hz), 1.61 (t, 1H, J = 6.4 Hz); $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 148.5, 132.7, 130.8, 128.8, 128.4, 128.1, 127.6, 127.2, 124.7, 121.6, 62.8, 35.2; HRMS (ESI-TOF) m/z; $[M + Na]^+$ calcd for $C_{12}H_{11}NNaO_3$ 240.0637; found 240.0643.

2-(3',5'-Dimethyl-4-nitro-[1,1'-biphenyl]-3-yl)ethan-1-ol (S3b).

To a suspension of S2a (2.03 g, 8.41 mmol) in DMSO (80 mL) were added formalin (35%, 1.44 mL, 16.8 mmol), aqueous KOH (1.68 M solution, 5.0 mL, 8.4 mmol), and tetrahydrofuran (THF) (5 mL) successively under air. After being stirred at room temperature for 12 h, the mixture was guenched with saturated aqueous NH₄Cl (10 mL), diluted with H_2O (100 mL), and extracted with EtOAc (100 mL × 3). The combined extracts were washed with H_2O (100 mL) and saturated brine (100 mL) sequentially, dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:9-2:1) to provide 1.41 g (62%) of **S3b** as a yellow solid: TLC R_f 0.12 (EtOAc/hexane, 1:6); IR (neat) 3306, 1582, 1517, 1339, 1041, 840 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ 8.04 (d, 1H, J = 8.0 Hz), 7.60 (d, 1H, J = 2.0 Hz), 7.58 (dd, 1H, J = 8.0, 2.0 Hz), 7.21 (s, 2H), 7.06 (s, 1H), 4.01 (q, 2H, J = 6.0 Hz), 3.27 (t, 2H, J = 6.0 Hz), 2.40 (s, 6H), 1.60 (t, 1H, J = 6.0 Hz); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 148.4, 146.6, 138.9 (2C), 138.8, 134.6, 131.6, 130.6, 126.3, 125.8, 125.4 (2C), 63.0, 36.7, 21.5 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{16}H_{17}NO_3$ 272.1287; found 272.1296.

2-(3-Nitro-[1,1'-biphenyl]-4-yl)propane-1,3-diol (S3c).

To a cooled (0 °C) stirred solution of $S2c^{72}$ (4.17 g, 19.6 mmol) in DMSO (100 mL) and THF (10 mL) were added aqueous KOH (3.92 M solution, 5.0 mL, 20 mmol) and formalin (35%, 3.3 mL, 39.1 mmol) under air. After being stirred at room temperature for 12 h, the mixture was quenched with saturated aqueous NH₄Cl (10 mL), diluted with H₂O (100 mL), and extracted with EtOAc (100 mL × 3). The combined extracts were washed with H₂O (100 mL) and saturated brine (100 mL) sequentially, dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:1–1:0) to provide 3.08 g (58%) of S3c as a yellow oil: TLC R_f 0.41 (EtOAc); IR (neat) 3343, 1529, 1355, 1037, 760, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, 1H, J = 2.0 Hz), 7.79 (dd, 1H, J = 8.2, 2.0 Hz), 7.63 (d, 1H, J = 8.2

Hz), 7.58 (dd, 1H, *J* = 7.0, 2.6 Hz), 7.48 (t, 2H, *J* = 7.0 Hz), 7.42 (tt, 1H, *J* = 7.0, 2.6 Hz), 4.09 (d, 4H, *J* = 6.0 Hz), 3.64 (quin, 1H, *J* = 6.0 Hz), 2.20 (br s, 2H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 151.2, 141.3, 138.4, 132.8, 131.2, 129.7, 129.3 (2C), 128.6, 127.1 (2C), 123.0, 65.0 (2C), 43.8; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₁₅H₁₅NO₄ 274.1079; found 274.1073.

3-Methoxy-2-(3-nitro-[1,1'-biphenyl]-4-yl)propan-1-ol (S4).

To a cooled (0 °C) stirred solution of S3c (3.08 g, 11.3 mmol) in DMF (56 mL) was added NaH (60% in oil, 452 mg, 11.3 mmol). The mixture was stirred at room temperature for 30 min, and MeI was added. After being stirred at room temperature for 12 h, the mixture was cooled to 0 °C, quenched with saturated aqueous NH₄Cl (5 mL), diluted with H_2O (100 mL), and extracted with EtOAc (100 mL \times 3). The combined extracts were washed with H₂O (100 mL) and saturated brine (100 mL) sequentially, dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:2–1:1) to provide 2.06 g (63%) of S4 as a yellow oil: TLC Rf 0.64 (EtOAc); IR (neat) 3398, 1529, 1356, 1116, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, 1H, J = 2.0 Hz), 7.77 (dd, 1H, J = 8.4, 2.0 Hz), 7.63 (d, 1H, J = 8.4 Hz), 7.58 (dd, 2H, J = 7.2, 1.4 Hz), 7.48 (tt, 2H, J = 7.2, 1.4 Hz), 7.41 (tt, 1H, J = 7.2, 1.4 Hz), 4.07 (m, 1H), 3.99 (m, 1H), 3.81 (m, 2H), 3.73 (m, 1H), 3.40 (s, 3H), 2.66 (t, 1H, J = 6.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.1, 141.5, 138.5, 133.1, 131.1, 130.0, 129.3 (2C), 128.6, 127.1 (2C), 122.9, 74.7, 65.2, 59.3, 41.6; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₇NO₄ 288.1236; found 288.1228.

2-(1-Aminonaphthalen-2-yl)ethan-1-ol (S5a).

S5a

To a stirred solution of S3a (1.22 g, 5.61 mmol) in EtOH/H₂O (4:1, 55 mL) were added iron powder (1.76 g, 31.6 mmol) and NH₄Cl (312 mg, 5.83 mmol). The mixture was stirred at 70 °C for 22 h under air. The insoluble materials were removed by filtration through a pad of Celite and washed well with CH₂Cl₂. The combined filtrate and washings were concentrated under reduced pressure. The residue was washed with saturated aqueous NaHCO₃ (30 mL) and extracted with CH_2Cl_2 (30 mL × 4). The combined extracts were washed with saturated brine (20 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 2:1) to provide 784 mg (75%) of S5a as light brown crystals: mp 75-78 °C; TLC Rf 0.23 (EtOAc/hexane, 1:1); IR (neat) 3406, 3019, 1384, 1217, 771 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, 1H, J = 8.0 Hz), 7.78 (dd, 1H, J = 8.0, 1.6 Hz), 7.46 (td, 1H, J = 8.0, 1.6 Hz), 7.42 (td, 1H, J = 8.0, 1.6 Hz), 7.30 (d, 1H, J = 8.4 Hz), 7.21 (d, 1H, J = 8.4 Hz), 3.99 (t, 2H, J = 6.4 Hz), 2.99 (t, 2H, J = 6.4 Hz), 1.65 (br, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.2, 133.5, 129.1, 128.6, 125.4, 125.2, 123.9, 120.6, 118.9, 117.8, 63.4, 35.4; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₂H₁₄NO 188.1075; found 188.1068.

2-(4-Amino-3',5'-dimethyl-[1,1'-biphenyl]-3-yl)ethan-1-ol (**S5b**).

To a stirred solution of S3b (1.42 g, 5.23 mmol) in EtOH (44 mL) and H₂O (12 mL) were added NH₄Cl (401 mg, 7.50 mmol) and iron powder (2.92 g, 52.3 mmol). The mixture was stirred at 70 °C for 2 days under air, and NH₄Cl (200 mg, 3.74 mmol) and iron powder (1.60 g, 28.7 mmol) were added. The mixture was further stirred at 70 °C for 12 h under air. The insoluble materials were removed by filtration through a pad of Celite and washed well with EtOAc and H₂O. A saturated aqueous solution (5 mL) of NaOH (1 g) and saturated brine (100 mL) were added to the combined filtrate and washings, and the mixture was extracted with EtOAc (100 mL \times 3). The combined extracts were washed with saturated brine (50 mL). dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:2-1:0) to provide 409 mg (32%) of **S5b** as a black oil: TLC R_f 0.38 (EtOAc); IR (neat) 3374, 2921, 1600, 1505, 1384, 1212, 1034, 771 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.29 (m, 2H), 7.15 (br s, 2H), 6.93 (br s, 1H), 6.76 (d, 1H, J = 8.0 Hz), 3.95 (t, 2H, J = 6.0 Hz), 2.86 (t, 2H, J = 6.0 Hz), 2.36 (s, 6H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 144.6, 141.2, 138.3 (2C), 132.5, 129.5, 128.1, 126.5, 124.5 (3C), 116.7, 63.6, 35.1, 21.6 (2C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₂₀NO 242.1545; found 242.1542.

2-(3-Amino-[1,1'-biphenyl]-4-yl)-3-methoxypropan-1-ol (S5c).

S5c

To a stirred solution of S4 (2.06 g, 7.17 mmol) in EtOH (60 mL) and H₂O (15 mL) were added NH₄Cl (384 mg, 7.17 mmol) and iron powder (4.00 g, 71.7 mmol). The mixture was stirred at 70 °C for 12 h under air. The insoluble materials were removed by filtration through a pad of Celite and washed well with EtOAc and H2O. Saturated aqueous NaHCO₃ (5 mL) and saturated brine (100 mL) were added to the combined filtrate and washings, and the mixture was extracted with EtOAc (100 mL \times 3). The combined extracts were washed with saturated brine (50 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:1–1:0) to provide 1.37 g (74%) of S5c as pale red crystals: mp 128-130 °C; TLC R_f 0.11 (EtOAc/ hexane, 1:1); IR (neat) 3357, 2925, 1633, 1384, 1212, 1113, 764, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, 2H, J = 7.2 Hz), 7.41 (t, 2H, J = 7.2 Hz), 7.32 (t, 1H, J = 7.2 Hz), 7.07 (d, 1H, J = 8.0 Hz),6.99 (dd, 1H, J = 8.0, 1.6 Hz), 6.93 (d, 1H, J = 2.0 Hz), 4.04 (dd, 1H, *J* = 10.4, 9.2 Hz), 3.90 (dd, 1H, *J* = 11.2, 5.6 Hz), 3.80 (t, 1H, *J* = 9.2 Hz), 3.70 (dd, 1H, I = 11.2, 5.6 Hz), 3.41 (s, 3H), 3.26 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.3, 141.1, 140.9, 128.8 (2C), 127.7, 127.3, 127.1 (2C), 123.9, 118.1, 115.3, 75.8, 65.7, 59.3, 42.0; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₆H₂₀NO₂ 258.1494; found 258.1493.

2-(2-lodo-6-methylphenyl)ethan-1-ol (S6a).

To a stirred solution of TsOH·H₂O (7.55 g, 39.7 mmol) in CH₃CN (28 mL) was added S5d⁷³ (1.99 g, 13.2 mmol). The mixture was stirred at room temperature for 15 min and at 0 °C for 15 min, and aqueous NaNO₂ (6.60 M solution, 4.00 mL, 26.3 mmol) was added. The mixture was stirred at 0 °C for 40 min, and aqueous KI (8.25 M solution, 4.00 mL, 33.0 mmol) was added. After being stirred at 0 °C for 10 min and at room temperature for 4 h, the mixture was quenched with saturated aqueous NaHCO₃ (20 mL), 20 wt % aqueous Na₂S₂O₃ (20 mL), and extracted with EtOAc (80 mL × 3). The combined extracts were washed with saturated brine (50 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane,

|--|

pu

1:2) to provide 2.58 g (75%) of **S6a** as yellow crystals: mp 110–113 °C; TLC R_f 0.43 (EtOAc/hexane, 1:2); IR (neat) 3280, 2953, 1444, 1384, 1038, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, 1H, *J* = 7.6 Hz), 7.12 (d, 1H, *J* = 7.6 Hz), 6.80 (t, 1H, *J* = 7.6 Hz), 3.81 (t, 2H, *J* = 7.2 Hz), 3.13 (t, 2H, *J* = 7.2 Hz), 2.43 (s, 3H), 1.44 (br, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.0, 138.5, 137.9, 130.7, 128.4, 102.6, 61.6, 41.0, 21.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₉H₁₁INaO 284.9752; found 284.9763.

2-(2-lodo-4-methylphenyl)ethan-1-ol (S6b).

As described for the preparation of **S6a**, compound **S5e**⁷⁴ (2.07 g, 13.7 mmol) was converted to 2.88 g (80%) of **S6b**. Compound **S6b** was obtained as an orange oil: TLC R_f 0.37 (EtOAc/hexane, 1:2); IR (neat) 3357, 2951, 2923, 1486, 1217, 1039, 769 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.13 (d, 1H, J = 7.6 Hz), 7.09 (d, 1H, J = 7.6 Hz), 3.82 (br s, 2H), 2.97 (t, 2H, J = 6.8 Hz), 2.28 (s, 3H), 1.53 (br, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.2, 138.4, 138.0, 130.1, 129.3, 100.8, 62.5, 43.3, 20.5; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₉H₁₂IO 262.9933; found 262.9942.

2-(4-Chloro-2-iodophenyl)ethan-1-ol (S6c).

As described for the preparation of **S6a**, compound **S5f**⁷³ (2.14 g, 12.5 mmol) was converted to 2.61 g (74%) of **S6c**. Compound **S6c** was obtained as a red oil: TLC R_f 0.37 (EtOAc/hexane, 1:2); IR (neat) 3332, 2933, 2878, 1579, 1465, 1034, 815, 798 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, 1H, J = 1.6 Hz), 7.27 (dd, 1H, J = 8.0, 1.6 Hz), 7.18 (d, 1H, J = 8.0 Hz), 3.84 (t, 2H, J = 6.8 Hz), 2.98 (t, 2H, J = 6.8 Hz), 1.50 (br, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.9, 138.9, 133.0, 130.9, 128.6, 100.6, 62.2, 43.0; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₈H₂ClIO 282.9387; found 282.9380.

2-(4-Fluoro-2-iodophenyl)ethan-1-ol (S6d).

As described for the preparation of **S6a**, compound **S5g**⁷³ (1.86 g, 12.0 mmol) was converted to 2.53 g (80%) of **S6d**. Compound **S6d** was obtained as a red oil: TLC R_f 0.37 (EtOAc/hexane, 1:2); IR (neat) 3364, 2954, 1593, 1482, 1221, 1042, 862, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, 1H, J = 8.4, 2.8 Hz), 7.22 (dd, 1H, J = 8.4, 6.0 Hz), 7.02 (td, 1H, J = 8.4, 2.8 Hz), 3.82 (t, 2H, J = 6.8 Hz), 1.61 (br, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.8 (d, J = 249.1 Hz), 137.1 (d, J = 2.9 Hz), 130.8 (d, J = 7.6 Hz), 126.5 (d, J = 23.0 Hz), 115.4 (d, J = 20.1 Hz), 99.7 (d, J = 7.7 Hz), 62.3, 42.7; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₈H₀FIO 266.9682; found 266.9669.

2-(1-lodonaphthalen-2-yl)ethan-1-ol (S6e).

S6e

As described for the preparation of **S6a**, compound **S5a** (1.39 g, 7.44 mmol) was converted to 1.82 g (82%) of **S6e**. Compound **S6e** was obtained as orange crystals: mp 72–75 °C; TLC R_f 0.43 (EtOAc/hexane, 1:2); IR (neat) 3406, 3017, 1499, 1216, 1039, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, 1H, J = 8.4 Hz), 7.76 (d, 2H, J =

8.0 Hz), 7.57 (t, 1H, J = 8.0 Hz), 7.48 (t, 1H, J = 8.0 Hz), 7.39 (d, 1H, J = 8.4 Hz), 3.97 (q, 2H, J = 6.4 Hz), 3.34 (t, 2H, J = 6.4 Hz), 1.46 (t, 1H, J = 6.4 Hz); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 140.7, 135.3, 133.1, 132.9, 128.9, 128.3, 128.1, 128.0, 126.3, 106.0, 62.7, 45.8; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₂H₁₂IO 298.9933; found 298.9922.

2-(4-lodo-3',5'-dimethyl-[1,1'-biphenyl]-3-yl)ethan-1-ol (S6f).

As described for the preparation of **S6a**, compound **S5b** (427 mg, 1.77 mmol) was converted to 328 mg (62%) of **S6f**. Compound **S6f** was obtained as a light brown oil: TLC R_f 0.41 (EtOAc/hexane, 1:2); IR (neat) 3381, 2919, 1604, 1384, 1042, 900, 772 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, 1H, J = 8.4 Hz), 7.46 (d, 1H, J = 2.4 Hz), 7.17 (br s, 2H), 7.14 (dd, 1H, J = 8.4, 2.0 Hz), 7.01 (br s, 1H), 3.91 (q, 2H, J = 6.4 Hz), 3.08 (t, 2H, J = 6.8 Hz), 2.38 (s, 6H), 1.42 (t, 1H, J = 6.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.9, 141.4, 140.0 (2C), 138.6 (2C), 129.5, 129.2, 127.3, 125.0 (2C), 99.3, 62.5, 43.9, 21.5 (2C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₈IO 353.0402; found 353.0397.

2-(3-lodo-[1,1'-biphenyl]-4-yl)-3-methoxypropan-1-ol (S6g).

As described for the preparation of **S6a**, compound **S5c** (1.27 g, 4.95 mmol) was converted to 1.67 g (92%) of **S6g**. Compound **S6g** was obtained as a yellow oil: TLC R_f 0.27 (EtOAc/hexane, 1:2); IR (neat) 3406, 2926, 2878, 1596, 1538, 1474, 1376, 1116, 1033, 762, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.53 (d, 3H, *J* = 8.0 Hz), 7.44 (t, 2H, *J* = 7.6 Hz), 7.36 (t, 1H, *J* = 7.6 Hz), 7.29 (d, 1H, *J* = 8.0 Hz), 4.04–3.91 (m, 2H), 3.78–3.71 (m, 2H), 3.60 (tt, 1H, *J* = 7.6, 6.4 Hz), 3.43 (s, 3H), 2.50 (t, 1H, *J* = 5.2 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.9, 140.8, 139.2, 138.5, 129.0 (2C), 127.9 (2C), 127.3, 127.1 (2C), 102.7, 75.3, 65.4, 59.3, 50.5; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₆H₁₈IO₂ 369.0352; found 369.0366.

2-(2-Tributylstannylphenyl)ethan-1-ol (2a). To a cooled (-78 °C) stirred solution of 2-(2-bromophenyl)ethyl alcohol (1) (2.70 mL, 20.0 mmol) in THF (50 mL) was added n-BuLi (2.6 M solution in hexane, 19.5 mL, 50.7 mmol). The mixture was stirred at -78 °C for 1 h, and n-Bu₃SnCl (7.50 mL, 27.6 mmol) was added. After being stirred at $-78\ ^\circ C$ for 1 h and at room temperature for 5.5 h, the mixture was quenched with saturated aqueous NH₄Cl (25 mL), diluted with H_2O (25 mL), and extracted with EtOAc (50 mL \times 3). The combined extracts were washed with saturated brine (50 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 6.44 g (78%) of 2a as a colorless oil: TLC R_f 0.46 (EtOAc/hexane, 1:10); IR (neat) 3356, 2957, 2926, 1464, 1377, 1217, 1045, 757, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, 1H, J = 6.8, 0.9 Hz), 7.30-7.24 (m, 2H), 7.19 (td, 1H, J = 7.2, 2.0 Hz), 3.83 (q, 2H, J = 6.8 Hz), 2.87 (t, 2H, J = 6.8 Hz), 1.54-1.44 (m, 6H), 1.39-1.29 (m, 6H), 1.16-0.99 (m, 6H), 0.89 (t, 9H, J = 7.2 Hz); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 145.0, 143.0, 137.3, 128.7, 128.6, 126.1, 64.2, 42.3, 29.3 (3C), 27.6 (3C), 13.8 (3C), 10.6 (3C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₀H₃₇OSn 413.1866; found 413.1873.

2-[2-Methyl-6-(tributylstannyl)phenyl]ethan-1-ol (2b). To a cooled (-78 °C) stirred solution of S6a (1.21 g, 4.60 mmol) in

THF (11 mL) was added n-BuLi (2.69 M solution in hexane, 4.10 mL, 11.0 mmol). The mixture was stirred at -78 °C for 0.5 h, and *n*-Bu₃SnCl (1.75 mL, 6.45 mmol) was added. After being stirred at -78 °C for 30 min and at room temperature for 8 h, the mixture was quenched with saturated aqueous NH_4Cl (5 mL), diluted with H_2O (5 mL), and extracted with EtOAc (10 mL \times 3). The combined extracts were washed with saturated brine (10 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 875 mg (45%) of 2b as a yellow oil: TLC R_f 0.58 (EtOAc/ hexane, 1:2); IR (neat) 3429, 2958, 2927, 1457, 1216, 1030, 759, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 1H), 7.16–7.14 (m, 2H), 3.72 (br q, 2H, J = 8.0 Hz), 2.97 (t, 2H, J = 8.0 Hz), 2.41 (s, 3H), 1.62–1.49 (m, 6H), 1.43–1.31 (m, 6H), 1.21–1.04 (m, 6H), 0.93 (t, 9H, J = 7.6 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.9, 142.8, 136.5, 135.0, 130.9, 126.3, 63.1, 40.2, 29.2 (3C), 27.6 (3C), 20.5, 13.8 (3C), 10.9 (3C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₁H₃₉OSn 427.2023; found 427.2028.

2-[4-Methyl-2-(tributylstannyl)phenyl]ethan-1-ol (2c). As described for the preparation of 2b, compound S6b (877 mg, 3.35 mmol) was converted to 481 mg (34%) of 2c. Compound 2c was obtained as a yellow oil: TLC R_f 0.58 (EtOAc/hexane, 1:2); IR (neat) 3421, 2958, 2929, 1464, 1381, 1216, 1044, 758, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (br s, 1H), 7.15 (d, 1H, *J* = 8.0 Hz), 7.08 (d, 1H, *J* = 8.0 Hz), 3.80 (t, 2H, *J* = 7.2 Hz), 2.84 (t, 2H, *J* = 7.2 Hz), 2.31 (s, 3H), 1.56–1.46 (m, 6H), 1.37–1.30 (m, 6H), 1.11–1.02 (m, 6H), 0.89 (t, 9H, *J* = 7.2 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.6, 141.9, 138.0, 135.2, 129.4, 128.6, 64.3, 41.7, 29.3 (3C), 27.6 (3C), 21.1, 13.8 (3C), 10.6 (3C); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₁H₃₉OSn 427.2023; found 427.2014.

2-[4-Methoxy-2-(tributylstannyl)phenyl]ethan-1-ol (2d).

To a cooled (0 °C) stirred solution of 2-bromo-4-methoxyphenylacetic acid (S7) (1.12 g, 4.76 mmol) in THF (15 mL) were added NaBH₄ (437 mg, 11.6 mmol) and BF₃·OEt₂ (0.720 mL, 5.73 mmol). After being stirred at 60 °C for 1 h, the mixture was quenched with MeOH (5 mL) and stirred at room temperature for 30 min. The mixture was diluted with H₂O (10 mL) and extracted with EtOAc (25 mL × 4). The combined extracts were washed with saturated brine (25 mL), dried, and concentrated under reduced pressure to provide crude S8, which was used in the next step without further purification.

To a cooled (-78 °C) stirred solution of crude S8 obtained above in THF (13 mL) was added n-BuLi (2.69 M solution in hexane, 3.60 mL, 9.68 mmol). The mixture was stirred at -78 °C for 40 min, and n-Bu₃SnCl (1.50 mL, 5.53 mmol) was added. After being stirred at -78 °C for 20 min and at room temperature for 2.5 h, the mixture was quenched with saturated aqueous NH₄Cl (10 mL), diluted with H_2O (10 mL), and extracted with EtOAc (20 mL \times 4). The combined extracts were washed with saturated brine (20 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:8) to provide 1.25 g (60% for two steps from S7) of 2d as a yellow oil: TLC $R_f 0.67$ (EtOAc/hexane, 1:2); IR (neat) 3445, 2958, 2928, 1589, 1465, 1216, 1041, 758, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, 1H, J = 8.6 Hz), 6.98 (d, 1H, J = 2.6 Hz), 6.82 (dd, 1H, J = 8.6, 2.6 Hz), 3.80 (s, 3H), 3.78 (q, 2H, J = 6.8 Hz), 2.82 (t, 2H, J = 6.8 Hz), 1.59-1.48 (m, 6H), 1.40-1.27 (m, 6H), 1.18-1.00 (m, 6H), 0.89 (t, 9H, J = 7.2)Hz); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 157.5, 144.4, 136.9, 129.5, 122.9, 113.3, 64.4, 55.3, 41.2, 29.2 (3C), 27.5 (3C), 13.8 (3C), 10.7 (3C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{21}H_{39}O_2Sn$ 443.1972; found 443.1986.

2-[4-Chloro-2-(tributylstannyl)phenyl]ethan-1-ol (2e). As described for the preparation of 2b, compound S6c (1.50 g, 5.32 mmol) was converted to 651 mg (27%) of 2e. Compound 2e was obtained as a red oil: TLC R_f 0.43 (EtOAc/hexane, 1:2); IR (neat)

3375, 2957, 2926, 1462, 1377, 1046, 760 cm⁻¹; ¹H NMR (400 MHz, $CDCl_{2}$) δ 7.34 (d, 1H, I = 2.0 Hz), 7.24–7.17 (m, 2H), 3.80 (g, 2H, I= 6.8 Hz), 2.83 (t, 2H, J = 6.8 Hz), 1.55-1.48 (m, 6H), 1.38-1.29 (m, 6H), 1.18-1.01 (m, 6H), 0.90 (t, 9H, J = 7.2 Hz); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 145.6, 143.3, 136.4, 132.4, 129.9, 128.4, 64.0, 41.5, 29.2 (3C), 27.5 (3C), 13.8 (3C), 10.7 (3C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₀H₃₆ClOSn 447.1477; found 447.1479.

2-[4-Fluoro-2-(tributylstannyl)phenyl]ethan-1-ol (2f). As described for the preparation of 2b, compound S6d (1.50 g, 5.63 mmol) was converted to 733 mg (30%) of 2f. Compound 2f was obtained as a red oil: TLC Rf 0.43 (EtOAc/hexane, 1:2); IR (neat) 3375, 2957, 2927, 1577, 1474, 1214, 1045, 875, 760 cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.22 \text{ (dd, 1H, } I = 8.4, 5.2 \text{ Hz}), 7.11 \text{ (dd, 1H, } I =$ 8.4, 2.4 Hz), 6.94 (td, 1H, J = 8.4, 2.4 Hz), 3.80 (t, 2H, J = 6.8 Hz), 2.85 (t, 2H, J = 6.8 Hz), 1.62-1.43 (m, 6H), 1.39-1.27 (m, 6H), 1.19–1.00 (m, 6H), 0.90 (t, 9H, J = 7.2 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.3 (d, J = 247.2 Hz), 145.6 (d, J = 1.9 Hz), 140.5 (d, J = 2.8 Hz), 129.9 (d, J = 5.8 Hz), 123.1 (d, J = 17.3 Hz), 115.1 (d, J = 21.8 Hz), 64.2, 41.3, 29.2 (3C), 27.5 (3C), 13.8 (3C), 10.7 (3C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{20}H_{36}FOSn$ 431.1772; found 431.1771.

2-[1-(Tributylstannyl)naphthalen-2-yl]ethan-1-ol (2g). As described for the preparation of 2b, compound S6e (988 mg, 3.31 mmol) was converted to 404 mg (26%) of 2g. Compound 2g was obtained as a yellow oil: TLC R_f 0.68 (EtOAc/hexane, 1:2); IR (neat) 3428, 2958, 2927, 1457, 1383, 1216, 1043, 816, 758, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, 1H, J = 8.4, 1.6 Hz), 7.81 (dd, 1H, J = 8.4, 1.6 Hz), 7.77 (d, 1H, J = 8.4 Hz), 7.46 (td, 1H, J = 8.4, 1.6 Hz), 7.42 (td, 1H, J = 8.4, 1.6 Hz), 7.35 (d, 1H, J = 8.4 Hz), 3.86 (q, 2H, J = 6.8 Hz), 3.08 (t, 2H, J = 6.8 Hz), 1.62-1.45 (m, 6H),1.38-1.29 (m, 6H), 1.27-1.15 (m, 6H), 0.87 (t, 9H, J = 7.2 Hz); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) δ 144.4, 142.7, 139.7, 132.5, 129.8, 129.2, 128.9, 127.7, 125.7, 125.0, 64.7, 42.3, 29.3 (3C), 27.5 (3C), 13.8 (3C), 13.3 (3C); HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for C24H38NaOSn 485.1842; found 485.1853.

2-(3',5'-Dimethyl-4-(tributylstannyl)-[1,1'-biphenyl]-3-yl)ethan-1-ol (2h). As described for the preparation of 2b, compound S6f (272 mg, 0.773 mmol) was converted to 151 mg (38%) of 2h. Compound 2h was obtained as a pale yellow oil: TLC R_f 0.54 (EtOAc/hexane, 1:2); IR (neat) 3332, 2956, 2925, 1604, 1463, 1383, 1217, 1045, 823, 759, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.40 (m, 3H), 7.21 (br s, 2H), 6.99 (br s, 1H), 3.87 (q, 2H, J = 6.8 Hz), 2.94 (t, 2H, J = 6.8 Hz, 2.38 (s, 6H), 1.62–1.49 (m, 6H), 1.44–1.28 (m, 6H), 1.19–1.02 (m, 6H), 0.90 (t, 9H, J = 7.2 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.4, 141.60, 141.55, 141.2, 138.4 (2C), 137.6, 129.1, 127.5, 125.2 (2C), 124.8, 64.3, 42.3, 29.3 (3C), 27.6 (3C), 21.6 (2C), 13.8 (3C), 10.7 (3C); HRMS (ESI-TOF) m/z: [M + H]⁻ calcd for C₂₈H₄₅OSn 517.2492; found 517.2488.

3-Methoxy-2-{3-(tributylstannyl)-[1,1'-biphenyl]-4-yl}propan-1ol (2i). As described for the preparation of 2b, compound S6g (1.67 g, 4.55 mmol) was converted to 792 mg (33%) of 2i. Compound 2i was obtained as a yellow oil: TLC R_f 0.71 (EtOAc/hexane, 1:2); IR (neat) 3448, 2956, 2925, 1466, 1376, 1115, 1081, 1034, 765, 698 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 7.63 (br s, 1H), 7.55 (d, 2H, J = 8.4 Hz), 7.50-7.42 (m, 3H), 7.34 (td, 1H, J = 7.6, 0.8 Hz), 7.25 (d, 1H, J = 8.4 Hz), 4.05 (m, 1H), 3.83 (m, 1H), 3.78 (t, 1H, J = 8.8 Hz), 3.65 (dd, 1H, J = 8.8, 4.4 Hz), 3.41 (s, 3H), 3.11 (m, 1H), 2.72 (dd, 1H, J = 8.0, 3.6 Hz), 1.66-1.47 (m, 6H), 1.40-1.28 (m, 6H), 1.23-1.05 (m, 6H), 0.90 (t, 9H, J = 7.2 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.1, 144.6, 141.3, 139.3, 136.0, 128.9 (2C), 127.5, 127.2 (3C), 126.4, 77.9, 67.7, 59.4, 50.8, 29.3 (3C), 27.6 (3C), 13.8 (3C), 10.7 (3C); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₈H₄₅O₂Sn 533.2442; found 533.2448.

N-(tert-Butyldimethylsilyloxy)-2-nitrobenzenesulfon-amide (S10).

To a cooled (0 °C) stirred solution of hydroxylamine hydrochloride (S9) (1.45 g, 22.5 mmol) in DMF (50 mL) were added tertbutyldimethylchlorosilane (3.40 g, 22.5 mmol) and Et₃N (10.5 mL, 75.0 mmol). The mixture was stirred at room temperature for 11 h and 2-nitrobenzenesulfonyl chloride (3.34 g, 15.1 mmol) was added at 0 °C. After being stirred at room temperature for 6.5 h, the mixture was quenched with H₂O (50 mL) and extracted with EtOAc/hexane (1:4, 100 mL \times 4). The combined extracts were washed with H₂O $(100 \text{ mL} \times 2)$ and saturated brine (60 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 3.20 g (64%) of S10⁷⁵ as white crystals: TLC R_f 0.33 (EtOAc/hexane, 1:3); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, 1H, J = 6.8, 2.0 Hz), 7.90 (dd, 1H, J = 7.2, 1.6 Hz), 7.84-7.76 (m, 2H), 7.65 (br s, 1H), 0.88 (s, 9H), 0.25 (s, 6H).

N-(tert-Butyldimethylsilyloxy)-2-nitro-N-[2-(tributyl-stannyl)phenethyl]benzenesulfonamide (S11a).

To a cooled (0 °C) stirred solution of 2a (5.88 g, 14.3 mmol), S10 (3.73 g, 11.2 mmol), and PPh₃ (5.87 g, 22.4 mmol) in THF/toluene (1:3, 44 mL) was slowly added diethyl azodicarboxylate (2.2 M solution in toluene, 7.70 mL, 16.9 mmol). After being stirred at 0 °C for 1 h and at room temperature for 2 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/hexane, 1:8) to provide 7.06 g (87% from S10) of S11a as pale yellow crystals: mp 39-41 °C; TLC R_f 0.31 (EtOAc/hexane, 1:6); IR (neat) 2956, 2929, 1550, 1464, 1378, 1180, 845, 758, 600 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.08, (dd, 1H, J = 8.0, 1.6 Hz), 7.76 (td, 1H, J = 8.0, 1.6 Hz), 7.68 (td, 1H, J = 8.0, 1.6 Hz), 7.55 (dd, 1H, J = 8.0, 1.6 Hz), 7.38 (d, 1H, J = 7.2 Hz), 7.24 (m, 1H), 7.19–7.15 (m, 2H), 3.37 (t, 2H, J = 8.0 Hz), 2.96 (t, 2H, J = 8.0 Hz), 1.53-1.40 (m, 6H), 1.36-1.27 (m, 6H), 1.14-1.02 (m, 6H), 0.98 (s, 9H), 0.87 (t, 9H, J = 7.6 Hz), 0.23 (s, 6H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) δ 149.8, 144.9, 142.6, 137.2, 134.8, 133.0, 130.8, 128.6, 128.5, 126.4, 126.1, 123.8, 57.1, 37.0, 29.3 (3C), 27.5 (3C), 26.2 (3C), 18.5, 13.8 (3C), 10.5 (3C), -4.1 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{32}H_{55}N_2O_5SiSn$ 727.2623; found 727.2603.

N-(tert-Butyldimethylsilyloxy)-N-[2-methyl-6-(tributyl-stannyl)phenethyl]-2-nitrobenzenesulfonamide (S11b).

As described for the preparation of S11a, compounds 2b and S10 (357 mg, 1.07 mmol) were converted to 421 mg (53% from S10) of S11b. Compound S11b was obtained as a yellow oil: TLC R_f 0.56 (EtOAc/hexane, 1:2); IR (neat) 2957, 2929, 1550, 1380, 1258, 1181, 827, 753, 562 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, 1H, J = 8.0 Hz), 7.75 (t, 1H, J = 8.0 Hz), 7.67 (td, 1H, J = 8.0, 1.2 Hz), 7.51 (dd, 1H, J = 8.0, 1.2 Hz), 7.25 (m, 1H), 7.13-7.08 (m, 2H), 3.16 (t, 2H, J = 8.0 Hz), 2.97 (t, 2H, J = 8.0 Hz), 2.25 (s, 3H), 1.57-1.40 (m, 6H), 1.37-1.27 (m, 6H), 1.18-1.05 (m, 6H), 1.03 (s, 9H), 0.89 (t, 9H, J = 7.6 Hz), 0.34 (s, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 149.8, 143.5, 142.7, 136.3, 135.2, 134.8, 132.6, 131.1, 130.8, 126.6, 126.2, 123.8, 55.2, 35.6, 29.3 (3C), 27.5 (3C), 26.4 (3C), 20.5, 18.6, 13.8 (3C), 10.7 (3C), -3.6 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C33H57N2O5SSiSn 741.2779; found 741.2743.

N-(tert-Butyldimethylsilyloxy)-N-[4-methyl-2-(tributyl-stannyl)phenethyl]-2-nitrobenzenesulfonamide (S11c).

As described for the preparation of S11a, compounds 2c and S10 (329 mg, 0.989 mmol) were converted to 682 mg (93% from S10) of S11c. Compound S11c was obtained as white crystals: mp 83-85 °C; TLC R_f 0.45 (EtOAc/hexane, 1:3); IR (neat) 2957, 2929, 1550, 1379, 1181, 829, 758, 579 cm⁻¹; ¹H NMR (400 MHz, CDCl₂) δ 8.07 (dd, 1H, J = 8.0, 0.9 Hz), 7.75 (td, 1H, J = 8.0, 0.9 Hz), 7.67 (td, 1H, J = 8.0, 0.9 Hz), 7.54 (dd, 1H, J = 8.0, 0.9 Hz), 7.18 (br s, 1H), 7.09-7.07 (m, 2H), 3.35 (t, 2H, J = 8.0 Hz), 2.92 (t, 2H, J = 8.0 Hz), 2.29 (s, 3H), 1.53-1.40 (m, 6H), 1.37-1.28 (m, 6H), 1.15-1.01 (m, 6H), 0.98 (s, 9H), 0.88 (t, 9H, I = 7.2 Hz), 0.25 (s, 6H); ${}^{13}C{}^{1}H$ NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 149.8, 142.4, 141.7, 137.8, 135.3, 134.8, 133.0, 130.8, 129.4, 128.3, 126.5, 123.8, 57.2, 36.4, 29.3 (3C), 27.5 (3C), 26.3 (3C), 21.2, 18.5, 13.8 (3C), 10.4 (3C), -4.1 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{33}H_{57}N_2O_5SSiSn 741.2779$; found 741.2806.

N-(tert-Butyldimethylsilyloxy)-N-[4-methoxy-2-(tributyl-stannyl)phenethyl]-2-nitrobenzenesulfonamide (S11d).

'Ns

As described for the preparation of S11a, compounds 2d and S10 (858 mg, 2.58 mmol) were converted to 1.82 g (93% from S10) of S11d. Compound S11d was obtained as white crystals: mp 85-87 °C; TLC R_f 0.30 (EtOAc/hexane, 1:6); IR (neat) 2956, 2930, 1550, 1379, 1180, 828, 748, 585 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, 1H, J = 8.0, 0.9 Hz), 7.76 (td, 1H, J = 8.0, 0.9 Hz), 7.68 (td, 1H, J = 8.0, 0.9 Hz), 7.54 (dd, 1H, J = 8.0, 0.9 Hz), 7.12 (d, 1H, J = 8.4Hz), 6.94 (d, 1H, J = 2.8 Hz), 6.78 (dd, 1H, J = 8.4, 2.8 Hz), 3.78 (s, 3H), 3.33 (t, 2H, J = 8.0 Hz), 2.90 (t, 2H, J = 8.0 Hz), 1.56-1.40 (m, 6H), 1.36-1.27 (m, 6H), 1.15-1.04 (m, 6H), 0.98 (s, 9H), 0.88 (t, 9H, J = 7.6 Hz), 0.24 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.5, 149.6, 144.0, 136.8, 134.8, 133.0, 130.8, 129.3, 126.3, 123.8, 122.7, 113.4, 57.3, 55.2, 36.0, 29.3 (3C), 27.5 (3C), 26.2 (3C), 18.5, 13.8 (3C), 10.5 (3C), -4.1 (2C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C33H57N2O6SSiSn 757.2729; found 757.2739.

N-(tert-Butyldimethylsilyloxy)-N-[4-chloro-2-(tributyl-stannyl)phenethyl]-2-nitrobenzenesulfonamide (S11e).

As described for the preparation of S11a, compounds 2e and S10 (300 mg, 0.901 mmol) were converted to 759 mg (quant. from S10) of S11e. Compound S11e was obtained as pale red crystals: mp 75-77 °C; TLC Rf 0.72 (EtOAc/hexane, 1:3); IR (neat) 2956, 2929, 1550, 1381, 1180, 827, 770, 583, 563 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 8.07 (dd, 1H, J = 8.0, 1.2 Hz), 7.77 (td, 1H, J = 8.0, 1.2 Hz), 7.69 (td, 1H, J = 8.0, 1.2 Hz), 7.55 (dd, 1H, J = 8.0, 1.2 Hz), 7.31 (d, 1H, J = 2.4 Hz), 7.20 (dd, 1H, J = 8.0, 2.4 Hz), 7.11 (d, 1H, J = 8.0 Hz), 3.34 (t, 2H, J = 7.2 Hz), 2.93 (t, 2H, J = 7.2 Hz), 1.54-1.40 (m, 6H), 1.36-1.27 (m, 6H), 1.16-0.99 (m, 6H), 0.97 (s, 9H), 0.88 (t, 9H, J = 7.6 Hz), 0.21 (s, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 149.8, 145.3, 143.1, 136.4, 134.9, 133.2, 132.5, 130.8, 129.7, 128.5, 126.1, 123.8, 56.9, 36.2, 29.2 (3C), 27.5 (3C), 26.2 (3C), 18.4, 13.8 (3C), 10.6 (3C), -4.2 (2C); HRMS (ESI-TOF) m/z: [M + H] calcd for C32H54ClN2O5SSiSn 761.2233; found 761.2262.

As described for the preparation of S11a, compounds 2f and S10 (341 mg, 1.03 mmol) were converted to 996 mg (quant. from **\$10**) of S11f. Compound S11f was obtained as pale red crystals: mp 68-71 °C; TLC R_f 0.72 (EtOAc/hexane, 1:3); IR (neat) 2957, 2930, 1578, 1474, 1379, 1255, 1180, 845, 749, 583 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 8.07 (dd, 1H, J = 8.0, 1.2 Hz), 7.77 (td, 1H, J = 8.0, 1.2 Hz), 7.69 (td, 1H, J = 8.0, 1.2 Hz), 7.55 (dd, 1H, J = 8.0, 1.2 Hz), 7.15 (dd, 1H, J = 8.4, 5.2 Hz), 7.07 (dd, 1H, J = 8.4, 2.8 Hz), 6.91 (td, 1H, J = 8.4, 2.8 Hz), 3.33 (t, 2H, J = 8.0 Hz), 2.93 (t, 2H, J = 8.0 Hz), 1.52-1.44 (m, 6H), 1.36-1.27 (m, 6H), 1.15-1.00 (m, 6H), 0.97 (s, 9H), 0.88 (t, 9H, J = 7.6 Hz), 0.21 (s, 6H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 161.3 (d, J = 247.2 Hz), 149.8, 145.4 (J = 1.9 Hz), 140.4 (J = 2.9 Hz), 134.9, 133.2, 130.8, 129.8 (d, J = 6.7 Hz), 126.1, 123.7, 123.0 (d, J = 17.3 Hz), 115.2 (d, J = 20.1 Hz), 57.2, 36.1, 29.2 (3C), 27.5 (3C), 26.2 (3C), 18.4, 13.8 (3C), 10.5 (3C), -4.2 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{32}H_{54}FN_2O_5SSiSn$ 745.2529; found 745.2492.

O-(tert-Butvldimethvlsilvl)-N-[2-(tributvlstannvl)phenethvl]hydroxylamine (3a). To a cooled (0 °C) stirred solution of S11a (3.21 g, 4.42 mmol) in DMF (25 mL) were added 2-mercaptoethanol (0.930 mL, 13.3 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (2.00 mL, 13.4 mmol). After being stirred at room temperature for 3 h, the mixture was quenched with H₂O (30 mL) and extracted with EtOAc/hexane (1:4, 50 mL \times 3). The combined extracts were washed with saturated brine (50 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 1.83 g (77%) of 3a as a yellow oil: TLC R_f 0.66 (EtOAc/ hexane, 1:8); IR (neat) 2956, 2928, 1464, 1252, 864, 837, 780, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, 1H, J = 7.2 Hz), 7.26– 7.22 (m, 2H), 7.16 (m, 1H), 5.10 (br s, 1H), 3.10 (t, 2H, J = 8.0 Hz), 2.82 (t, 2H, J = 8.0 Hz), 1.53–1.42 (m, 6H), 1.37–1.28 (m, 6H), 1.16-0.99 (m, 6H), 0.93 (s, 9H), 0.88 (t, 9H, J = 7.2 Hz), 0.12 (s, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 146.4, 142.5, 137.1, 128.5 (2C), 125.7, 56.2, 36.8, 29.3 (3C), 27.6 (3C), 26.5 (3C), 18.2, 13.8 (3C), 10.6 (3C), -5.2 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₆H₅₂NOSiSn 542.2840; found 542.2855.

O-(tert-Butyldimethylsilyl)-N-[2-methyl-6-(tributyl-stannyl)phenethyl]hydroxylamine (3b). As descried for the preparation of 3a, compound S11b (120 mg, 0.162 mmol) was converted to 101 mg (quant.) of 3b (a mixture of rotamer). Compound 3b was obtained as a yellow oil: TLC Rf 0.65 (EtOAc/hexane, 1:10); IR (neat) 2957, 2928, 1463, 1253, 838, 759, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, 1H, J = 6.0, 2.8 Hz), 7.17–7.09 (m, 2H), 5.09 (br s, 1H), $3.09 (t, 2H \times 1/6, J = 7.2 Hz), 3.00-2.96 (m, 2H \times 5/6), 2.87-2.83$ (m, 2H), 2.36 (s, 3H × 5/6), 2.33 (s, 3H × 1/6), 1.60–1.44 (m, 6H), $1.40-1.29 (m, 6H), 1.16-0.99 (m, 6H), 0.94 (s, 9H \times 5/6), 0.93 (s, 9H \times 5/6), 0.94 ($ 9H × 1/6), 0.89 (t, 9H, J = 7.2 Hz), 0.13 (s, 6H × 5/6), 0.11 (s, 6H \times 1/6); $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃) for major rotamer δ 144.6, 143.1, 136.3, 134.9, 130.9, 126.1, 55.1, 35.4, 29.3 (3C), 27.6 (3C), 26.5 (3C), 20.3, 18.2, 13.8 (3C), 10.8 (3C), -5.2 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₇H₅₄NOSiSn 556.2997; found 556.2997.

O-(tert-Butyldimethylsilyl)-N-[4-methyl-2-(tributyl-stannyl)phenethyl]hydroxylamine (3c). As described for the preparation of 3a, compound S11c (575 mg, 0.778 mmol) was converted to 355 mg (82%) of 3c. Compound 3c was obtained as a yellow oil: TLC $R_f 0.59$ (EtOAc/hexane, 1:10); IR (neat) 2956, 2928, 1463, 1250, 837, 779 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, 1H, J = 1.4 Hz), 7.16 (d, 1H, J = 8.0 Hz), 7.09 (dd, 1H, J = 8.0, 1.4 Hz), 5.11 (br s, 1H), 3.10 (t, 2H, J = 7.2 Hz), 2.79 (t, 2H, J = 7.2 Hz), 2.32 (s, 3H), 1.62-1.43 (m, 6H), 1.39-1.30 (m, 6H), 1.17-0.99 (m, 6H), 0.94 (s, 9H), 0.90 (t, 9H, J = 7.2 Hz), 0.13 (s, 6H); ${}^{13}C{}^{1}H$ NMR (100

MHz, CDCl₃) δ 143.3, 142.2, 137.8, 134.9, 129.3, 128.3, 56.3, 36.2, 29.3 (3C), 27.6 (3C), 26.5 (3C), 21.2, 18.2, 13.8 (3C), 10.5 (3C), -5.2 (2C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₇H₅₄NOSiSn 556.2997; found 556.2978.

O-(tert-Butyldimethylsilyl)-N-[4-methoxy-2-(tributyl-stannyl)phenethyl]hydroxylamine (**3d**). As described for the preparation of **3a**, compound **S11d** (1.74 g, 2.30 mmol) was converted to 1.05 g (80%) of **3d**. Compound **3d** was obtained as a yellow oil: TLC R_f 0.67 (EtOAc/hexane, 1:10); IR (neat) 2956, 2928, 1590, 1464, 1385, 1241, 1044, 837, 759, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, 1H, *J* = 8.8 Hz), 6.97 (d, 1H, *J* = 2.8 Hz), 6.81 (dd, 1H, *J* = 8.8, 2.8 Hz), 5.10 (br s, 1H), 3.80 (s, 3H), 3.07 (t, 2H, *J* = 7.2 Hz), 2.78 (t, 2H, *J* = 7.2 Hz), 1.63–1.44 (m, 6H), 1.39–1.30 (m, 6H), 1.18– 1.01 (m, 6H), 0.94 (s, 9H), 0.90 (t, 9H, *J* = 7.2 Hz), 0.13 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.3, 143.9, 138.3, 129.2, 122.6, 113.3, 56.3, 55.2, 35.7, 29.3 (3C), 27.6 (3C), 26.5 (3C), 18.2, 13.8 (3C), 10.6 (3C), -5.2 (2C); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₇H₅₄NO₂SiSn 572.2946; found 572.2930.

O-(*tert-Butyldimethylsilyl*)-*N*-[4-chloro-2-(*tributyl-stannyl*)phenethyl]hydroxylamine (**3e**). As described for the preparation of **3a**, compound **S11e** (317 mg, 0.417 mmol) was converted to 177 mg (74%) of **3e**. Compound **3e** was obtained as a yellow oil: TLC R_f 0.67 (EtOAc/hexane, 1:10); IR (neat) 2958, 2929, 1463, 1384, 1216, 839, 758, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, 1H, *J* = 2.4 Hz), 7.22 (dd, 1H, *J* = 8.4, 2.4 Hz), 7.17 (d, 1H, *J* = 8.4 Hz), 5.08 (br s, 1H), 3.08 (t, 2H, *J* = 7.2 Hz), 2.80 (t, 2H, *J* = 7.2 Hz), 1.59–1.42 (m, 6H), 1.39–1.28 (m, 6H), 1.18–1.03 (m, 6H), 0.93 (s, 9H), 0.90 (t, 9H, *J* = 7.6 Hz), 0.12 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.1, 144.6, 136.3, 132.0, 129.8, 128.4, 56.0, 36.1, 29.2 (3C), 27.5 (3C), 26.4 (3C), 18.2, 13.8 (3C), 10.6 (3C), -5.2 (2C); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₆H₅₁ClNOSiSn 576.2450; found 576.2439.

O-(tert-Butyldimethylsilyl)-N-[4-fluoro-2-(tributyl-stannyl)phenethyl]hydroxylamine (**3f**). As described for the preparation of **3a**, compound **S11f** (310 mg, 0.417 mmol) was converted to 165 mg (71%) of **3f**. Compound **3f** was obtained as a yellow oil: TLC R_f 0.62 (EtOAc/hexane, 1:10); IR (neat) 2958, 2929, 1577, 1473, 1384, 1216, 872, 838, 759, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, 1H, *J* = 8.4, 5.2 Hz), 7.08 (dd, 1H, *J* = 8.4, 2.8 Hz), 6.93 (td, 1H, *J* = 8.4, 2.8 Hz), 5.08 (br s, 1H), 3.08 (t, 2H, *J* = 7.2 Hz), 2.80 (t, 2H, *J* = 7.2 Hz), 1.61–1.42 (m, 6H), 1.38–1.29 (m, 6H), 1.18–1.01 (m, 6H), 0.93 (s, 9H), 0.89 (t, 9H, *J* = 7.2 Hz), 0.12 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.2 (d, *J* = 246.2 Hz), 145.1 (d, *J* = 2.0 Hz), 141.8 (d, *J* = 2.9 Hz), 129.7 (d, *J* = 6.7 Hz), 122.9 (d, *J* = 17.2 Hz), 115.1 (d, *J* = 21.1 Hz), 56.2, 35.9, 29.2 (3C), 27.5 (3C), 26.4 (3C), 18.2, 13.8 (3C), 10.6 (3C), -5.2 (2C); HRMS (ESI-TOF) *m*/ *z*: [M + H]⁺ calcd for C₂₆H₅₁FNOSiSn 560.2746; found 560.2751.

N-Benzyl-O-(tert-butyldimethylsilyl)-N-[2-(tributyl-stannyl)phenethyl]hydroxylamine (4a). To a stirred solution of 3a (873 mg, 1.62 mmol) in DMF (8 mL) were added BnBr (0.290 mL, 2.42 mmol) and N,N-diisopropylethylamine (0.560 mL, 3.22 mmol). After being stirred at 60 °C for 34 h, the mixture was quenched with H₂O (10 mL) and extracted with EtOAc/hexane (1:4, 20 mL \times 4). The combined extracts were washed with saturated brine (20 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (MeOH/CH2Cl2/hexane, 1:5:200) to provide 775 mg (76%) of 4a as a yellow oil. A small amount of 4a was further purified by preparative TLC (EtOAc/ hexane, 1:50): TLC Rf 0.82 (MeOH/CH2Cl2/hexane, 1:5:160), 0.62 (EtOAc/hexane, 1:50); IR (neat) 2957, 2928, 2855, 1463, 1254, 1217, 890, 837, 759, 698 cm $^{-1};$ $^1\!\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 5H), 7.24-7.11 (m, 4H), 4.02 (br, 1H), 3.76 (br, 1H), 2.83 (br, 4H), 1.50-1.36 (m, 6H), 1.34-1.25 (m, 6H), 0.94 (s, 9H), 1.09–0.92 (m, 6H), 0.87 (t, 9H, J = 6.8 Hz), 0.08 (br, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.1, 142.3, 137.3, 136.9, 129.9 (2C), 128.7, 128.5, 128.4 (2C), 127.5, 125.5, 65.7, 62.1, 36.9, 29.2 (3C), 27.5 (3C), 26.4 (3C), 18.0, 13.9 (3C), 10.4 (3C), -4.4 (br, 2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{33}H_{58}NOSiSn$ 632.3310; found 632.3297.

pubs.acs.org/joc

N-Benzyl-O-(tert-butyldimethylsilyl)-N-[2-methyl-6-(tributylstannyl)phenethyl]hydroxylamine (4b). As described for the preparation of 4a, compound 3b (48.8 mg, 88.0 µmol) was converted to 47.8 mg (84%) of 4b (a mixture of rotamer). Compound 4b was obtained as a yellow oil: TLC Rf 0.40 (EtOAc/hexane, 1:50); IR (neat) 2956, 2928, 2855, 1462, 1254, 891, 836, 759, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.22 (m, 5H), 7.18 (dd, 1H, J = 5.6, 2.8 Hz), 7.10-7.02 (m, 2H), 4.10 (br, 1H), 3.66 (br, 1H), 3.07 (br, 1H), 2.78 (br, 3H), 2.28 (s, $3H \times 5/6$), 2.26 (s, $3H \times 1/6$), 1.52–1.35 (m, 6H), 1.32–1.23 (m, 6H), 0.97 (s, 9H), 0.88 (t, 9H, J = 7.6 Hz), 0.95–0.86 (m, 6H), 0.22 (br, 3H), 0.12 (br, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) for major rotamer δ 145.0, 143.1, 137.3, 136.4, 134.8, 130.9, 129.7 (2C), 128.4 (2C), 127.5, 126.0, 66.3, 60.1, 35.5, 29.3 (3C), 27.5 (3C), 26.4 (3C), 20.3, 18.0, 13.9 (3C), 10.7 (3C), -3.8 (br), -4.5 (br); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₃₄H₆₀NOSiSn 646.3466; found 646.3435.

N-Benzyl-O-(tert-butyldimethylsilyl)-N-[4-methyl-2-(tributylstannyl)phenethyl]hydroxylamine (4c). As described for the preparation of 4a, compound 3c (224 mg, 0.404 mmol) was converted to 262 mg (quant.) of 4c (a mixture of rotamer). Compound 4c was obtained as a yellow oil: TLC R_c 0.37 (EtOAc/ hexane, 1:50); IR (neat) 2956, 2928, 2855, 1462, 1384, 1253, 890, 836, 779, 759, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.24 (m, 5H), 7.14 (br s, 1H), 7.08-7.03 (m, 2H), 4.01 (br, 1H), 3.76 (br, 1H), 2.81 (br, 4H), 2.31 (s, $3H \times 1/6$), 2.28 (s, $3H \times 5/6$), 1.55– 1.41 (m, 6H), 1.37-1.26 (m, 6H), 1.16-0.94 (m, 6H), 0.94 (s, 9H), 0.88 (t, 9H, I = 7.6 Hz), 0.10 (br, 6H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, $CDCl_3$) for major rotamer δ 144.0, 142.1, 137.5, 137.3, 134.7, 129.9 (2C), 129.3, 128.5, 128.3 (2C), 127.5, 65.7, 62.3, 36.4, 29.3 (3C), 27.5 (3C), 26.4 (3C), 21.2, 18.0, 13.9 (3C), 10.4 (3C), -4.3 (br, 2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{34}H_{60}NOSiSn$ 646.3466; found 646.3481.

N-BenzvI-O-(tert-butvldimethvlsilvl)-N-[4-methoxv-2-(tributylstannyl)phenethyl]-hydroxylamine (4d). As described for the preparation of 4a, compound 3d (466 mg, 0.816 mmol) was converted to 621 mg (quant.) of 4d. Compound 4d was obtained as a yellow oil: TLC R_f 0.71 (MeOH/CH₂Cl₂/hexane, 1:5:320); IR (neat) 2956, 2929, 2855, 1590, 1473, 1230, 1044, 909, 891, 837, 780, 734, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.28 (m, 5H), 7.13 (d, 1H, J = 8.8 Hz), 6.95 (d, 1H, J = 2.4 Hz), 6.80 (dd, 1H, J = 8.8, Jz)2.4 Hz), 4.06 (br, 1H), 3.80 (br, 1H), 3.80 (s, 3H), 2.85 (br, 4H), 1.61-1.42 (m, 6H), 1.39-1.30 (m, 6H), 1.16-1.02 (m, 6H), 0.99 (s, 9H), 0.92 (t, 9H, J = 8.0 Hz), 0.13 (br, 6H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 157.2, 143.6, 139.0, 137.3, 129.9 (2C), 129.4, 128.3 (2C), 127.5, 122.3, 113.3, 65.7, 62.4, 55.2, 35.9, 29.3 (3C), 27.5 (3C), 26.4 (3C), 18.0, 13.9 (3C), 10.5 (3C), -4.2 (br, 2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{34}H_{60}NO_2SiSn$ 662.3415; found 662.3446.

N-*B*enzyl-O-(*tert*-*butyldimethylsilyl*)-*N*-[4-*chloro*-2-(*tributylstannyl*)*phenethyl*]*hydroxylamine* (*4e*). As described for the preparation of **4a**, compound **3e** (103 mg, 0.179 mmol) was converted to 106 mg (89%) of **4e**. Compound **4e** was obtained as a yellow oil: TLC *R*_f 0.43 (EtOAc/hexane, 1:50); IR (neat) 3020, 2958, 2929, 1463, 1384, 1216, 891, 837, 758, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.25 (m, 6H), 7.16 (dd, 1H, *J* = 8.0, 2.4 Hz), 7.07 (d, 1H, *J* = 8.0 Hz), 4.02 (br, 1H), 3.74 (br, 1H), 2.77 (br, 4H), 1.53–1.39 (m, 6H), 1.35–1.25 (m, 6H), 1.12–0.98 (m, 6H), 0.94 (s, 9H), 0.88 (t, 9H, *J* = 7.2 Hz), 0.09 (br, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.3, 144.9, 137.1, 136.0, 131.7, 129.9, 129.8 (2C), 128.4 (2C), 128.3, 127.6, 65.7, 61.9, 36.2, 29.2 (3C), 27.4 (3C), 26.3 (3C), 18.0, 13.8 (3C), 10.5 (3C), -4.4 (br, 2C); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₃₃H₅₇CINOSiSn 666.2920; found 666.2900.

N-Benzyl-O-(tert-butyldimethylsilyl)-N-[4-fluoro-2-(tributylstannyl)phenethyl]hydroxylamine (4f). As described for the preparation of 4a, compound 3f (95.7 mg, 0.171 mmol) was converted to 111 mg (100%) of 4f. Compound 4f was obtained as a yellow oil: TLC R_f 0.46 (EtOAc/hexane, 1:50); IR (neat) 2957, 2928, 2855, 1577, 1473, 1361, 1216, 877, 837, 759 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.25 (m, SH), 7.11 (dd, 1H, *J* = 8.4, 0.9 Hz),

7.02 (dd, 1H, *J* = 8.4, 2.8 Hz), 6.88 (td, 1H, *J* = 8.4, 2.8 Hz), 4.04 (br, 1H), 3.74 (br, 1H), 2.80 (br, 4H), 1.55–1.36 (m, 6H), 1.34–1.25 (m, 6H), 1.13–0.98 (m, 6H), 0.94 (s, 9H), 0.88 (t, 9H, *J* = 7.2 Hz), 0.10 (br, 6H); $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 161.0 (d, *J* = 236.7 Hz), 144.9 (d, *J* = 1.9 Hz), 142.5 (d, *J* = 2.8 Hz), 137.2, 129.9 (2C), 129.8, 128.4 (2C), 127.6, 122.5 (d, *J* = 17.3 Hz), 115.0 (d, *J* = 21.1 Hz), 65.7, 62.1, 36.1, 29.2 (3C), 27.5 (3C), 26.3 (3C), 18.0, 13.8 (3C), 10.5 (3C), -4.2 (br, 2C); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₃₃H₅₇FNOSiSn 650.3215; found 650.3245.

N-(tert-Butyldimethylsilyloxy)-N-[2-(1-iodonaphthalen-2-yl)ethyl]-2-nitrobenzenesulfonamide (**S12**).

To a cooled (0 °C) stirred solution of S6e (1.11 g, 3.71 mmol), S10 (1.12 g, 3.37 mmol), and PPh₃ (1.31 g, 5.01 mmol) in THF/toluene (1:3, 11 mL) was slowly added diethyl azodicarboxylate (2.2 M solution in toluene, 2.30 mL, 5.06 mmol). After being stirred at 0 °C for 30 min and at room temperature for 4.5 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH2Cl2/hexane, 1:2) to provide 1.80 g (87%) of S12 as yellow crystals: mp 150-152 °C; TLC R_f 0.42 (EtOAc/hexane, 1:2); IR (neat) 2954, 2930, 1547, 1383, 1179, 827, 772 cm⁻¹; ¹H NMR (400 MHz, CDCl₂) δ 8.20 (d, 1H, J =8.0 Hz), 8.12 (d, 1H, J = 8.0 Hz), 7.78-7.75 (m, 3H), 7.70 (t, 1H, J = 8.0 Hz), 7.56 (t, 2H, J = 8.4 Hz), 7.47 (t, 2H, J = 8.4 Hz), 3.54 (t, 2H, J = 6.8 Hz), 3.38 (t, 2H, J = 6.8 Hz), 0.97 (s, 9H), 0.19 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.5, 135.2, 134.9, 133.3, 133.1, 132.9, 130.9, 129.2, 128.4, 128.04, 127.96 (2C), 126.40, 126.37, 123.7, 105.9, 55.2, 40.4, 26.2 (3C), 18.3, -4.3 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{24}H_{30}IN_2O_5SSi$ 613.0689; found 613.0681.

O-(tert-Butyldimethylsilyl)-N-[2-(1-iodonaphthalen-2-yl)ethyl]hydroxylamine (**S13**).

To a cooled (0 °C) stirred solution of S12 (1.60 g, 2.61 mmol) in DMF (9 mL) were added 2-mercaptoethanol (0.550 mL, 7.88 mmol) and DBU (1.17 mL, 7.84 mmol). After being stirred at room temperature for 3.5 h, the mixture was quenched with H_2O (20 mL) and extracted with EtOAc/hexane (1:4, 50 mL \times 6). The combined extracts were washed with H_2O (100 mL \times 2) and saturated brine (100 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/ hexane, 1:60) to provide 958 mg (86%) of S13 as a yellow oil: TLC R_f 0.50 (EtOAc/hexane, 1:10); IR (neat) 3255, 3051, 2954, 2928, 2855, 1620, 1471, 1252, 1048, 881, 838, 780, 747 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (br d, 1H, J = 8.4 Hz), 7.75 (br d, 2H, J = 8.4 Hz), 7.56 (td, 1H, J = 8.4, 1.6 Hz), 7.48 (td, 1H, J = 8.4, 1.6 Hz), 7.39 (d, 1H, J = 8.4 Hz), 5.11 (br s, 1H), 3.29 (t, 2H, J = 6.8 Hz), 3.21 (t, 2H, J = 6.8 Hz), 0.94 (s, 9H), 0.13 (s, 6H); $^{13}C{^1H}$ NMR (100 MHz, CDCl₃) δ 141.9, 135.3, 132.94, 132.88, 128.8, 128.3, 127.93, 127.89, 126.2, 105.7, 54.2, 40.4, 26.5 (3C), 18.2, -5.2 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₈H₂₇INOSi 428.0907; found 428.0893

N-Benzyl-O-(tert-butyldimethylsilyl)-N-[2-(1-iodonaphthalen-2yl)ethyl]hydroxylamine (S14).

To a stirred solution of S13 (884 mg, 2.07 mmol) in DMF (20 mL) were added BnBr (0.380 mL, 3.18 mmol) and N.N-diisopropylethylamine (0.720 mL, 4.13 mmol). After being stirred at 60 °C for 38 h, the mixture was quenched with H₂O (30 mL) and extracted with EtOAc/hexane (1:4, 75 mL \times 4). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:40) to provide 1.12 g (quant.) of S14 as white crystals: mp 65-67 °C; TLC Rf 0.31 (EtOAc/hexane, 1:50); IR (neat) 3030, 2954, 2855, 1461, 1385, 1253, 884, 836, 780, 750, 698 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 8.21 (br d, 1H, J = 8.4 Hz), 7.72 (t, 2H, J = 8.8 Hz), 7.55 (td, 1H, J = 8.0, 1.2 Hz), 7.46 (td, 1H, J = 8.0, 1.2 Hz), 7.39 (d, 2H, J = 6.8 Hz), 7.36–7.27 (m, 4H), 4.00 (br, 2H), 3.31 (br, 2H), 2.99 (br, 2H), 0.96 (s, 9H), 0.09 (br, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.6, 137.4, 135.2, 132.9, 132.8, 130.1 (2C), 128.9, 128.34 (2C), 128.24, 127.8, 127.7, 127.5, 126.1, 105.6, 64.6, 59.3, 39.5, 26.4 (3C), 18.0, -4.6 (br, 2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₅H₃₃INOSi 518.1376; found 518.1401.

O-(tert-Butyldimethylsilyl)-N-(4-nitrobenzyl)-N-[2-(tributylstannyl)phenethyl]hydroxylamine (**S15**).

To a stirred solution of $3a\ (273\ mg,\ 0.505\ mmol)$ in DMF (3 mL) were added 4-nitrobenzyl bromide (163 mg, 0.756 mmol) and N,Ndiisopropylethylamine (0.175 mL, 1.00 mmol). The mixture was stirred at 60 °C for 16.5 h. and 4-nitrobenzyl bromide (122 mg, 0.566 mmol) and N,N-diisopropylethylamine (0.130 mL, 0.746 mmol) were added. After being stirred at 60 °C for 13.5 h, the mixture was quenched with $H_2O(5 \text{ mL})$ and extracted with EtOAc/hexane (1:4, 5) $mL \times 6$). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:50) to provide 280 mg (82%) of S15 as a yellow oil. A small amount of S15 was further purified by preparative TLC (EtOAc/hexane, 1:50): TLC R_f 0.62 (EtOAc/ hexane, 1:50); IR (neat) 2957, 2928, 2856, 1607, 1525, 1464, 1347, 1255, 893, 851, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, 2H, J = 8.4 Hz), 7.50 (d, 2H, J = 8.4 Hz), 7.36 (d, 1H, J = 7.6 Hz), 7.27-7.23 (m, 1H), 7.18-7.13 (m, 2H), 3.98 (br, 2H), 2.85 (br, 4H), 1.56-1.38 (m, 6H), 1.36-1.26 (m, 6H), 1.12-0.99 (m, 6H), 0.94 (s, 9H), 0.88 (t, 9H, J = 7.2 Hz), 0.07 (br, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 147.5, 146.5, 144.8, 142.1, 137.0, 130.7 (2C), 128.7, 128.6, 125.8, 123.6 (2C), 64.7, 62.6, 36.9, 29.3 (3C), 27.5 (3C), 26.2 (3C), 17.9, 13.8 (3C), 10.5 (3C), -4.4 (br, 2C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₃H₅₇N₂O₃SiSn 677.3160; found 677.3188. N-AllyI-O-(tert-butyldimethylsilyl)-N-[2-(tributyl-stannyl)-

phenethyl]hydroxylamine (**S16**).

S16

To a stirred solution of **3a** (264 mg, 0.489 mmol) in DMF (2 mL) were added 3-bromopropene (54 μ L, 0.64 mmol) and *N*,*N*diisopropylethylamine (0.130 mL, 0.746 mmol). After being stirred at 60 °C for 39.5 h, the mixture was quenched with H₂O (8 mL) and extracted with EtOAc/hexane (1:4, 10 mL × 8). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:50) to provide 138 mg (49%) of **S16** as a yellow oil. A small amount of **S16** was further purified by preparative TLC (EtOAc/hexane, 1:50): TLC R_f 0.58 (EtOAc/hexane, 1:50); IR (neat) 3053, 2957, 2928, 2856, 1723, 1464, 1253, 1217, 992, 889, 837, 759, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, 1H, *J* = 6.8, 0.8 Hz), 7.29–7.22 (m, 2H), 7.16 (td, 1H, *J* = 6.8, 2.0 Hz), 5.93 (m, 1H), 5.18 (br d, 1H, *J* = 14.8 Hz), 5.13 (br d, 1H, *J* = 8.0 Hz), 3.42 (br, 2H), 2.87 (br, 4H), 1.62–1.43 (m, 6H), 1.39–1.30 (m, 6H), 1.18–1.01 (m, 6H), 0.95 (s, 9H), 0.90 (t, 9H, *J* = 7.2 Hz), 0.17 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.2, 142.2, 136.9, 133.8, 128.8, 128.5, 125.6, 118.5, 64.3, 62.0, 37.2, 29.3 (3C), 27.6 (3C), 26.3 (3C), 18.0, 13.8 (3C), 10.5 (3C), -4.3 (br, 2C); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₉H₅₆NOSiSn 582.3153; found 582.3167.

O-(tert-Butyldimethylsilyl)-N-(3-methylbut-2-en-1-yl)-N-[2-(tributylstannyl)phenethyl]-hydroxylamine (**S17**).

To a stirred solution of 3a (172 mg, 0.319 mmol) in DMF (2 mL) were added 1-bromo-3-methyl-2-butene (57 µL, 0.49 mmol) and N,N-diisopropylethylamine (0.110 mL, 0.631 mmol). After being stirred at 60 °C for 42 h, the mixture was quenched with H₂O (2 mL) and extracted with EtOAc/hexane (1:4, 5 mL \times 4). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/ hexane, 1:50) to provide 65.3 mg (34%) of S17 as a yellow oil. A small amount of S17 was further purified by preparative TLC (EtOAc/hexane, 1:50): TLC R_f 0.37 (EtOAc/hexane, 1:50); IR (neat) 2958, 2929, 1463, 1384, 1256, 1216, 893, 836, 759 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, 1H, J = 6.8 Hz), 7.26–7.22 (m, 2H), 7.15 (td, 1H, J = 6.8, 2.0 Hz), 5.26 (t, 1H, J = 7.2 Hz), 3.36 (br, 2H), 2.79 (br, 4H), 1.71 (s, 3H), 1.62 (s, 3H), 1.58-1.43 (m, 6H), 1.38-1.29 (m, 6H), 1.17-1.00 (m, 6H), 0.94 (s, 9H), 0.89 (t, 9H, J = 7.6 Hz), 0.15 (s, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 147.4, 142.3, 136.9, 135.5, 128.8, 128.5, 125.5, 120.0, 62.1, 59.1, 37.3, 29.3 (3C), 27.6 (3C), 26.4 (3C), 26.1, 18.4, 18.0, 13.9 (3C), 10.5 (3C), -4.2 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₃₁H₆₀NOSiSn 610.3466; found 610.3447.

1-(Benzyloxy)indoline (6a). To a stirred solution of 4a (192 mg, 0.305 mmol) in CH2Cl2 (3 mL) was added PhI(OH)OTs (Koser reagent, 180 mg, 0.460 mmol). After being stirred at room temperature in the dark for 15 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (MeOH/CH₂Cl₂, 1:10) to provide 5a, containing a small amount of tin-derived impurities, as a yellow oil. To remove impurities, the obtained oil was treated with hexane (50 mL), sonicated for 30 min, and filtered through a filter paper to afford white crystals, which were recrystallized from Et₂O (50 mL), sonicated for 30 min, and filtered through a filter paper to give 131 mg (60%) of pure 5a as white crystals: mp 132-134 °C (decomposition); TLC R_f 0.13 (MeOH/CH₂Cl₂, 1:10); IR (neat) 2954, 2978, 1471, 1194, 1131, 1044, 1015, 887, 836, 753, 691, 573 ; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, 1H, J = 8.4 Hz), 7.68 cm^{-1} (dd, 2H, J = 8.4, 0.9 Hz), 7.57-7.55 (m, 2H), 7.49-7.44 (m, 2H), 7.34–7.25 (m, 8H), 7.17 (t, 1H, J = 7.6 Hz), 7.03 (d, 2H, J = 8.0 Hz), 3.86 (br, 2H), 3.08 (t, 2H, J = 7.6 Hz), 2.78 (br, 2H), 2.30 (s, 3H), 0.88 (s, 9H), -0.03 (s, 6H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 143.7, 142.9, 139.4, 138.0, 136.7, 134.2 (2C), 133.1, 131.9 (2C), 131.7, 131.5, 130.0 (2C), 129.9, 128.7 (2C), 128.6 (2C), 127.8, 126.1 (2C), 120.3, 115.0, 64.4, 59.3, 35.4, 26.3 (3C), 21.4, 17.9, -4.7 (br, 2C); HRMS (ESI-TOF) calcd for m/z: [M-OTs]⁺ C₂₇H₃₅INOSi 544.1533; found 544.1545.

To a stirred solution of **5a** (44.7 mg, 63.3 μ mol) in DMF (1 mL) was added TBAF (1.0 M solution in THF, 95 μ L, 95 μ mol). After being stirred at 60 °C for 2 h, the mixture was quenched with saturated aqueous NH₄Cl (2 mL), diluted with H₂O (6 mL), and extracted with EtOAc/hexane (1:4, 8 mL × 6). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/hexane, 1:10) to provide 6.9 mg (48%) of **6a** as a brown oil: TLC R_f 0.57 (EtOAc/hexane, 1:10); IR (neat) 3030, 2954, 2919, 2859, 1608, 1476, 1365,

1240, 1016, 746, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, 2H, *J* = 6.8 Hz), 7.41–7.32 (m, 3H), 7.12 (d, 2H, *J* = 8.0 Hz), 6.91 (t, 2H, *J* = 8.0 Hz), 5.02 (s, 2H), 3.48 (t, 2H, *J* = 8.0 Hz), 2.88 (t, 2H, *J* = 8.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.0, 138.0, 129.2 (2C), 128.6 (2C), 128.2, 128.1, 127.4, 124.7, 122.8, 113.6, 77.1, 58.1, 27.9; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₅H₁₆NO 226.1232; found 226.1226.

1-(Benzyloxy)-4-methylindoline (**6b**). As described for the preparation of **5a**, compound **4b** (47.8 mg, 74.1 μ mol) was converted to 37.5 mg (69%) of **5b**. Since compound **5b** was unstable and difficult to store even in the freezer, the obtained **5b** was immediately used in the next step.

As described for the preparation of **6a**, compound **5b** (25.5 mg, 34.9 μ mol) was converted to 2.4 mg (29%) of **6b**. Compound **6b** was obtained as a yellow oil: TLC R_f 0.43 (EtOAc/hexane, 1:10); IR (neat) 3011, 2924, 2854, 1599, 1455, 1379, 1216, 1025, 757, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, 2H, *J* = 7.6 Hz), 7.40–7.32 (m, 3H), 7.04 (t, 1H, *J* = 8.0 Hz), 6.74 (dd, 2H, *J* = 8.0, 2.4 Hz), 5.00 (s, 2H), 3.47 (t, 2H, *J* = 7.6 Hz), 2.80 (t, 2H, *J* = 7.6 Hz), 2.21 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.7, 138.0, 134.1, 129.2 (2C), 128.5 (2C), 128.2, 127.5, 126.8, 123.8, 111.0, 77.2, 57.8, 26.6, 18.4; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₁₆H₁₈NO 240.1388; found 240.1395.

1-(Benzyloxy)-6-methylindoline (6c). As described for the preparation of 5a, compound 4c (189 mg, 0.293 mmol) was converted to 158 mg (74%) of 5c. Since compound 5c was unstable and difficult to store even in the freezer, the obtained 5c was immediately used in the next step.

As described for the preparation of **6a**, compound **5c** (31.3 mg, 42.9 μ mol) was converted to 6.4 mg (62%) of **6c**. Compound **6c** was obtained as a yellow oil: TLC R_f 0.48 (EtOAc/hexane, 1:10); IR (neat) 3012, 2925, 2855, 1591, 1454, 1216, 1024, 757, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, 2H, *J* = 6.8 Hz), 7.41–7.32 (m, 3H), 6.99 (d, 1H, *J* = 7.6 Hz), 6.72 (d, 1H, *J* = 7.6 Hz), 6.72 (br s, 1H), 5.02 (s, 2H), 3.45 (t, 2H, *J* = 7.6 Hz), 2.82 (t, 2H, *J* = 7.6 Hz), 2.30 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.1, 138.0, 137.3, 129.1 (2C), 128.5 (2C), 128.2, 125.2, 124.4, 123.6, 114.2, 77.2, 58.4, 27.6, 21.6; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₁₆H₁₈NO 240.1388; found 240.1387.

1-(Benzyloxy)-6-methoxyindoline (6d). As described for the preparation of 5a, compound 4d (301 mg, 0.455 mmol) was converted to 210 mg (62%) of 5d. Since compound 5d was unstable and difficult to store even in the freezer, the obtained 5d was immediately used in the next step.

As described for the preparation of **6a**, compound **5d** (27.3 mg, 36.6 μ mol) was converted to 2.5 mg (27%) of **6d**. Compound **6d** was obtained as a yellow oil: TLC R_f 0.40 (EtOAc/hexane, 1:10); IR (neat) 2918, 2850, 1595, 1493, 1384, 1283, 1208, 1027, 754, 613 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, 2H, *J* = 7.6 Hz), 7.41–7.34 (m, 3H), 6.98 (d, 1H, *J* = 8.4 Hz), 6.45 (dd, 1H, *J* = 8.4, 2.0 Hz), 6.36 (br s, 1H), 4.99 (s, 2H), 3.71 (s, 3H), 3.48 (t, 2H, *J* = 8.0 Hz), 2.81 (t, 2H, *J* = 8.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.9, 154.2, 137.9, 129.3 (2C), 128.6 (2C), 128.2, 125.0, 120.0, 108.7, 99.4, 77.2, 58.6, 55.6, 27.1; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₁₆H₁₈NO₂ 256.1338, found 256.1335.

1-(Benzyloxy)-6-chloroindoline (6e). As described for the preparation of 5a, compound 4e (69.8 mg, 0.104 mmol) was converted to 19.2 mg (24%) of 5e. Since compound 5e was unstable and difficult to store even in the freezer, the obtained 5e was immediately used in the next step.

As described for the preparation of **6a**, compound **5e** (15.8 mg, 21.1 μ mol) was converted to 2.8 mg (51%) of **6e**. Compound **6e** was obtained as a yellow oil: TLC R_f 0.50 (EtOAc/hexane, 1:10); IR (neat) 3031, 2958, 2858, 1725, 1603, 1476, 1216, 1023, 884, 756, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, 2H, *J* = 7.2 Hz), 7.41–7.33 (m, 3H), 7.00 (d, 1H, *J* = 7.6 Hz), 6.85 (d, 1H, *J* = 7.6 Hz), 6.82 (br s, 1H), 4.98 (s, 2H), 3.47 (t, 2H, *J* = 7.6 Hz), 2.82 (t, 2H, *J* = 7.6 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.1, 137.6, 133.1, 129.2 (2C), 128.6 (2C), 128.4, 126.5, 125.5, 122.6, 113.7, 77.2, 58.5, 27.4;

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₅H₁₅ClNO 260.0842; found 260.0831.

1-(Benzyloxy)-6-fluoroindoline (6f). As described for the preparation of 5a, compound 4f (60.5 mg, 93.3 μ mol) was converted to 28.7 mg (42%) of 5f. Since compound 5f was unstable and difficult to store even in the freezer, the obtained 5f was immediately used in the next step.

As described for the preparation of 6a, compound 5f (23.2 mg, 31.6 μ mol) was converted to 3.3 mg (43%) of 6f. Compound 6f was obtained as a yellow oil: TLC R_f 0.47 (EtOAc/hexane, 1:10); IR (neat) 3017, 2923, 2858, 1615, 1488, 1216, 1022, 887, 756, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, 2H, J = 8.0, 1.2 Hz), 7.41– 7.35 (m, 3H), 7.00 (dd, 1H, J = 8.0, 5.2 Hz), 6.60–6.52 (m, 2H), 4.98 (s, 2H), 3.49 (t, 2H, I = 7.6 Hz), 2.82 (t, 2H, I = 7.6 Hz); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 164.2, 154.5 (d, J = 15.3 Hz), 137.6, 129.2 (2C), 128.6 (2C), 128.4, 125.2 (d, J = 9.5 Hz), 123.1, 109.0 (d, J = 23.0 Hz), 101.2 (d, J = 26.8 Hz), 77.2, 58.7, 27.2; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₅H₁₅FNO 244.1138; found 244.1145.

1-(4-Nitrobenzyloxy)indoline (6h). As described for the preparation of 5a, compound S15 (185 mg, 0.274 mmol) was converted to 185 mg (89%) of 5h. Since compound 5h was unstable and difficult to store even in the freezer, the obtained 5h was immediately used in the next step.

As described for the preparation of 6a, compound 5h (23.8 mg, 31.3 μ mol) was converted to 1.2 mg (14%) of **6h**. Compound **6h** was obtained as a yellow oil: TLC $R_f 0.46$ (EtOAc/hexane, 1:6); IR (neat) 2926, 2855, 1523, 1347, 1216, 853, 758, 667 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 8.24 (d, 2H, J = 8.8 Hz), 7.64 (d, 2H, J = 8.8 Hz), 7.17-7.13 (m, 2H), 6.95 (t, 1H, I = 7.2 Hz), 6.88 (d, 1H, I = 7.2 Hz), 5.10 (s, 2H), 3.49 (t, 2H, J = 7.6 Hz), 2.90 (t, 2H, J = 7.6 Hz); $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 158.7, 152.5, 145.4, 129.5 (2C), 128.2, 127.5, 124.9, 123.8 (2C), 123.3, 113.5, 75.6, 58.2, 27.9; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₅N₂O₃ 271.1083; found 271.1090.

1-(Allyloxy)indoline (6i). As described for the preparation of 5a, compound S16 (73.1 mg, 0.126 mmol) was converted to 71.0 mg (85%) of 5i. Since compound 5i was unstable and difficult to store even in the freezer, the obtained 5i was immediately used in the next step.

As described for the preparation of 6a, compound 5i (25.1 mg, 37.7 μ mol) was converted to 3.2 mg (48%) of 6i. Compound 6i was obtained as a brown oil: TLC $R_f 0.47$ (EtOAc/hexane, 1:8); IR (neat) 2923, 2852, 1723, 1384, 1262, 1022, 759 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 7.17 (t, 1H, J = 7.8 Hz), 7.13 (br d, 1H, J = 7.8 Hz), 6.99 (d, 1H, J = 7.8 Hz), 6.93 (td, 1H, J = 7.8, 0.8 Hz), 6.11 (m, 1H), 5.37 (dd, 1H, J = 17.2, 1.6 Hz), 5.27 (dd, 1H, J = 10.4, 0.8 Hz), 4.50 (d, 2H, J = 6.0 Hz), 3.56 (t, 2H, J = 7.6 Hz), 2.92 (t, 2H, J = 7.6 Hz); $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 153.0, 134.8, 128.2, 127.5, 124.7, 122.8, 118.5, 113.5, 75.9, 58.1, 27.9; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₁H₁₄NO 176.1075; found 176.1081.

1-[(2-Methylbut-3-en-2-yl)oxy]indoline (6j). As described for the preparation of 5a, compound S17 (63.3 mg, 0.104 mmol) was converted to 42.7 mg (59%) of 5j. Since compound 5j was unstable and difficult to store even in the freezer, the obtained 5j was immediately used in the next step.

As described for the preparation of 6a, compound 5j (23.5 mg, 33.9 μ mol) was converted to 3.9 mg (57%) of 6j. Compound 6j was obtained as a brown oil: TLC R_f 0.50 (EtOAc/hexane, 1:10); IR (neat) 2979, 2930, 2859, 1609, 1477, 1359, 1237, 1145, 995, 923, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, 1H, J = 7.6 Hz), 7.10 (d, 1H, J = 7.6 Hz), 6.94 (d, 1H, J = 7.6 Hz), 6.89 (t, 1H, J = 7.6 Hz), 6.14 (dd, 1H, J = 17.6, 10.8 Hz), 5.37 (d, 1H, J = 17.6 Hz), 5.13 (d, 1H, J = 10.8 Hz), 3.52 (br, 2H), 2.90 (br, 2H), 1.44 (s, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 153.9, 144.1, 128.0, 127.3, 124.5, 122.2, 113.7, 113.5, 80.3, 60.3, 27.9 (2C), 25.6 (br); HRMS (ESI-TOF) m/ z: [M + H]⁺ calcd for C₁₃H₁₈NO 204.1388; found 204.1380.

1-(Benzyloxy)-2,2,6,6-tetramethylpiperidine (8). To a stirred solution of 5a (20.6 mg, 28.8 μ mol) in DMF (0.6 mL) were added TBAF (1.0 M solution in THF, 44 µL, 44 µmol) and TEMPO (7.0 pubs.acs.org/ioc

mg, 45 $\mu mol).$ After being stirred at 60 $^{\circ}\mathrm{C}$ for 2 h, the mixture was quenched with saturated aqueous NH₄Cl (2 mL), diluted with H₂O (2 mL), and extracted with EtOAc/hexane (1:4, 5 mL \times 6). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/ hexane, 1:10) to provide 0.6 mg (9%) of **6a** and 1.3 mg (18%) of **8**.⁷ Compound 8 was obtained as a yellow oil: TLC R_f 0.71 (EtOAc/ hexane, 1:10); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 5H), 4.82 (s, 2H), 1.52-1.49 (m, 6H), 1.26 (s, 6H), 1.15 (s, 6H).

tert-Butyl (tert-Butyldimethylsilyloxy)carbamate (S18).

Boc OTBS

S18

To a cooled (0 °C) stirred solution of hydroxylamine hydrochloride (S9) (1.03 g, 15.6 mmol) in DMF (30 mL) were added tertbutyldimethylchlorosilane (2.80 g, 18.6 mmol) and Et₃N (12.0 mL, 86.0 mmol). The mixture was stirred at room temperature for 2.5 h, and tert-butyldimethylchlorosilane (498 mg, 3.31 mmol) was added. The mixture was stirred at room temperature for 1 h, and Boc₂O (4.06 g, 18.6 mmol) was added at 0 °C. After being stirred at room temperature for 4 h, the mixture was quenched with H_2O (30 mL) and extracted with EtOAc/hexane (1:4, 30 mL \times 4). The combined extracts were washed with saturated brine (60 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10) to provide 3.67 g (92%) of S18⁷⁷ as a colorless oil: TLC R_f 0.82 (EtOAc/hexane, 1:2); ¹H NMR (400 MHz, CDCl₃) δ 6.66 (br s, 1H), 1.48 (s, 9H), 0.95 (s, 9H), 0.17 (s, 6H).

Benzyl (tert-Butyldimethylsilyloxy)carbamate (S19).

 $\begin{array}{c} \mathsf{Cbz}_{\mathsf{N}} \\ \mathsf{N} \\ \mathsf{H} \end{array} \\ \mathsf{OTBS} \\ \mathsf{H} \end{array}$

S19

To a cooled (0 °C) stirred solution of hydroxylamine hydrochloride (S9) (203 mg, 3.14 mmol) in DMF (16 mL) were added tertbutyldimethylchlorosilane (575 mg, 3.81 mmol) and Et₃N (2.40 mL, 17.2 mmol). The mixture was stirred at room temperature for 12 h, and benzyl chloroformate (0.500 mL, 3.56 mmol) was added at 0 °C. After being stirred at room temperature for 9.5 h, the mixture was quenched with H_2O (50 mL) and extracted with EtOAc/hexane (1:4, 50 mL \times 4). The combined extracts were washed with H₂O (50 mL) and saturated brine (50 mL), dried, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 144 mg (16%) of $S19^{77}$ as a yellow oil: TLC R_f 0.32 (EtOAc/hexane, 1:10); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.32 (m, 5H), 6.89 (br s, 1H), 5.17 (s, 2H), 0.94 (s, 9H), 0.16 (s, 6H).

tert-Butyl (tert-Butyldimethylsilyloxy)-[2-(tributyl-stannyl)phenethyl]carbamate (S20a).

S20a

To a cooled (0 °C) stirred solution of 2a (2.18 g, 5.30 mmol), S18 (1.00 g, 4.04 mmol), and PPh₃ (2.12 g, 8.08 mmol) in THF/toluene (1:3, 14 mL) was slowly added diethyl azodicarboxylate (2.2 M solution in toluene, 3.70 mL, 8.14 mmol). After being stirred at 0 °C for 1 h and at room temperature for 6 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:60) to provide 805 mg (44% from S18) of S20a as a colorless oil: TLC R_f 0.68 (EtOAc/ hexane, 1:10); IR (neat) 2957, 2857, 1705, 1463, 1367, 1254, 1164, 1074, 839, 757, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, 1H, J = 6.4 Hz), 7.25–7.23 (m, 2H), 7.15 (td, 1H, J = 7.2, 1.6 Hz), 3.63 (t, 2H, J = 7.6 Hz), 2.93 (t, 2H, J = 7.6 Hz), 1.53-1.47 (m, 6H),1.46 (s, 9H), 1.37-1.28 (m, 6H), 1.17-1.05 (m, 6H), 0.99 (s, 9H), 0.88 (t. 9H, J = 7.2 Hz), 0.17 (s, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 157.9, 146.1, 142.4, 136.9, 128.7, 128.6, 125.8, 81.3, 54.6, 35.2, 29.3 (3C), 28.4 (3C), 27.5 (3C), 26.1 (3C), 18.0, 13.9 (3C), 10.5 (3C), -4.9 (2C); HRMS (ESI-TOF) m/z: [M + K]⁺ calcd for C₃₁H₅₉KNO₃SiSn 680.2923; found 680.2953.

tert-Butyl (tert-Butyldimethylsilyloxy)-[2-methyl-6-(tributylstannyl)phenethyl]carbamate (**S20b**).

To a stirred solution of 2b (92.4 mg, 0.217 mmol) and S18 (48.1 mg, 0.194 mmol) in toluene (2 mL) was added cyanomethylenetributylphosphorane (80 µL, 0.31 mmol). After being stirred at 100 °C for 15 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:70) to provide 57.3 mg (45% from S18) of S20b (a mixture of rotamer) as a yellow oil: TLC R_f 0.56 (EtOAc/hexane, 1:10); IR (neat) 2957, 2929, 2857, 1703, 1462, 1367, 1253, 1164, 1071, 893, 841, 759, 670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (m, 1H), 7.13–7.09 (m, 2H), 3.56 (t, 2H × 1/6, J = 8.0 Hz), 3.47 (t, 2H × 5/6, I = 8.0 Hz, 2.97 (t, 2H, I = 8.0 Hz), 2.39 (s, 3H \times 5/6), 2.35 (s, 3H × 1/6), 1.50 (s, 9H), 1.53–1.45 (m, 6H), 1.37–1.28 (m, 6H), 1.20– 1.03 (m, 6H), 0.99 (s, 9H), 0.88 (t. 9H, J = 7.2 Hz), 0.16 (s, 6H); $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) for major rotamer δ 158.3, 143.9, 143.3, 136.7, 135.0, 131.0, 126.2, 81.5, 53.4, 33.0, 29.3 (3C), 28.4 (3C), 27.6 (3C), 26.1 (3C), 20.4, 18.0, 13.9 (3C), 10.9 (3C), -4.8 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{32}H_{62}NO_3SiSn$ 656.3521; found 656.3551.

tert-Butyl (tert-Butyldimethylsilyloxy)-[4-methyl-2-(tributylstannyl)phenethyl]carbamate (**S20c**).

As described for the preparation of **S20a**, compounds **2c** and **S18** (144 mg, 0.581 mmol) were converted to 51.1 mg (14% from **S18**) of **S20c**. Compound **S20c** was obtained as a colorless oil: TLC R_f 0.64 (EtOAc/hexane, 1:10); IR (neat) 2957, 2929, 2857, 1705, 1463, 1368, 1254, 1163, 1080, 841, 759, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.17–7.07 (m, 3H), 3.60 (t, 2H, *J* = 8.0 Hz), 2.89 (t, 2H, *J* = 8.0 Hz), 2.30 (s, 3H), 1.53–1.47 (m, 6H), 1.46 (s, 9H), 1.37–1.30 (m, 6H), 1.17–1.02 (m, 6H), 0.98 (s, 9H), 0.88 (t. 9H, *J* = 7.2 Hz), 0.17 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.0, 143.0, 142.2, 137.6, 134.9, 129.5, 128.5, 81.3, 54.8, 34.7, 29.3 (3C), 28.4 (3C), 27.5 (3C), 26.1 (3C), 21.2, 18.0, 13.9 (3C), 10.5 (3C), -4.9 (2C); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₃₂H₆₂NO₃SiSn 656.3521; found 656.3549.

tert-Butyl (tert-Butyldimethylsilyloxy)-[4-methoxy-2-(tributylstannyl)phenethyl]carbamate (**S20d**).

As described for the preparation of **S20a**, compounds **2d** and **S18** (404 mg, 1.63 mmol) were converted to 341 mg (31% from **S18**) of **S20d**. Compound **S20d** was obtained as a yellow oil: TLC R_f 0.66 (EtOAc/hexane, 1:10); IR (neat) 2957, 2930, 2857, 1704, 1591, 1464, 1368, 1251, 1164, 1079, 841, 759, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, 1H, J = 8.4 Hz), 6.94 (d, 1H, J = 2.8 Hz), 6.80 (dd, 1H, J = 8.4, 2.8 Hz), 3.78 (s, 3H), 3.59 (t, 2H, J = 7.6 Hz), 2.87 (t, 2H, J = 7.6 Hz), 1.54–1.47 (m, 6H), 1.45 (s, 9H), 1.37–1.28 (m, 6H), 1.17–1.03 (m, 6H), 0.99 (s, 9H), 0.88 (t. 9H, J = 7.2 Hz), 0.17 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.9, 157.3, 143.8, 138.0, 129.5, 122.5, 113.4, 81.2, 55.3, 54.8, 34.2, 29.3 (3C), 28.4 (3C), 27.5 (3C), 26.1 (3C), 18.0, 13.9 (3C), 10.6 (3C), -4.9

(2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{32}H_{62}NO_4SiSn$ 672.3470; found 672.3484.

tert-Butyl (tert-Butyldimethylsilyloxy)-[4-chloro-2-(tributylstannyl)phenethyl]carbamate (**S20e**).

As described for the preparation of **S20b**, compounds **2e** and **S18** (57.6 mg, 0.233 mmol) were converted to 85.9 mg (55% from **S18**) of **S20e**. Compound **S20e** was obtained as a yellow oil: TLC R_f 0.47 (EtOAc/hexane, 1:10); IR (neat) 2957, 2929, 2857, 1704, 1463, 1368, 1252, 1162, 1079, 840, 759, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, 1H, J = 2.4 Hz), 7.20 (dd, 1H, J = 8.0, 2.4 Hz), 7.15 (d, 1H, J = 8.0 Hz), 3.59 (t, 2H, J = 7.6 Hz), 2.88 (t, 2H, J = 7.6 Hz), 1.56–1.47 (m, 6H), 1.43 (s, 9H), 1.37–1.28 (m, 6H), 1.19–1.04 (m, 6H), 0.98 (s, 9H), 0.89 (t. 9H, J = 7.2 Hz), 0.17 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.8, 144.9, 144.3, 136.0, 132.1, 130.0, 128.4, 81.4, 54.2, 34.3, 29.2 (3C), 28.4 (3C), 27.5 (3C) 26.1 (3C), 17.9, 13.8 (3C), 10.6 (3C), -4.8 (2C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₁H₅₉ClNO₃SiSn 676.2975; found 676.3005.

tert-Butyl (tert-Butyldimethylsilyloxy)-[4-fluoro-2-(tributylstannyl)phenethyl]carbamate (**S20f**).

As described for the preparation of **S20b**, compounds **2f** and **S18** (52.7 mg, 0.213 mmol) were converted to 81.6 mg (58% from **S18**) of **S20f**. Compound **S20f** was obtained as a yellow oil: TLC R_f 0.54 (EtOAc/hexane, 1:10); IR (neat) 2957, 2929, 2857, 1704, 1474, 1368, 1253, 1215, 1163, 1078, 840, 759, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, 1H, J = 8.4, 5.2 Hz), 7.06 (dd, 1H, J = 8.4, 2.0 Hz), 6.91 (td, 1H, J = 8.4, 2.0 Hz), 3.59 (t, 2H, J = 7.6 Hz), 1.56–1.46 (m, 6H), 1.43 (s, 9H), 1.37–1.28 (m, 6H), 1.18–1.01 (m, 6H), 0.98 (s, 9H), 0.88 (t. 9H, J = 7.2 Hz), 0.17 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.8, 145.1, 141.5, 130.0 (d, J = 5.7 Hz), 122.8, 122.6, 115.2 (d, J = 21.1 Hz), 81.3, 54.5, 34.3, 29.2 (3C), 28.4 (3C), 27.5 (3C), 26.1 (3C), 18.0, 13.8 (3C), 10.6 (3C), -4.8 (2C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₁H₅₉FNO₃SiSn 660.3270, found 660.3256.

tert-Butyl (tert-Butyldimethylsilyloxy)-{3-methoxy-2-[3-(tributylstannyl)-[1,1'-biphenyl]-4-yl]propyl}carbamate (**S20i**).

S20i

As described for the preparation of S20b, compounds 2i and S18 (79.8 mg, 0.323 mmol) were converted to 63.8 mg (26% from S18) of S20i. Compound S20i was obtained as a yellow oil: TLC R₆ 0.64 (EtOAc/hexane, 1:10); IR (neat) 2956, 2928, 2857, 1730, 1703, 1464, 1366, 1251, 1170, 1108, 840, 763, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, 2H, J = 8.0 Hz), 7.53 (br s, 1H), 7.48 (d, 1H, J = 8.0 Hz), 7.45–7.37 (m, 3H), 7.32 (t, 1H, J = 6.8 Hz), 3.98 (dd, 1H, J = 14.8, 6.4 Hz), 3.80 (dd, 1H, J = 14.8, 6.0 Hz), 3.60 (t, 1H, J = 8.0 Hz), 3.52 (t, 1H, J = 8.0 Hz), 3.28 (m, 1H), 3.28 (s, 3H), 1.55-1.51 (m, 6H), 1.39-1.31 (m, 6H), 1.31 (s, 9H), 1.22-1.05 (m, 6H), 0.94 (s, 9H), 0.89 (t. 9H, J = 7.2 Hz), 0.17 (s, 3H), 0.15 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.8, 146.6, 144.5, 141.8, 138.8, 135.6, 128.8 (2C), 127.5, 127.2 (3C), 127.0, 80.7, 76.0, 59.1, 53.6, 46.9, 29.4 (3C), 28.2 (3C), 27.6 (3C), 26.1 (3C), 18.0, 13.9 (3C), 10.8 (3C), -4.6, -4.9; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₃₉H₆₈NO₄SiSn 762.3940; found 762.3911.

Benzyl (tert-Butyldimethylsilyloxy)-[2-(tributylstannyl)-phenethyl]carbamate (**S21**).

To a cooled (0 °C) stirred solution of 2a (678 mg, 1.64 mmol), S19 (388 mg, 1.38 mmol), and PPh₂ (867 mg, 3.31 mmol) in THF/ toluene (1:3, 5 mL) was slowly added diethyl azodicarboxylate (2.2 M solution in toluene, 31.5 mL, 3.30 mmol). After being stirred at 0 °C for 1 h and at room temperature for 3 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:70) to provide 539 mg (58% from S19) of S21 as a colorless oil: TLC R_f 0.56 (EtOAc/ hexane, 1:10); IR (neat) 2956, 2929, 2857, 1709, 1463, 1390, 1252, 1075, 836, 756, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, 1H, J = 6.8, 2.0 Hz), 7.35–7.30 (m, 5H), 7.24–7.19 (m, 2H), 7.15 (td, 1H, J = 6.8, 2.0 Hz), 5.06 (s, 2H), 3.67 (t, 2H, J = 7.6 Hz), 2.94 (t, 2H, J = 7.6 Hz), 1.52-1.41 (m, 6H), 1.35-1.26 (m, 6H), 1.14-1.00 (m, 6H), 0.96 (s, 9H), 0.87 (t, 9H, J = 7.2 Hz), 0.13 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.5, 145.8, 142.4, 137.0, 136.0, 128.9, 128.5 (4C), 128.3 (2C), 125.9, 67.9, 54.5, 35.3, 29.3 (3C), 27.5 (3C), 26.0 (3C), 18.0, 13.8 (3C), 10.5 (3C), -4.9 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{34}H_{58}NO_3SiSn$ 676.3208; found 676.3242.

1H-Indole (10a). To a stirred solution of S20a (538 mg, 0.839 mmol) in CH₂Cl₂ (8 mL) was added PhI(OH)OTs (Koser reagent, 498 mg, 1.27 mmol). After being stirred at room temperature in the dark for 14 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel $(MeOH/CH_2Cl_2, 1:10)$ to provide 404 mg (67%) of 9a as a yellow amorphous: TLC R_f 0.13 (MeOH/CH₂Cl₂, 1:10); IR (neat) 2956, 2929, 1699, 1384, 1201, 1130, 1044, 755, 689, 572 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, 3H, J = 8.0 Hz), 7.65 (d, 2H, J = 7.6 Hz), 7.55–7.50 (m, 3H), 7.39 (t, 2H, J = 8.0 Hz), 7.22 (m, 1H), 7.08 (d, 2H, J = 8.0 Hz), 3.74 (t, 2H, J = 6.8 Hz), 3.19 (t, 2H, J = 6.8 Hz),2.32 (s, 3H), 1.31 (s, 9H), 0.96 (s, 9H), 0.16 (s, 6H); ¹³C{¹H} NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 157.5, 143.0, 141.9, 139.1, 138.1, 134.5 (2C),$ 132.7, 132.1, 131.6 (2C), 131.4, 130.0, 128.4 (2C), 126.1 (2C), 120.6, 115.9, 81.6, 51.9, 35.2, 28.2 (3C), 25.9 (3C), 21.3, 17.8, -5.0 (2C); HRMS (ESI-TOF) m/z: $[M - OTs]^+$ calcd for $C_{25}H_{37}INO_3Si$ 554.1587; found 554.1598.

To a stirred solution of **9a** (25.9 mg, 35.7 μ mol) and dried molecular sieves 4 Å powder (17.8 mg) in DMF (0.7 mL) was added TBAF (1.0 M solution in THF, 44 μ L, 44 μ mol). After being stirred at room temperature for 4 h, the mixture was quenched with saturated aqueous NH₄Cl (2 mL), diluted with H₂O (2 mL), and extracted with EtOAc/hexane (1:4, 6 mL × 5). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/hexane, 1:4) to provide 4.1 mg (89%) of **10a**⁷⁸ as light brown crystals; TLC R_f 0.30 (EtOAc/hexane, 1:4); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (br, 1H), 7.65 (d, 1H, *J* = 8.0 Hz), 7.41 (dd, 1H, *J* = 8.0, 0.8 Hz), 7.23 (td, 1H, *J* = 8.0, 0.8 Hz), 7.23–7.18 (m, 2H), 6.57 (br s, 1H).

Data for a trace amount of by-product **12a**: brown crystals; mp 58– 60 °C; TLC R_f 0.18 (EtOAc/hexane, 1:4); IR (neat) 3383, 2928, 2852, 1754, 1493, 1370, 1275, 1154, 886, 755 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.92 (br d, 1H, J = 0.8 Hz), 6.78 (dd, 1H, J = 8.0, 0.8 Hz), 6.57 (d, 1H, J = 8.0 Hz), 3.57 (t, 2H, J = 8.0 Hz), 3.03 (t, 2H, J = 8.0 Hz), 1.54 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.0, 149.5, 143.9, 130.7, 119.9, 118.1, 109.3, 83.2, 48.0, 30.1, 27.9 (3C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₃H₁₈NO₃ 236.1287; found 236.1294.

4-Methyl-1H-indole (10b). As described for the preparation of 9a, compound S20b (80.2 mg, 0.123 mmol) was converted to 61.8 mg (68%) of 9b. Since compound 9b was unstable and difficult to store even in the freezer, the obtained 9b was immediately used in the next step.

As described for the preparation of **10a**, compound **9b** (30.0 mg, 40.6 μ mol) was converted to 4.8 mg (90%) of **10b**.⁷⁸ Compound **10b** was obtained as a brown oil: TLC R_f 0.25 (EtOAc/hexane, 1:4); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (br, 1H), 7.25 (d, 1H, *J* = 7.2 Hz), 7.21 (t, 1H, *J* = 2.8 Hz), 7.11 (t, 1H, *J* = 7.2 Hz), 6.92 (d, 1H, *J* = 7.2 Hz), 6.58 (br s, 1H), 2.57 (s, 3H).

6-Methyl-1H-indole (10c). As described for the preparation of 9a, compound S20c (50.3 mg, 76.8 μ mol) was converted to 43.1 mg (76%) of 9c. Since compound 9c was unstable and difficult to store even in the freezer, the obtained 9c was immediately used in the next step.

As described for the preparation of **10a**, compound **9c** (22.6 mg, 30.5 μ mol) was converted to 2.5 mg (62%) of **10c**.⁷⁹ Compound **10c** was obtained as brown crystals: TLC R_f 0.39 (EtOAc/hexane, 1:4); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (br, 1H), 7.52 (d, 1H, J = 8.4 Hz), 7.20 (br s, 1H), 7.14 (t, 1H, J = 2.8 Hz), 6.95 (d, 1H, J = 8.4 Hz), 6.50 (br s, 1H), 2.47 (s, 3H).

6-Methoxy-1H-indole (10d). As described for the preparation of 9a, compound S20d (233 mg, 0.347 mmol) was converted to 134 mg (51%) of 9d. Since compound 9d was unstable and difficult to store even in the freezer, the obtained 9d was immediately used in the next step.

As described for the preparation of **10a**, compound **9d** (26.6 mg, 35.2 μ mol) was converted to 4.2 mg (81%) of **10d**.⁸⁰ Compound **10d** was obtained as brown crystals: TLC R_f 0.40 (EtOAc/hexane, 1:3); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (br, 1H), 7.51 (d, 1H, *J* = 8.8 Hz), 7.10 (t, 1H, *J* = 2.8 Hz), 6.89 (d, 1H, *J* = 2.4 Hz), 6.80 (dd, 1H, *J* = 8.8, 2.4 Hz), 6.48 (br s, 1H), 3.85 (s, 3H).

6-Chloro-1H-indole (10e). As described for the preparation of 9a, compound S20e (78.3 mg, 0.116 mmol) was converted to 47.5 mg (54%) of 9e. Since compound 9e was unstable and difficult to store even in the freezer, the obtained 9e was immediately used in the next step.

As described for the preparation of **10a**, compound **9e** (26.2 mg, 34.5 μ mol) was converted to 4.4 mg (84%) of **10e**.⁸¹ Compound **10e** was obtained as brown crystals: TLC R_f 0.37 (EtOAc/hexane, 1:4); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (br, 1H), 7.54 (d, 1H, J = 8.4 Hz), 7.40 (br s, 1H), 7.21 (t, 1H, J = 2.8 Hz), 7.09 (dd, 1H, J = 8.4, 2.0 Hz), 6.54 (br s, 1H).

6-Fluoro-1H-indole (10f). As described for the preparation of 9a, compound S20f (73.3 mg, 0.111 mmol) was converted to 43.6 mg (53%) of 9f. Since compound 9f was unstable and difficult to store even in the freezer, the obtained 9f was immediately used in the next step.

As described for the preparation of **10a**, compound **9f** (27.1 mg, 36.4 μ mol) was converted to 4.3 mg (87%) of **10f**.⁷⁸ Compound **10f** was obtained as brown crystals: TLC R_f 0.34 (EtOAc/hexane, 1:4); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (br, 1H), 7.55 (dd, 1H, J = 8.8, 6.2 Hz), 7.19 (t, 1H, J = 2.0 Hz), 7.08 (dd, 1H, J = 9.6, 2.4 Hz), 6.89 (td, 1H, J = 8.8, 2.4 Hz), 6.53 (br s, 1H).

S20g

As described for the preparation of **S20b**, compounds **2g** and **S18** (66.2 mg, 0.268 mmol) were converted to 120 mg (65% from **S18**) of **S20g**. Since compound **S20g** was unstable due to protodestanylation, the obtained **S20g** was immediately used in the next step.

As described for the preparation of **9a**, compound **S20g** (43.7 mg, 63.2 μ mol) was converted to 34.1 mg (69%) of **9g**. Since compound **9g** was unstable and difficult to store even in the freezer, the obtained **9g** was immediately used in the next step.

As described for the preparation of **10a**, compound **9g** (20.3 mg, 26.2 μ mol) was converted to 3.8 mg (87%) of **10g**.⁸² Compound **10g** was obtained as yellow crystals: TLC R_f 0.33 (EtOAc/hexane, 1:4); ¹H NMR (400 MHz, CDCl₃) δ 8.90 (br, 1H), 8.01 (d, 1H, J = 8.0

Hz), 7.93 (d, 1H, J = 8.6 Hz), 7.73 (d, 1H, J = 8.6 Hz), 7.54 (t, 1H, J = 8.0 Hz), 7.52 (d, 1H, J = 8.0 Hz), 7.43 (t, 1H, J = 8.0 Hz), 7.29 (t, 1H, I = 2.4 Hz), 6.71 (br s, 1H).

Boc

5-(3,5-Dimethylphenyl)-1H-indole (10h).

S20h

As described for the preparation of S20b, compounds 2h (110 mg, 0.213 mmol) and S18 were converted to 121 mg (76% from 2h) of S20h. Since compound S20h was unstable due to protodestanylation, the obtained S20h was immediately used in the next step.

As described for the preparation of 9a, compound S20h (121 mg, 0.162 mmol) was converted to 107 mg (79%) of 9h. Since compound 9h was unstable and difficult to store even in the freezer, the obtained 9h was immediately used in the next step.

As described for the preparation of 10a, compound 9h (30.6 mg, 36.9 µmol) was converted to 6.3 mg (77%) of 10h. Compound 10h was obtained as a yellow oil: TLC R_f 0.37 (EtOAc/hexane, 1:4); IR (neat) 3415, 3019, 2918, 1601, 1458, 1413, 1307, 1217, 1094, 882, 850, 762, 727 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (br, 1H), 7.85 (s, 1H), 7.44 (s, 2H), 7.28 (br s, 2H), 7.24 (br s, 1H), 6.97 (br s, 1H), 6.60 (br s, 1H), 2.40 (s, 6H); ¹³C{¹H} NMR (100 MHz, $CDCl_3$) δ 142.7, 138.2 (2C), 135.4, 133.8, 128.5, 128.1, 125.5 (2C), 124.8, 122.2, 119.4, 111.2, 103.1, 21.6 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₆H₁₆N 222.1283; found, 222.1292.

3-(Methoxymethyl)-6-phenyl-1H-indole (10i). As described for the preparation of 9a, compound S20i (46.0 mg, 60.5 μ mol) was converted to 31.7 mg (62%) of 9i. Since compound 9i was unstable and difficult to store even in the freezer, the obtained 9i was immediately used in the next step.

As described for the preparation of 10a, compound 9i (28.0 mg, 33.1 μ mol) was converted to 6.3 mg (38%) of 10i. Compound 10i was obtained as pale yellow crystals: mp 105-108 °C; TLC Rf 0.36 (EtOAc/hexane, 1:2); IR (neat) 3378, 2924, 2858, 1446, 1384, 1091, 1055, 822, 752, 690, 545 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (br, 1H), 7.77 (d, 1H, J = 8.4 Hz), 7.64 (d, 2H, J = 7.6 Hz), 7.58 (s, 1H), 7.46–7.41 (m, 3H), 7.32 (br t, 1H, J = 8.4 Hz), 7.23 (br s, 1H), 4.70 (s, 2H), 3.42 (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 142.4, 137.1, 136.1, 128.8 (2C), 127.5 (2C), 126.8, 126.6, 124.4, 120.1, 119.6, 113.5, 109.8, 66.6, 57.7; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₆NO 238.1232; found 238.1236.

1H-Indole (10a) from the Diaryliodonium Salt (S22).

As described for the preparation of 9a, compound S21 (251 mg, 0.373 mmol) was converted to 251 mg (89%) of S22. Since compound S22 was unstable and difficult to store even in the freezer, the obtained S22 was immediately used in the next step.

As described for the preparation of 10a, compound S22 (26.7 mg, 35.1 μ mol) was converted to 2.5 mg (61%) of 10a.

N-(tert-Butyldimethylsilyloxy)-N-[2-(tributylstannyl)-phenethyl]acetamide (S23).

pubs.acs.org/joc

To a cooled (0 °C) stirred solution of 3a (50.3 mg, 93.1 μ mol) in CH2Cl2 (1 mL) were added Ac2O (18 µL, 0.19 mmol) and 4dimethylaminopyridine (DMAP) (2.6 mg, 21 µmol). After being stirred at room temperature for 2 h, the mixture was quenched with H_2O (2 mL) and extracted with EtOAc (2 mL × 4). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/hexane, 1:20) to provide 33.2 mg (61%) of S23 as a yellow oil: TLC R_f 0.35 (EtOAc/ hexane, 1:20); IR (neat) 2956, 2929, 2857, 1678, 1464, 1383, 1254, 1071, 836, 784, 755, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, 1H, J = 7.2, 1.2 Hz), 7.25–7.15 (m, 3H), 3.80 (br, 2H), 2.94 (t, 2H, J = 7.2 Hz), 2.07 (br, 3H), 1.57–1.42 (m, 6H), 1.38–1.29 (m, 6H), 1.20–1.05 (m, 6H), 1.01 (s, 9H), 0.88 (t, 9H, J = 7.2 Hz), 0.24 (s, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 145.7, 142.5, 137.1 (2C), 128.5, 125.9, 51.8 (br), 35.2 (br), 29.3 (3C), 27.5 (3C), 26.0 (3C), 21.4, 18.0, 13.8 (3C), 10.5 (3C), -4.4 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₈H₅₄NO₂SiSn 584.2946; found 584.2957

N-(tert-Butyldimethylsilyloxy)-N-[2-(tributylstannyl)-phenethyl]pivalamide (S24).

To a cooled (0 °C) stirred solution of 3a (186 mg, 0.344 mmol) in CH_2Cl_2 (4 mL) were added PivCl (64 μ L, 0.53 mmol) and Et_3N (72 μ L, 0.52 mmol). After being stirred at room temperature for 23 h, the mixture was quenched with H₂O (4 mL) and extracted with CH₂Cl₂ (4 mL \times 4). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/hexane, 1:2) to provide 177 mg (82%) of S24 as a yellow oil: TLC R_f 0.30 (MeOH/CH₂Cl₂/ hexane, 1:5:60); IR (neat) 2957, 2929, 1652, 1464, 1254, 1168, 838, 784, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, 1H, J = 7.2Hz), 7.29–7.16 (m, 3H), 3.91 (t, 2H, J = 8.0 Hz), 3.00 (t, 2H, J = 8.0 Hz), 1.61-1.45 (m, 6H), 1.39-1.30 (m, 6H), 1.21 (s, 9H), 1.12-1.06 (m, 6H), 1.02 (s, 9H), 0.89 (t, 9H, J = 7.2 Hz), 0.25 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 178.8, 145.4, 142.7, 137.1, 128.6, 127.9, 125.9, 53.8, 39.1, 35.4, 29.3 (3C), 27.9 (3C), 27.5 (3C), 26.4 (3C), 18.6, 13.8 (3C), 10.5 (3C), -4.0 (2C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{31}H_{60}NO_2SiSn$ 626.3415; found 626.3385.

tert-Butyl (tert-Butyldimethylsilyloxy)(3-phenylpropyl)-carbamate (13).

S26

S25

To a cooled (0 °C) stirred solution of 3-phenylpropion-aldehyde (S25) (0.265 mL, 2.01 mmol) in MeOH (20 mL) was added NaBH₄ (117 mg, 3.09 mmol) under air. After being stirred at 0 $^\circ C$ for 5 min, the mixture was quenched with saturated aqueous NH₄Cl (10 mL) and extracted with EtOAc (20 mL \times 2). The combined extracts were washed with saturated brine (40 mL), dried, and concentrated under reduced pressure to provide crude S26, which was used in the next step without further purification.

To a cooled $(0 \circ \hat{C})$ stirred solution of crude **S26** obtained above, S18 (395 mg, 1.60 mmol), and PPh₃ (1.05 g, 4.00 mmol) in THF/ toluene (1:3, 8 mL) was slowly added diethyl azodicarboxylate (2.2 M solution in toluene, 1.55 mL, 3.41 mmol). After being stirred at 0 °C for 1 h and at room temperature for 1 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 158 mg (27%) of 13 as a yellow oil: TLC $R_f 0.57$ (EtOAc/hexane, 1:8); IR (neat) 2953, 2931, 2858, 1702, 1455, 1367, 1252, 1164, 1098, 1024, 894, 840, 784, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.26 (m, 2H), 7.20–7.18 (m, 3H), 3.45 (t, 2H, J = 7.6 Hz), 2.62 (t, 2H, J =

7.6 Hz), 1.98 (quint, 2H, J = 7.6 Hz), 1.46 (s, 9H), 0.93 (s, 9H), 0.12 (s, 6H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 158.1, 141.8, 128.4 (3C), 125.9 (2C), 81.2, 52.1, 33.1, 28.4 (3C), 27.5, 26.0 (3C), 17.9, -5.0 (2C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₀H₃₆NO₃Si 366.2464, found 366.2461.

tert-Butyl Hydroxy(3-phenylpropyl)carbamate (14). To a stirred solution of 13 (18.4 mg, 50.3 μ mol) in DMF (1 mL) was added TBAF (1.0 M solution in THF, 61 μ L, 61 μ mol). After being stirred at room temperature for 1 h, the mixture was quenched with saturated aqueous NH₄Cl (2 mL) and extracted with EtOAc/hexane (1:4, 4 mL \times 3). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/hexane, 1:4) to provide 10.7 mg (85%) of 14 as a pale yellow oil: TLC Rf 0.23 (EtOAc/hexane, 1:4); IR (neat) 3279, 2930, 1693, 1385, 1163, 1112, 756, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, 2H, J = 7.6 Hz), 7.21-7.17 (m, 3H), 6.51 (br, 1H), 3.51 (t, 2H, J = 7.4 Hz), 2.66 (t, 2H, J = 7.4 Hz), 1.97 (quint, 2H, J = 7.4 Hz), 1.46 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 157.1, 141.7, 128.6 (2C), 128.5 (2C), 126.0, 82.0, 49.5, 32.9, 28.6, 28.5 (3C); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{14}H_{22}NO_3$ 252.1600; found 252.1602.

tert-Butyl Methoxy(3-phenylpropyl)carbamate (16). To a stirred solution of 13 (29.4 mg, 80.4 μ mol) in DMF (2 mL) was added TBAF (1.0 M solution in THF, 100 μ L, 100 μ mol). The mixture was stirred at room temperature for 0.5 h, and MeI (6 μ L, 96 μ mol) was added. After being stirred at room temperature for 1 h, the mixture was quenched with saturated aqueous NH4Cl (2 mL) and extracted with EtOAc/hexane (1:4, 4 mL \times 4). The combined extracts were dried and concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/hexane, 1:4) to provide 13.6 mg (64%) of 16 as a pale yellow oil: TLC R_f 0.60 (EtOAc/hexane, 1:4); IR (neat) 3019, 2981, 2936, 1700, 1369, 1216, 1162, 757, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.27 (m, 2H), 7.20–7.17 (m, 3H), 3.68 (s, 3H), 3.47 (t, 2H, J = 7.2 Hz), 2.65 (t, 2H, J = 7.2 Hz), 1.94 (quint, 2H, J = 7.2 Hz), 1.49 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100 MHz, $CDCl_3$ δ 156.5, 141.8, 128.5 (3C), 126.0 (2C), 81.3, 62.4, 48.8, 33.2, 28.9, 28.5 (3C); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C15H24NO3 266.1756, found 266.1768.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c00820.

Supporting experimental procedures; computational methods; and spectral data of new compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Ken-ichi Takao Department of Applied Chemistry, Keio University, Yokohama 223-8522, Japan; Occid.org/0000-0001-8629-1002; Email: takao@applc.keio.ac.jp
- Akihiro Ogura Department of Applied Chemistry, Keio University, Yokohama 223-8522, Japan; o orcid.org/0000-0002-4793-5706; Email: ogura@applc.keio.ac.jp

Author

Kouhei Shibata – Department of Applied Chemistry, Keio University, Yokohama 223-8522, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c00820

Author Contributions

This manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by JSPS KAKENHI Grant number 19K15571 and Keio Gijuku Academic Development Funds. We acknowledge Prof. Fumitoshi Kakiuchi, Prof. Takuya Kochi, and Shota Kanno at Keio University for GC measurements.

REFERENCES

(1) Stang, P. J.; Zhdankin, V. V. Organic Polyvalent Iodine Compounds. *Chem. Rev.* **1996**, *96*, 1123–1178.

(2) Zhdankin, V. V.; Stang, P. J. Recent Developments in the Chemistry of Polyvalent Iodine Compounds. *Chem. Rev.* 2002, 102, 2523–2584.

(3) Zhdankin, V. V.; Stang, P. J. Chemistry of Polyvalent Iodine. *Chem. Rev.* 2008, 108, 5299-5358.

(4) Merritt, E. A.; Olofsson, B. Diaryliodonium Salts: A Journey from Obscurity to Fame. *Angew. Chem., Int. Ed.* **2009**, *48*, 9052–9070.

(5) Silva, L. F., Jr.; Olofsson, B. Hypervalent Iodine Reagents in the Total Synthesis of Natural Products. *Nat. Prod. Rep.* **2011**, *28*, 1722–1754.

(6) Takenaga, N.; Kumar, R.; Dohi, T. Heteroaryliodonium(III) Salts as Highly Reactive Electrophiles. *Front. Chem.* **2020**, *8*, No. 599026.

(7) Bugaenko, D. I.; Karchava, A. V.; Yurovskaya, M. A. Arynes, Diaryliodonium Salts and Azine N-Oxides in Transition Metal-Free Electrophilic N-Arylation. *Russ. Chem. Rev.* **2018**, *87*, 272–301.

(8) Grelier, G.; Darses, B.; Dauban, P. Hypervalent Organoiodine Compounds: From Reagents to Valuable Building Blocks in Synthesis. *Beilstein J. Org. Chem.* **2018**, *14*, 1508–1528.

(9) Villo, P.; Olofsson, B. Arylations Promoted by Hypervalent Iodine Reagents. In *PATAI's Chemistry of Functional Groups*; Rappoport, Z., Eds.; John Wiley & Sons, Inc., 2018; pp 1–61.

(10) Aradi, K.; Tóth, B. L.; Tolnai, G. L.; Novák, Z. Diaryliodonium Salts in Organic Syntheses: A Useful Compound Class for Novel Arylation Strategies. *Synlett* **2016**, *27*, 1456–1485.

(11) Cao, C. K.; Sheng, J.; Chen, C. Cu-Catalyzed Cascade Annulation of Diaryliodonium Salts and Nitriles: Synthesis of Nitrogen-Containing Heterocycles. *Synthesis* **2017**, *49*, 5081–5092.

(12) Pacheco-Benichou, A.; Besson, T.; Fruit, C. Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C-and N-Arylation of Heteroarenes. *Catalysts* **2020**, *10*, No. 483.

(13) Sousa e Silva, F. C.; Tierno, A. F.; Wengryniuk, S. E. Hypervalent Iodine Reagents in High Valent Transition Metal Chemistry. *Molecules* **201**7, *22*, No. 780.

(14) Hartwig, J. F. Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. *Angew. Chem., Int. Ed.* **1998**, *37*, 2046–2067.

(15) Dibbo, A.; Stephenson, L.; Walker, T.; Warburton, W. K. 518. The Synthesis of Thyroxine and Related Compounds. Part XV. The Preparation of Thyronines from Iodonium Salts and Derivatives of 3,5-Disubstituted Tyrosines. *J. Chem. Soc.* **1961**, 2645–2651.

(16) Lindstedt, E.; Ghosh, R.; Olofsson, B. Metal-Free Synthesis of Aryl Ethers in Water. Org. Lett. 2013, 15, 6070–6073.

(17) Ghosh, R.; Lindstedt, E.; Jalalian, N.; Olofsson, B. Room Temperature, Metal-Free Arylation of Aliphatic Alcohols. *ChemistryOpen* **2014**, *3*, 54–57.

(18) Sundalam, S. K.; Stuart, D. R. Base Mediated Synthesis of Alkyl-Aryl Ethers from the Reaction of Aliphatic Alcohols and Unsymmetric Diaryliodonium Salts. J. Org. Chem. 2015, 80, 6456– 6466.

(19) Seidl, T. L.; Sundalam, S. K.; McCullough, B.; Stuart, D. R. Unsymmetrical Aryl(2,4,6-Trimethoxyphenyl)Iodonium Salts: One-Pot Synthesis, Scope, Stability, and Synthetic Studies. *J. Org. Chem.* **2016**, *81*, 1998–2009.

pubs.acs.org/joc

(20) Beringer, F. M.; Brierley, A.; Drexler, M.; Gindler, E. M.; Lumpkin, C. C. Diaryliodonium Salts. II. The Phenylation of Organic and Inorganic Bases. J. Am. Chem. Soc. **1953**, 75, 2708–2712.

(21) Dohi, T.; Koseki, D.; Sumida, K.; Okada, K.; Mizuno, S.; Kato, A.; Morimoto, K.; Kita, Y. Metal-Free O-Arylation of Carboxylic Acid by Active Diaryliodonium(III) Intermediates Generated in Situ from Iodosoarenes. *Adv. Synth. Catal.* **2017**, *359*, 3503–3508.

(22) Petersen, T. B.; Khan, R.; Olofsson, B. Metal-Free Synthesis of Aryl Esters from Carboxylic Acids and Diaryliodonium Salts. *Org. Lett.* **2011**, *13*, 3462–3465.

(23) Jalalian, N.; Petersen, T. B.; Olofsson, B. Metal-Free Arylation of Oxygen Nucleophiles with Diaryliodonium Salts. *Chem. – Eur. J.* **2012**, *18*, 14140–14149.

(24) Stridfeldt, E.; Lindstedt, E.; Reitti, M.; Blid, J.; Norrby, P. O.; Olofsson, B. Competing Pathways in O-Arylations with Diaryliodonium Salts: Mechanistic Insights. *Chem. – Eur. J.* **2017**, *23*, 13249–13258.

(25) Jalalian, N.; Ishikawa, E. E.; Silva, L. F.; Olofsson, B. Room Temperature, Metal-Free Synthesis of Diaryl Ethers with Use of Diaryliodonium Salts. *Org. Lett.* **2011**, *13*, 1552–1555.

(26) Matsuzaki, K.; Okuyama, K.; Tokunaga, E.; Saito, N.; Shiro, M.; Shibata, N. Synthesis of Diaryliodonium Salts Having Pentafluorosulfanylarenes and Their Application to Electrophilic Pentafluorosulfanylarylation of C-, O-, N-, and S-Nucleophiles. *Org. Lett.* **2015**, *17*, 3038–3041.

(27) Li, J.; Liu, L. Simple and Efficient Amination of Diaryliodonium Salts with Aqueous Ammonia in Water without Metal-Catalyst. *RSC Adv.* **2012**, *2*, 10485–10487.

(28) Sandtorv, A. H.; Stuart, D. R. Metal-Free Synthesis of Aryl Amines: Beyond Nucleophilic Aromatic Substitution. *Angew. Chem., Int. Ed.* **2016**, 55, 15812–15815.

(29) Purkait, N.; Kervefors, G.; Linde, E.; Olofsson, B. Regiospecific N-Arylation of Aliphatic Amines under Mild and Metal-Free Reaction Conditions. *Angew. Chem., Int. Ed.* **2018**, *57*, 11427–11431.

(30) Tinnis, F.; Stridfeldt, E.; Lundberg, H.; Adolfsson, H.; Olofsson, B. Metal-Free N-Arylation of Secondary Amides at Room Temperature. *Org. Lett.* **2015**, *17*, 2688–2691.

(31) Lucchetti, N.; Scalone, M.; Fantasia, S.; Muñiz, K. Sterically Congested 2,6-Disubstituted Anilines from Direct C–N Bond Formation at an Iodine(III) Center. *Angew. Chem., Int. Ed.* **2016**, 55, 13335–13339.

(32) Sasaki, T.; Moriyama, K.; Togo, H. Preparation of 3-Iodoquinolines from N-Tosyl-2-Propynylamines with Diaryliodonium Triflate and N-Iodosuccinimide. *J. Org. Chem.* **2017**, *82*, 11727– 11734.

(33) Lovato, K.; Bhakta, U.; Ng, Y. P.; Kürti, L. O-Cyclopropyl Hydroxylamines: Gram-Scale Synthesis and Utility as Precursors for N-Heterocycles. *Org. Biomol. Chem.* **2020**, *18*, 3281–3287.

(34) Carroll, M. A.; Wood, R. A. Arylation of Anilines: Formation of Diarylamines Using Diaryliodonium Salts. *Tetrahedron* **2007**, *63*, 11349–11354.

(35) Riedmüller, S.; Nachtsheim, B. J. Metal-Free N-Arylation of Indolines with Diaryliodonium Salts. *Synlett* **2015**, *26*, 651–655.

(36) Gonda, Z.; Novák, Z. Transition-Metal-Free N-Arylation of Pyrazoles with Diaryliodonium Salts. *Chem. – Eur. J.* 2015, 21, 16801–16806.

(37) Xu, B.; Han, J.; Wang, L. Metal- and Base-Free Direct N-Arylation of Pyridazinones by Using Diaryliodonium Salts: An Anion Effect. *Asian J. Org. Chem.* **2018**, *7*, 1674–1680.

(38) Lu, N.; Huang, L.; Xie, L.; Cheng, J. Transition-Metal-Free Selective Iodoarylation of Pyrazoles via Heterocyclic Aryliodonium Ylides. *Eur. J. Org. Chem.* **2018**, 2018, 3437–3443.

(39) Koseki, D.; Aoto, E.; Shoji, T.; Watanabe, K.; In, Y.; Kita, Y.; Dohi, T. Efficient N-Arylation of Azole Compounds Utilizing Selective Aryl-Transfer TMP-Iodonium(III) Reagents. *Tetrahedron Lett.* **2019**, *60*, 1281–1286.

(40) Kuriyama, M.; Hanazawa, N.; Abe, Y.; Katagiri, K.; Ono, S.; Yamamoto, K.; Onomura, O. N- And O-Arylation of Pyridin-2-Ones with Diaryliodonium Salts: Base-Dependent Orthogonal Selectivity under Metal-Free Conditions. *Chem. Sci.* **2020**, *11*, 8295–8300.

(41) Stuart, D. R. Aryl Transfer Selectivity in Metal-Free Reactions of Unsymmetrical Diaryliodonium Salts. *Chem. – Eur. J.* 2017, 23, 15852–15863.

(42) Landge, K. P.; Jang, K. S.; Lee, S. Y.; Chi, D. Y. Approach to the Synthesis of Indoline Derivatives from Diaryliodonium Salts. *J. Org. Chem.* **2012**, *77*, 5705–5713.

(43) Alvarado, J.; Fournier, J.; Zakarian, A. Synthesis of Functionalized Dihydrobenzofurans by Direct Aryl C–O Bond Formation under Mild Conditions. *Angew. Chem., Int. Ed.* **2016**, *55*, 11625– 11628.

(44) Matsumoto, M.; Wada, K.; Urakawa, K.; Ishikawa, H. Diaryliodonium Salt-Mediated Intramolecular C-N Bond Formation Using Boron-Masking N-Hydroxyamides. *Org. Lett.* **2020**, *22*, 781–785.

(45) Canham, S. M.; France, D. J.; Overman, L. E. Total Synthesis of (+)-Sieboldine a: Evolution of a Pinacol-Terminated Cyclization Strategy. J. Org. Chem. 2013, 78, 9–34.

(46) Kitahara, K.; Toma, T.; Shimokawa, J.; Fukuyama, T. O-TBS-N-Tosylhydroxylamine: A Reagent for Facile Conversion of Alcohols to Oximes. *Org. Lett.* **2008**, *10*, 2259–2261.

(47) Kan, T.; Fukuyama, T. Ns Strategies: A Highly Versatile Synthetic Method for Amines. *Chem. Commun.* **2004**, *4*, 353–359.

(48) Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. One-Step α -Tosyloxylation of Ketones with [Hydroxy(Tosyloxy)Iodo]Benzene. J. Org. Chem. **1982**, 47, 2487–2489.

(49) Pike, V. W.; Butt, F.; Shah, A.; Widdowson, D. A. Facile Synthesis of Substituted Diaryliodonium Tosylates by Treatment of Aryltributylstannanes with Koser's Reagent. *J. Chem. Soc., Perkin Trans. 1* 1999, 245–248.

(50) Full characterization of this compound could not be conducted due to limited amount.

(51) Hill, J.; Hettikankanamalage, A. A.; Crich, D. Diversity-Oriented Synthesis of N, N, O-Trisubstituted Hydroxylamines from Alcohols and Amines by N-O Bond Formation. *J. Am. Chem. Soc.* **2020**, *142*, 14820–14825.

(52) Chen, C.; Reamer, R. A. A Facile Synthesis of N,3-Disubstituted Indoles and 3-Hydroxyl Indolines via an Intramolecular SNAr of Fluorinated Amino Alcohols. *Tetrahedron Lett.* **2009**, *50*, 1529–1532.

(53) Kitajima, M.; Takayama, H.; Sakai, S. Synthesis of a Novel Gelsedine-Type Gelsemium Alkalid, Gelsemicine. J. Chem. Soc., Perkin Trans. 1 1994, 1573–1578.

(54) Henmi, T.; Sakamoto, T.; Kikugawa, Y. A New Synthesis of 1-Hydroxyindoles and Spectra of 1-Hydroxyindole. *Heterocycles* **1997**, 44, 157–163.

(55) Somei, M.; Kawasaki, T. A New and Simple Synthesis of 1-Hydroxyindole Derivatives. *Heterocycles* **1989**, *29*, 1251–1254.

(56) Somei, M. 1-Hydroxyindoles. *Heterocycles* **1999**, *50*, 1157–1211.

(57) Sheradsky, T.; Nov, E. Studies on the Preparation of N-Alkyl-O-phenylhydroxylamines. J. Chem. Soc., Perkin Trans. 1 1980, 1, 2781–2786.

(58) Kawase, M.; Kitamura, T.; Kikugawa, Y. Electrophilic Aromatic Substitution with N-Methoxy-N-acylnitrenium Ions Generated from N-Chloro-N-methoxyamides: Syntheses of Nitrogen Heterocyclic Compounds Bearing a N-Methoxyamide Group. *J. Org. Chem.* **1989**, *54*, 3394–3403.

(59) Yang, Y.; Wu, X.; Han, J.; Mao, S.; Qian, X.; Wang, L. Cesium Carbonate Promoted Direct Arylation of Hydroxylamines and Oximes with Diaryliodonium Salts. *Eur. J. Org. Chem.* **2014**, 6854–6857.

(60) Lucchetti, N.; Scalone, M.; Fantasia, S.; Muñiz, K. An Improved Catalyst for Iodine(I/III)-Catalysed Intermolecular C-H Amination. *Adv. Synth. Catal.* **2016**, 358, 2093–2099.

(61) Li, Q.; Zhang, M.; Zhan, S.; Gu, Z. Copper-Catalyzed Enantioselective Ring-Opening of Cyclic Diaryliodoniums and O-Alkylhydroxylamines. *Org. Lett.* **2019**, *21*, 6374–6377.

(62) Ma, X. P.; Shi, W. M.; Mo, X. L.; Li, X. H.; Li, L. G.; Pan, C. X.; Chen, B.; Su, G. F.; Mo, D. L. Synthesis of α,β -Unsaturated N-Aryl Ketonitrones from Oximes and Diaryliodonium Salts: Observation of a Metal-Free N-Arylation Process. *J. Org. Chem.* **2015**, *80*, 10098– 10107.

(63) Albini, A. Synthetic Utility of Amine N-Oxides. *Synthesis* **1993**, 263–277.

(64) Oae, S.; Ogino, K. Rearrangements of T-Amine Oxides. *Heterocycles* **1977**, *6*, 583–675.

(65) Nikishin, G. I.; Troyansky, E. I.; Svitanko, I. V.; Chizhov, O. S. N,O-Acylotropy in N-Methylpentanehydroxamic Acid. *Tetrahedron Lett.* **1984**, *25*, 97–98.

(66) Reitti, M.; Villo, P.; Olofsson, B. One-Pot C–H Functionalization of Arenes by Diaryliodonium Salts. *Angew. Chem., Int. Ed.* **2016**, 55, 8928–8932.

(67) Wu, S. Y.; Ma, X. P.; Liang, C.; Mo, D. L. Synthesis of N-Aryl Oxindole Nitrones through a Metal-Free Selective N-Arylation Process. J. Org. Chem. 2017, 82, 3232–3238.

(68) We suppose that the original Ishikawa indole synthesis might also involve reaction mechanism similar to that proposed in Scheme 5, i.e. reductive elimination of iodobenzene to form the pyrrolidine ring first, followed by *N*-to-*O* acyl rearrangement. See also calculation results for a carbamate substrate in the SI.

(69) We observed trace amounts of another byproduct that is likely to be 7-O-Boc indole, but full characterization has not been done due to the very small quantity of this compound.

(70) Ram, R. N.; Soni, V. K. Synthesis of 3-Alkylbenzoxazolones from N-Alkyl-N-arylhydroxylamines by Contiguous O-Trichloroacetylation, Trichloroacetoxy ortho-Shift, and Cyclization Sequence. *J. Org. Chem.* **2013**, *78*, 11935–11947.

(71) Gwaltney, S., II; Jae, H.-S.; Kalvin, D. M.; Liu, G.; Sham, H. L.; Li, Q.; Claiborne, A. K.; Wang, L.; Barr, K. J.; Woods, K. W. Substituted Oxazolines as Antiproliferative Agents. WO2000/006556, 2000.

(72) Wessely, F.; Holzer, L.; Vilcsek, H. Über die Einwirkung von metallorganischen Verbindungen auf Chinole I. *Monatsh. Chem.* **1952**, 83, 1253.

(73) Ohtaka, A.; Kozono, M.; Takahashi, K.; Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.; Nomura, R. Linear Polystyrene-stabilized Pt Nanoparticles Catalyzed Indole Synthesis in Water via Aerobic Alcohol Oxidation. *Chem. Lett.* **2016**, *45*, 758.

(74) Tsuji, Y.; Kotachi, S.; Huh, K. T.; Watanabe, Y. Rutheniumcatalyzed dehydrogenative N-heterocyclization. Indoles from 2aminophenethyl alcohols and 2-nitrophenethyl alcohols. *J. Org. Chem.* **1990**, *55*, 580.

(75) Canham, S. M.; France, D. J.; Overman, L. E. Total Synthesis of (+)-Sieboldine A: Evolution of a Pinacol-Terminated Cyclizaion Strategy. J. Org. Chem. 2013, 78, 9.

(76) Tang, L.; Yang, Z.; Yang, F.; Huang, Y.; Chen, H.; Cheng, H.; Song, W.; Ren, B.; Zhou, Q. Catalyst-Free α -Aminoxylation of 1,3-Dicarbonyl Compounds with TEMPO Using Selectfluor as an Oxidant. *ChemistrySelect* **2019**, *4*, 12053.

(77) Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C. Enantioselective Organocatalytic Amine Conjugate Addition. *J. Am. Chem. Soc.* **2006**, *128*, 9328.

(78) Huang, Y.-Q.; Song, H.-J.; Liu, Y.-X.; Wang, Q.-M. Dehydrogenation of N-Heterocycles by Superoxide Ion Generated through Single-Electron Transfer. *Chem. – Eur. J.* **2018**, *24*, 2065.

(79) Zhang, H.-J.; Lin, W.; Su, F.; Wen, T.-B. Rhodium-Catalyzed β -Selective Oxidative Heck-Type Coupling of Vinyl Acetate via C-H Activation. *Org. Lett.* **2016**, *18*, 6356.

(80) Raucher, S.; Koolpe, G. A. Synthesis of Substituted Indoles via Meerwein Arylation. J. Org. Chem. 1983, 48, 2066.

(81) Zhang, J.; Chen, S.; Chen, F.; Xu, W.; Deng, G.-J.; Gong, H. Dehydrogenation of Nitrogen Heterocycles Using Graphene Oxide as a Versatile Metal-Free Catalyst under Air. *Adv. Synth. Catal.* **2017**, 359, 2358.

(82) Choi, I.; Chung, H.; Park, J. W.; Chung, Y. K. Active and Recyclable Catalytic Synthesis of Indoles by Reductive Cyclization of 2-(2-Nitroaryl)acetonitriles in the Presence of Co-Rh Heterobimetallic Nanoparticles with Atmospheric Hydrogen under Mild Conditions. Org. Lett. **2016**, *18*, 5508.

NOTE ADDED AFTER ASAP PUBLICATION

This paper was published ASAP on July 1, 2021 with an error in the Abstract Graphic and related error in text. The corrected version was reposted on July 15, 2021.