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This study describes, firstly, the synthesis of a new precursor, 4,6,6-trimethoxy-1,1,1-trifluorohex-3-en-
2-one (1), from the trifluoroacetylation reaction of 1,1,3,3-tetramethoxybutane, in 65% yields. Afterwards,
the reaction of 1 with two hydrazines (NH2NHR, where R = 2-furanoyl, C6F5) led to a new series of 4,5-
dihydro-1H-pyrazoles, containing an acetal-protected aldehyde function as substituent, in 90–97% yields.
In a subsequent step, the dehydration reactions of these 4,5-dihydro-1H-pyrazoles gave the respective
aromatic 1H-pyrazoles. Finally, we report the results of the deprotection reactions of the acetals to obtain
the respective aldehyde function, as well as, the subsequent fluorination reaction using DAST, leading to
new difluorinated derivatives in 55–60% yields.

� 2009 Elsevier Ltd. All rights reserved.
Pyrazoles are important compounds that have many derivatives
with a wide range of interesting properties, such as anti-hypergly-
cemic, analgesic, anti-inflammatory, anti-pyretic, anti-bacterial,
and hypoglycemic and sedative-hypnotic activities.1 Many com-
pounds that present phenylpyrazoles in their structures are known
to have significant pharmacological activities, such as Celecoxib
(Celebra�), an anti-inflammatory that acts as a selective inhibitor
of the enzyme prostaglandin endoperoxide synthase-2 (PGHS-2),2

Fipronil, which belongs to a second generation of N-phenylpyraz-
oles3 insecticides, and sildenafil citrate (Viagra�), used against
erectile dysfunction.

Due to the importance of this class of compounds, since the
1980s we have developed synthetic routes to obtain strategically
substituted heterocycles that provide possibilities for chemical
derivatizations, leading to a substance, or its structural analogue,
with proven applications.4 The synthesis of pyrazoles that have a
protected aldehyde function as an acetal moiety, obtained in a sin-
gle-reaction step, deserves considerable attention, because this
substituent shows great chemical potential and serves as an inter-
mediary compound for a wide range of synthetic routes.

The presence of difluoro- and trifluoromethyl substituents in
heterocycle rings is also of importance, because of the properties
presented by fluorine atoms. For example, in contrast to the single
replacement of a hydrogen by fluorine, the replacement of a meth-
ylene function with a difluoromethylene function (CH2 for CF2) can
have a significant effect on both conformation and physical proper-
ties.5 In fact, the difluoromethylene moiety has been used as an
electronic mimic of labile oxygen atoms in phosphate esters (R–
ll rights reserved.

x: +55 55 3220 8031.
orso).
CF2–PO3
2� vs R–OPO3

2�). This functional group has been exten-
sively used in the design of inhibitors of enzymes that hydrolyze
or bind phosphate esters.6 The CF2 has been proposed as an ade-
quate isosteric and isopolar replacement for the hydroxyl group,
because of its size, electron distribution, and ability to act as a
hydrogen bond acceptor.7–9

Various research groups are developing CF3 containing substi-
tuted compounds, which have attracted considerable attention
due to their biological and pharmacological characteristics. The
influence of the trifluoromethyl substituent on physiological activ-
ity is due mainly to the increased lipophilicity of the molecules,
causing greater cell permeability.10

Moreover, compounds that have more than one CF3 group pres-
ent in the molecule are of even greater prominence, and have been
obtained fairly over the last few years. For example, 3,5-bis(trifluo-
romethyl) pyrazoles (BTP’s)11 are known as a new class of inhibi-
tors of cytokine. Furthermore, these compounds have also proven
useful in the treatment of autoimmune diseases and in the rejec-
tion of transplant organs.12,13

However, despite the importance of fluorine molecules, 1H-pyr-
azoles simultaneously containing trifluoromethyl and difluoroalkyl
substituents have not yet been described. So far, our research
group has conducted the introduction of fluorine atoms in hetero-
cyclic molecules through the employment of 1,3-dielectrophile tri-
fluoromethyl-substituted precursors from the reaction of
trifluoroacetylation of enol ethers or acetals with trifluoroacetic
anhydride.14

Due to the fact that the existing methods for direct fluorination
or trifluoroacetylation of organic compounds do not always allow
for the introduction of fluorine atoms at the desired position, ap-
proaches based on the use of synthetic precursors containing
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fluorine are necessary. An alternate route is to use reagents that in
the first step transform the substituent into a good leaving group,
which will be replaced by fluorine in the second step. Within this
alternative proposal, one important and widely used reagent in
the fluorination of nucleosides, carbohydrates, and other organic
compounds is DAST (diethylaminosulfur trifluoride).15–17

With the intention of carrying out future biological evaluations,
it seemed desirable to develop a general method for the synthesis
of trifluoromethyl- and 1,1-difluoroethan-2-yl-1H-pyrazoles. Thus,
as an extension of our research program, we wish to report the first
regiospecific preparation of the precursor 4,6,6-trimethoxy-1,1,1-
trifluorohex-3-en-2-one (1) (Scheme 1), as well as, an alternative
and efficient route to obtain new trifluoromethyl-4,5-dihydro-
1H-pyrazoles, which contain an acetal-protected aldehyde
function, as substituent. In a subsequent step, the dehydration
reactions of 4,5-dihydro-1H-pyrazoles are reported, leading also
to protected 1H-pyrazoles. Finally, this study reports the deprotec-
tion of the acetal function to obtain the respective carbonyl
compounds and the subsequent fluorination reactions, using dieth-
ylaminosulfur trifluoride (DAST), leading to the difluorinated
analogues (Scheme 2).

4,6,6-Trimethoxy-1,1,1-trifluorohex-3-en-2-one (1) is a readily
available CCC synthetic block, and was prepared from the trifluoro-
acetylation reaction of 1,1,3,3-tetramethoxybutane, derived from
4,4-dimethoxybutan-2-one, with trifluoroacetic anhydride
(Scheme 1).21,22

In this study, we found that 4,6,6-trimethoxy-1,1,1-trifluoro-
hex-3-en-2-one (1), when treated with hydrazines in a molar ratio
of 1:1, respectively, in ethanol as solvent for 4–20 h, at reflux, pro-
duced regiospecifically 3-(1,1-dimethoxyetan-2-yl)-5-hydroxy-5-
trifluoromethyl-4,5-dihydro-1H-pyrazoles (2a–b) in a one-step
reaction and in 90–97% yields (Scheme 2).23,24

The dehydration reaction of compounds 2a–b was carried out
by the methodology described by Padwa,18 which has the advan-
tage of obtaining heterocycles 3a–b25,26 while maintaining the
aldehyde group in the form of an acetal and also, in our case, pre-
venting the loss of the N1 substituent of the pyrazoline ring.

After the dehydration reaction of the 5-hydroxy-4,5-dihydro-
1H-pyrazoles (2a–b), we sought to carry out the difluorination of
the aromatic compounds 3a–b. However, the desired products
were not isolated. Instead, we isolated the starting material (5-tri-
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Scheme 1. Reagents and conditions: (i) @HC(OMe)3, TsOH, MeOH, 24 h, rt (90%).
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Scheme 2. Reagents and conditions: (i) @NH2NHR, EtOH, 4–20 h, reflux. (ii) @SOCl2, Py
24 h, rt.
fluoromethyl-1H-pyrazoles) demonstrating that DAST does not re-
act with the acetal function, even when it is connected to an
aromatic heterocycle, as in the case of compounds 3a–b. As the
5-trifluoromethyl-1H-pyrazoles (3a–b) did not react with DAST,
we sought alternative routes to achieve the difluorination of these
compounds. The method proposed herein is the deprotection of the
acetal function of the pyrazoline ring, leading to the corresponding
carbonyl compounds, and the subsequent introduction of fluorine
atoms into the molecules.

In order to isolate the carbonyl derivatives, an acetal deprotec-
tion reaction was carried out. Several methods were tested,19 and
the procedure described by Elisson et al.,20 using trifluoroacetic
acid in chloroform, showed the best results. This procedure, after
optimization, allowed attainment of 3-(formylmethyl)-5-trifluoro-
methyl-1H-pyrazoles (4a–b) in 55–65% yields.27,28 After obtaining
carbonyl compounds 4a–b, a difluorination step using DAST was
carried out in dichloromethane, at room temperature for 24 h,
leading to the isolation of difluorinated compounds 3-(1,1-difluo-
roethan-2-yl)-5-(trifluoromethyl)-1H-pyrazoles (5a–b) in 55–60%
yields (Scheme 2).29,30

An important feature in the 1H NMR spectra of compounds 5a–b
is the presence of a triplet in the region of 6.1–6.2 ppm, resulting
from the coupling of the H-7 with two fluorine atoms, with a con-
stant coupling of J = 55 Hz and with two hydrogen methylene
atoms, with a constant coupling of J = 5 Hz. Another feature is
the presence of a triplet of doublet in the region of 3.2–3.3 ppm
from the coupling of the H-6 (CH2) with two fluorine atoms (triplet
with J = 17 Hz) and with the atom of hydrogen H-7 (CHF2) (doublet
with J = 5 Hz).

As for the 13C{1H}NMR spectra for compounds 5a–b, the pres-
ence of a triplet in the region of 114 ppm for the CHF2 group with
a constant coupling of J = 241 Hz and another triplet in the region
of 33 ppm for the carbon C6, with J = 24 Hz, both resulting from the
C–F coupling at the difluoroethyl substituent.

In summary, we developed the first efficient and regiospecific
preparation of 4,6,6-trimethoxy-1,1,1-trifluorohex-3-en-2-one
(1), a new precursor for the synthesis of a novel series of 1H-pyra-
zoles (2 and 3), which contain an acetal-protected aldehyde func-
tion as substituent. Moreover, a synthetic procedure that allowed
the regiospecific introduction of fluorine atoms was developed,
leading to the simultaneous obtainment of trifluoromethyl- and
difluoromethyl-substituted pyrazoles (5), in good yields.

Unless otherwise indicated all common reagents and solvents
were used as obtained from commercial suppliers without further
purification. All melting points were determined on a Reichert
Thermovar apparatus, and are uncorrected. 1H and 13C NMR spec-
tra were acquired on a Bruker DPX 200 spectrometer (1H at
200.13 MHz and 13C at 50.32 MHz), 5 mm sample tubes, 298 K,
digital resolution ±0.01 ppm, in DMSO-d6 for 2a and CDCl3 for 2b,
3a–b, 4a–b, 5a–b, using TMS as internal reference. The CHN ele-
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, benzene, 1 h, 0–25 �C. (iii) @CF3COOH, H2O, CHCl3, 4 h, 30 �C; (iv) @DAST, CHCl2,
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mental analyses were performed on a Perkin Elmer 2400 CHN ele-
mental analyzer (São Paulo University—USP/Brazil). Mass spectra
were registered in a HP 5973 MSD connected to a HP 6890 GC
and interfaced by a Pentium PC. The GC was equipped with a
split-splitless injector, autosampler, cross-linked HP-5 capillary
column (30 m, 0.32 mm of internal diameter), and He was used
as the carrier gas.
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30. Compounds 5a–b were characterized by 1H and 13C NMR. Spectral NMR data of
compound 5a: 1H NMR (CDCl3) d = 7.8 (d, 1H, J = 4.0, H-50), 7.8 (s, 1H, H-30), 6.9
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