

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 1841-1845

1,3-Dioxo-4-methyl-2,3-dihydro-1*H*-pyrrolo[3,4-*c*]quinolines as potent caspase-3 inhibitors

Dmitri V. Kravchenko,^a Vladimir V. Kysil,^b Alexey P. Ilyn,^b Sergey E. Tkachenko,^{b,c} Sergey Maliarchouk,^{b,d} Ilya M. Okun^{b,d} and Alexandre V. Ivachtchenko^{b,*}

^aDepartment of Organic Chemistry, Chemical Diversity Research Institute, 114401 Khimki, Moscow Region, Russia ^bChemDiv, Inc., 92121 San Diego, CA, USA

^cDepartment of Medicinal Chemistry, Chemical Diversity Research Institute, 114401 Khimki, Moscow Region, Russia ^dDepartment of Molecular Biology and High-Throughput Screening, Chemical Diversity Research Institute, 114401 Khimki, Moscow Region, Russia

Received 27 October 2004; revised 7 February 2005; accepted 8 February 2005

Abstract—Synthesis, biological evaluation and structure–activity relationships for a series of novel nonpeptide small molecule inhibitors of caspase-3 are described. Among the studied compounds, 8-sulfamide derivatives of 1,3-dioxo-4-methyl-2,3-dihydro-1*H*-pyrrolo[3,4-*c*]quinolines have been identified as potent inhibitors of caspases-3. The most active compound within this series (**8f**) inhibited caspase-3 with IC₅₀ = 4 nM. © 2005 Elsevier Ltd. All rights reserved.

The caspase family comprises a family of highly homologous cysteine proteases that play key roles in inflammation and apoptosis.¹ Among several different groups of caspase enzymes, caspases-3 play a key role in apoptosis.² Therefore, they are attractive targets for therapeutic intervention in several diseases because of the central role played by apoptosis in those conditions. For instance, inhibitors of caspase-3 were described as promising cardioprotectants,³ neuroprotectants⁴ and hepatoprotectants.⁵ Recently, we reported the discovery of a novel class of potent small molecule inhibitors of caspase-3.⁶ In this paper, we describe synthesis, biological evaluation and structure–activity relationships for this series of

Keywords: Caspase-3; Inhibitor; 1*H*-pyrrolo[3,4-*c*]quinoline.

0960-894X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.02.027

novel nonpeptide small molecule inhibitors of caspase-3 having general formula I. The target 4-methyl-1,3-dioxo-2,3-dihydro-1*H*-pyrrolo[3,4-*c*]quinolines of general formula I were synthesized using a previously reported synthetic method based on Pfitzinger reaction.⁷

According to this approach depicted in Scheme 1, isatins 1a-e were suspended in water to an approximate concentration of 0.5 M and hydrolyzed with NaOH to give oxoacetates 2a-e; the latter were then treated in situ with methyl acetoacetate (2 mol. equiv) to afford the corresponding dicarboxylic acids 3a-e. The acids 3a-e were converted into furan-2,5-diones 4a-e upon the reaction with an excess of acetic anhydride in dry pyridine. Reactions of 1 M solutions of anhydrides 4a-e in pyridine with equimolar amounts of different primary amines 5a-f smoothly led to imides 6a-t.

Using the described synthetic scheme, we have obtained a series of novel compounds, which have not been previously reported in the literature. Thus, compound **6s** was synthesized from **1e** as outlined in Scheme 1 in 67% yield and used to synthesize an additional compound series as outlined in Scheme 2.

Chlorosulfonate **6w** was synthesized using reaction of **6s** with POCl₃ at a temperature of $100 \text{ }^{\circ}\text{C}$. Pyridinium

^{*} Corresponding author. Tel.: +1 858 794 4860; fax: +1 858 794 4931; e-mail: av@chemdiv.com

Scheme 2.

sulfonate **6s** was also converted into acid **6u** and sodium salt **6v** upon treatment with concd HCl or aqueous NaCl, correspondingly; these compounds have also been used in the following biological experiments. Chlorosulfonate **6w** appeared to be a convenient intermediate for synthesis of a small combinatorial library of 8-sulfamide derivatives. The reaction between equimolar amounts of **6w** and six linear and cyclic aliphatic amines **7a–f** dissolved in DMSO to an approximate concentration of 1 M in each component proceeded at room temperature and afforded individual sulfonamides **8a–f** in good yields. In addition, the 8-bromo substituted compound **6t** was reacted with KCN in the presence of CuI, N,N'-dimethylethylendiamine and dimethoxyethane under microwave irradiation conditions to afford the 8-cyano derivative **9**. The microwave instrument used was a commercial household microwave oven (Moulinex FM1935G, frequency: 2450 MHz).

All the synthesized compounds were characterized by ¹H NMR; LCMS and HRMS spectral data. Satisfactory analytical data consistent with the shown molecular structures were obtained for all compounds.

Compounds 6a-v, 8a-f and 9 have been tested on their ability to inhibit caspase-3 catalyzed proteolytic breakdown of its fluorogenic substrate, Ac-DEVD-AMC. The caspase-3 activity with and without inhibitors was measured in accordance with the reported protocol⁸ using VICTOR²V (Perkin-Elmer) multimode 96/384well plate reader by the rate of fluorescence increase $(\lambda_{ex} 360 \text{ nm}, \lambda_{em} 460 \text{ nm})$ due to the liberation of a methylcoumarin moiety with concomitant increase in its quantum yield. For all the compounds that exhibited more than 50% inhibition at a concentration of $100 \,\mu\text{M}$, the dose-dependent caspase-3 inhibition curves were registered and the IC_{50} values were calculated using PRISM 4 (GraphPad) software. The most active compounds displayed dose-response curves with a Hill slope close to unity, which indicates a high probability of the compounds being real inhibitors and not promiscuous ones.

The synthesized 4-methyl-1,3-dioxo-2,3-dihydro-1Hpyrrolo[3,4-c]quinolines of general formula I displayed high activity in this in vitro caspase-3 inhibition assay (Tables 1 and 2). The activity strongly depends on the nature of substituents in position 2 and especially in the position 8 of this heterocyclic system. In the general case, the activity increases with the increase of electronwithdrawing capacity of the 8-substitutent. Thus, for a group of 2-unsubstituted compounds 6a-d, compound **6a** with $R^1 = H$ has $IC_{50} > 100 \mu$ M; 8-fluoro derivative **6b** and 8-bromo derivative **6c** have IC_{50} equal to 62.8 and 37.1 µM, correspondingly; and 8-(morpholine-4-sulfonyl)-substituted compound **6d** has $IC_{50} = 0.21 \,\mu M$. In this group, the activity changed by three orders of magnitude. Similar dependencies were observed within all other congeneric series with identical 2-substituents.

The observed correlations between the electron-withdrawing ability of the 8-substituent (R¹) and the potency of inhibition are shown in Figure 1. These data suggest that electrophilicity of the imide carbonyls plays a definite role in activity of the studied compounds. The mechanism of inhibition has been studied for a large variety of compounds possessing the electrophilic carbonyls, such as peptidealdehydes,⁹ isatins,¹⁰ homophthalimides,¹¹ quinazolinones,¹² etc. In the reported cases, the mechanism involved addition of the enzyme's catalytic cysteine residue to carbonyl moiety (Fig. 2).

The ability of thiols to reversibly interact with phthalimide-like compounds¹³ in a similar manner suggests that the caspase enzyme could also be reversibly inactivated by electrophilic carbonyls of compounds of gen-

Table 1. In vitro caspase-3 inhibition assay results for compounds 6a-v and 9

Compd	\mathbf{R}^1	\mathbb{R}^2	IC50 (µM)
69	Н	н	>100
6h	E E	и и	62.80
00	Г р	п	02.80
6c	Br	Н	37.10
6d	*	Н	0.21
6e	н	CH ₂	6 36
6£	Dr.		1.58
01	DI	C11 ₃	1.56
6g	*−S=N_O	CH ₃	0.044
6h	Н	CH2-CO2CH2	4.65
6	F	CH. CO.CH.	2 50
	I D.		2.50
oj	Br	$CH_2 - CO_2 CH_3$	0.46
6k	*	CH ₂ -CO ₂ CH ₃	0.016
61	Н	CH ₂ CH ₂ -CO ₂ CH ₃	23.3
6m	F	CH ₂ CH ₂ -CO ₂ CH ₂	5.5
6m	I D.		1.00
on	Br	$CH_2CH_2-CO_2CH_3$	1.08
60	0 ∺−S−N_0 0	CH ₂ CH ₂ -CO ₂ CH ₃	0.037
6p	Н	H ₃ C	8.11
6q	Br	H ₃ C	2.54
6r	*	H ₃ C	0.015
6s	$\mathrm{SO}_3^-\mathrm{PyH}^+$		0.1
6t	Br	H ₃ C + CH ₃ CH ₃	0.36
6u	SO ₃ H	$H_3C \xrightarrow{K} N$	0.09
6v	$\mathrm{SO}_3^-\mathrm{Na}^+$	H ₃ C , , , , , , , , , , , , ,	0.14
9	CN		0.016

eral formula I given appropriate substituents R^1 and R^2 are present.

The nature of the 2-substituents also influences the activity of the synthesized compounds against caspase-3. Thus, in all the studied congeneric series with identical 8-substituents, minimal activity was observed for 2unsubstituted compounds. The most active compounds

 Table 2. In vitro caspase-3 inhibition assay results for 8-(morpholin-4ylsulfonyl) and 1,3,5-trimethyl-1*H*-pyrazol-4-yl substituted compounds

have methoxycarbonylmethyl (e.g., **6j** and **6k** with IC₅₀ = 0.46 and 0.016 μ M, correspondingly), 2-methylphenyl (e.g., **6r** with IC₅₀ = 0.015 μ M) and 1,3,5-trimethyl-1*H*-pyrazol-4-yl (e.g., **8f** with IC₅₀ = 0.004 μ M) substituents in the position 2. Submicromolar activity was observed for two 2-bromo substituted derivatives **6j** and **6t** (IC₅₀ equal to 0.46 and 0.36 μ M, correspondingly). Sulfonates **6s**, **6u** and **6v** inhibited caspase-3 in the 0.09–0.14 μ M range.

Figure 1. Relationship between inhibitory activities (pIC₅₀) and σ_p Hammett constants for R¹ substituents in the series 6.

Among the studied compounds, 8-sulfamide and 8-cyano derivatives of 1,3-dioxo-4-methyl-2,3-dihydro-1*H*pyrrolo[3,4-*c*]quinolines have been identified as potent inhibitors of caspases-3. The most active compounds within this series, such as **6k**, **6r**, **8b**, **8f** and **9**, inhibited caspase-3 in the 4–20 nM range. Compound **8f** was the most potent inhibitor with IC₅₀ value equal to 4 nM. Parallel experiments demonstrated that the IC₅₀ values for Ac-DEVD-CHO, a potent tetrapeptide inhibitor of caspase-3, was equal to 3.1 nM under the same experimental conditions.

In summary, here we have described the synthesis and activity of a novel class of potent caspase-3 inhibitors based on pyrrolo[3,4-*c*]quinoline-1,3-dione molecular scaffold. Caspase-3 inhibitory activity of the synthesized compounds is highly dependent on the substitutions on the core scaffold, especially at the 8-position. Compound **8f** with a morpholinesulfonyl moiety at the 8-position and 1,3,5-trimethyl-1*H*-pyrazol-4-yl group at the 2-position is the lead compound with potent inhibitory activity (IC₅₀ = 4 nM). Evaluation against other caspases involved in apoptosis, as well as further SAR studies, is continuing.

Acknowledgements

The authors thank Caroline T. Williams (Department of Analytical Chemistry, ChemDiv, Inc.) for LCMS and NMR spectral data.

References and notes

- Stennicke, H. R.; Ryan, C. A.; Salvesen, G. S. Trends Biochem. Sci. 2002, 27, 94.
- 2. Porter, A. G.; Janicke, R. U. Cell Death Differ 1999, 6, 99.
- Chapman, J.; Magee, W.; Stukenbrok, H.; Beckius, G.; Milici, A.; Tracey, W. Eur. J. Pharmacol. 2002, 456, 59.
- Scott, C.; Sobotka-Briner, C.; Wilkins, D.; Jacobs, R.; Folmer, J.; Frazee, W.; Bhat, R.; Ghanekar, S.; Aharony, D. *Pharmacol. Exp. Ther.* 2003, 304, 433.
- Anselmo, D.; Katori, M.; Kaldas, M.; Hoglen, N.; Valentino, K.; Busuttil, R.; Kupiec-Weglinski, W.; Farmer, D. Am. J. Transplant. 2002, 2, 920.
- Ivachtchenko, A.; Khvat, A.; Kysil, V.; Maliartchuk, S.; Tkachenko, S.; Okun, I. *Drugs Future* 2004, 29, 191.
- (a) Pfitzinger, W. J. Prakt. Chem. 1886, 33, 100; (b) Godard, A.; Queguiner, G. J. Heterocycl. Chem. 1980, 17, 465; (c) Campaigne, E.; Hutchinson, J. H. J. Heterocycl. Chem. 1970, 7, 655; (d) Ried, W.; Weidemann, P. Chem. Ber. 1971, 104, 3341; (e) Ganjian, I.; Khorshidi, M.; Lalezari, I. J. Heterocycl. Chem. 1991, 28, 1173; (f)

Figure 2. Possible modes of caspase nucleophilic attack on the 'phtalimide' carbonyls.

Ivachtchenko, A. V.; Kobak, V. V.; Il'yin, A. P.; Trifilenkov, A. S.; Busel, A. A. *J. Comb. Chem.* **2003**, *5*, 645.

- Durrieu, F.; Belloc, F.; Lacoste, L.; Dumain, P.; Chabrol, J.; Dachary-Prigent, J.; Morjani, H.; Boisseau, M. R.; Reiffers, J.; Bernard, P.; Lacombe, F. *Exp. Cell Res.* 1998, 240, 165.
- Webber, S. E.; Okano, K.; Little, T. L.; Reich, S. H.; Xin, Y.; Fuhrman, S. A.; Matthews, D. A.; Love, R. A.; Hendrickson, T. F.; Patick, A. K.; Meador, J. W., III; Ferre, R. A.; Brown, E. L.; Ford, C. E.; Binford, S. L.; Worland, S. T. J. Med. Chem. 1998, 41, 2786.
- Webber, S. E.; Tikhe, J.; Worland, S. T.; Fuhrman, S. A.; Hendrickson, T. F.; Matthews, D. A.; Love, R. A.; Patick, A. K.; Meador, J. W.; Ferre, R. A.; Brown, E. L.; DeLisle, D. A.; Ford, C. E.; Binford, S. L. J. Med. Chem. 1996, 39, 5072.
- Wang, Q. M.; Johnson, R. B.; Jungheim, L. N.; Cohen, J. D.; Villarreal, E. C. Antimicrob. Agents Chemother. 1998, 42, 916.
- Scott, C.; Sobotka-Briner, C.; Wilkins, D.; Jacobs, R.; Folmer, J.; Frazee, W.; Bhat, R.; Ghanekar, S.; Aharony, D. J. Pharmacol. Exp. Ther. 2003, 304, 433.
- 13. Oswaldo, N.; Jose, R.; Larry, A. J. Phys. Org. Chem. 1994, 7, 80.