Tetrahedron Letters 56 (2015) 6085-6088

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

New access to thioglycolurils by condensation of 4,5dihydroxyimidazolidin-2-ones(thiones) with HSCN

Vladimir V. Baranov^{a,*}, Yulia V. Nelyubina^{b,*}, Angelina N. Kravchenko^a, Natalya G. Kolotyrkina^a, Ksenia A. Biriukova^a

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation ^b A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation

ARTICLE INFO

Article history: Received 19 June 2015 Revised 7 September 2015 Accepted 17 September 2015 Available online 21 September 2015

Keywords: Thioglycolurils Imidazolidin-2-one(thione) HSCN Condensation

ABSTRACT

A general and highly effective protocol for the direct synthesis of mono- and dithioglycolurils containing various substituents at the 1,3-nitrogen atoms has been developed based on the condensation of easily accessible dihydroxyimidazolidin-2-ones with HSCN under mild reactions conditions.

© 2015 Elsevier Ltd. All rights reserved.

Nitrogen- and sulfur-containing fused heterocycles have a broad range of biological activities and are attractive compounds for medicinal chemistry.¹ Bicyclic structures containing a C-C-bridgehead imidazolidin-2-one(thione) moiety fused with imidazolidin-2-one,² tetrahydrothiophene,³ pyrrolidine⁴ and tetrahydrofuran⁵ motifs are important classes of compounds in pharmaceutical chemistry. Some of these compounds constitute the core structures of commercial drugs such as biotin (which show antimicrobial, antidiabetic and antibacterial activities).³

Our research group has significant experience in the synthesis of similar heterocyclic systems, including tetrahydroimidazo[4,5-*d*] imidazole-2,5(1*H*,3*H*)-diones(glycolurils), of which the best known is the tranquilizer mebicar (1,3,4,6-tetramethylglycoluril).^{2a} Analogues of mebicar are also important: albicar (1,4-diethyl-3,6-dimethylglycoluril) and bicaret (1,3,4,6-tetraethylglycoluril), have passed several preclinical and laboratory tests.^{2d-g} Therefore, the development of new strategies for the synthesis of heterocyclic compounds incorporating the imidazolidin-2-one(thione) moiety fused with any nitrogen- or sulfur-containing heterocycles represent a challenging task for organic and medical chemistry.

Recently, we reported difficult to synthesize bicyclic heterocyclic structures **1** and **2**, in which the imidazolidin-2-one(thione) ring was fused with an oxazolidine ring.⁶ These compounds were Scheme 1. Reactions of 4,5-Ph₂DHI 3 and 4,5-Ph₂DHIT 4 with KSCN/H⁺.

prepared by the reaction of either 4,5-dihydroxy-4,5-diphenylimidazolidin-2-one (4,5-Ph₂DHI) **3** or the analogous thiones (4,5-Ph₂-DHIT) **4a,b** with KSCN/ACOH in MeOH. The reaction of 4,5-Ph₂DHIT **4b** with KSCN/TFA in THF has been previously reported,⁷ furnishing heterocyclic system **5**, in which the imidazolidine ring was fused with an oxathiazoline ring (Scheme 1).

Unfortunately, both of these reactions afforded only a limited number of structures **1**, **2a**,**b** and **5** and therefore, it was of interest

CrossMark

^{*} Corresponding authors. Fax: +7 499 135 5328 (V.V.B.), +7 095 135 5085 (Y.V.N.). *E-mail addresses:* kani@server.ioc.ac.ru (V.V. Baranov), unelya@xrlab.ineos.ac.ru (Y.V. Nelyubina).

Scheme 2. Synthesis of monothioglycolurils 8 and dithioglycolurils 9.

Table 1

Screening of conditions for the synthesis of thioglycoluril 8a

Entry	Solvent	Acid	<i>T</i> (°C)	Time (min)	KSCN equiv ^a	Yield (%)
1	H_2O	HCl	80	30	1.25	15
2	H_2O	HCl	80	30	2.25	27
3	H_2O	HCl	80	30	3.25	28
4	Me ₂ CO	HCl	Reflux	30	2.25	35
5	MeOH	HCl	Reflux	10	2.25	37
6	MeOH	HCI	Reflux	30	2.25	78
7	MeOH	HCl	Reflux	60	2.25	69
8	MeOH	AcOH	Reflux	30	2.25	34
9	MeOH	TFA	Reflux	30	2.25	40

^a KSCN/acid molar ratio (1:1).

Table 2

Substrates scope for the synthesis of thioglycolurils 8 and 9

to extend the range of initial DHI and DHIT substrates used in the reaction with KSCN.

During the last decades, mono- and dithioglycolurils 8 and 9 have attracted the attention of many chemists. Dithioglycolurils 9 have found use as organocatalysts for the Boc protection of amines⁸ or for the α -monobromination of 1,3-dicarbonyl compounds⁹ while monothioglycolurils have been applied as building blocks for the synthesis of semithiobambusurils.¹⁰ Both thioglycoluril types have been used in the template-directed crossed-Claisen condensation,¹¹ and as molecular clips.¹² However, known methods for their synthesis are limited,^{11b,12-15} and recently developed methods generally consist of a large number of steps.^{16,17} Herein, we present a new, effective synthetic route to access monothioglycolurils (5-thioxohexahydroimidazo[4,5-d]imidazol-2(1H)-ones) 8 (tetrahydroimidazo[4.5-d]imidazole-2.5 and dithioglycolurils (1H.3H)-dithiones) **9** based on the reaction of DHI **6** and DHIT **7** with KSCN in MeOH (water, acetone) in the presence of hydrochloric acid (Scheme 2).

We began our investigation by optimizing the reaction conditions for the preparation of model thioglycoluril **8a** from the reaction of DHI **6a** with KSCN. A variety of acids, solvents, reactant molar ratios and temperatures were screened (Table 1).

In water, the yield of thioglycoluril **8a** increased (27–28%) as the KSCN/DHI **6a** molar ratio was increased (Table 1, entries 2, 3). The use of acetone as the solvent further increased the yield of **8a** to 35% (Table 1, entry 4). The replacement of water by MeOH was found to have the greatest influence on the yield of **8a**; therefore the reaction duration and nature of the acid used were next examined (Table 1, entries 5–9). The optimal conditions for the formation of thioglycoluril **8a** (78%) were determined as heating a solution of DHI **6a** (1.0 equiv) with KSCN (2.25 equiv) and HCI (2.25 equiv) in MeOH for 30 min (Table 1, entry 6).

Entry	DHI or DHIT	\mathbb{R}^1	R ²	Х	Conditions	8, 9	Yield (%) (lit)
1	6a	Me	Me	0	i	8a	78 (71 ^{15a})
2	6b	Н	Н	0	i	8b	$68(5-24^{15a})$
3	6c	Et	Et	0	i	8c	67
4	6d	Me	Ph	0	i	8d	42
5	6e	Et	Ph	0	i	8e	57
6	6f	Me	t-Bu	0	ii	8f	21 ^a
7	6g	Н	c-C ₆ H ₁₁	0	ii	8g	74
8	7a	Me	Me	S	i	9a	89
9	7b	Et	Et	S	i	9b	78
10	7c	Me	Et	S	i	9c	81
11	7d	Н	Н	S	iii	9d	70
12	7e	Ph	Ph	S	iii	9e	82
13	7f	Me	Ph	S	iii	9f	69
14	7g	Et	Ph	S	iii	9g	64
15	7h	$(CH_2)_2OH$	Ph	S	iii	9h	53
16	7i	$(CH_2)_3OH$	Ph	S	iii	9i	67
17	7j	Н	Me	S	iii	9j	92
18	7k	Н	Ph	S	iii	9k	60

(i) KSCN (2.25 equiv), HCl (2.25 equiv), H₂O, 80 °C, 30 min.

(ii) KSCN (2.25 equiv), HCl (2.25 equiv), MeOH, reflux, 30 min.

(iii) KSCN (2.25 equiv), HCl (2.25 equiv), acetone, reflux, 30 min.

^a The second product in this reaction was 1-(tert-butyl)-3-methyl-4-thioxoimidazolidin-2-one 12.

Scheme 3. Plausible mechanism for the formation of thioglycolurils 8 and 9.

In order to extend the reaction to the synthesis of a series of thioglycolurils **8** and **9**, the range of examined DHI **6a–g** and DHIT **7a–k** compounds was expanded. These compounds were easily accessible by the condensation of ureas and thioureas, respectively, with glyoxal in water with gentle heating.^{10,18}

Having a wide range of DHI **6a–g** and DHIT **7a–k** compounds in hand, we investigated their reaction with KSCN/HCl under the optimized conditions (Table 2). It was established that these conditions were only suitable for DHI **6a–e** and DHIT **7a–c** (Table 2, entries 1–5, 8–10). Because DHI **6f** and **6g** were poorly soluble in MeOH, water was used as a replacement solvent (Table 2, entries 6, 7). Acetone was used instead of MeOH for the successful synthesis of dithioglycolurils **9d–k** from DHIT **7d–k** (Table 2, entries 11–18).

The structures of all novel compounds were confirmed by ¹H and ¹³C NMR spectroscopy and high-resolution mass spectrometry. Single crystal X-Ray diffraction was performed for compounds **8a,c**, **9b,c**, **7a,c** and **12** [CCDC 1050192–1050198 contains supplementary crystallographic data for these compounds].

A plausible mechanism for the formation of thioglycolurils **8** or **9** is outlined in Scheme 3. Initially, formation of the carbeniumiminium cation **A**, followed by nucleophilic attack by the NCS anion furnishes adduct **B** with the OH and NCS groups located on different sides of the imidazolidinone ring. This *trans*-orientation of the OH and NCS groups prevents the intramolecular cyclization of intermediate **B** to give the imidazothiazole ring. Addition of water to the NCS group gives unstable hydroxycarbamothioic *O*-acid **C** which after elimination of the CSO fragment gives aminol **D**. Addition of HNCS to the NH₂ group of intermediate **D** generates the thiourea containing intermediate **E**. Finally, protonation of H₂O forms cation **F** which undergoes intramolecular cyclization to furnish the desired thioglycolurils **8** or **9**.

Conclusion

In conclusion, we have developed a new, facile and efficient synthetic route to thioglycolurils using easily accessible reagents, DHI, DHIT, KSCN and HCl, proceeding under mild conditions.¹⁹ This method proved to be suitable for the synthesis of both mono- and dithioglycolurils **8** and **9**, but it was especially effective for the synthesis of dithioglycolurils **9**, which were previously less accessible than thioglycolurils **8**. The advantages of this method are operational simplicity, step economy and the use of environmentally friendly reagents. The developed method provides a powerful tool for the synthesis of an extensive series of thioglycoluril derivatives that have previously been difficult to synthesize.

Acknowledgment

We gratefully acknowledge Russian Foundation for Basic Research (Grant no 14-03-00556 A) for the funding of this research.

Supplementary data

Supplementary data (experimental procedures, analytical and spectral data of all synthesized compounds, X-ray data) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2015.09.071.

References and notes

- (a)Chemistry of Heterocyclic Compounds; Ellis, G. P., Ed.; Wiley: New York, 2008; Vol. 47, p 660; (b) Timoshenko, D. O. In Adv. Heterocycl. Chem.; Katritzky, A. R., Ed.; Elsevier: London, 2008; Vol. 96, pp 1–80.
- (a) Mashkovskii, M. D. In Lekarstvennye Sredstva [Drugs]; Novaya Volna: Moscow, 2012; Vol. 1,; p 89; (b) Kamburg, R US Patent 227,838, 2008; Chem.

Abstr. 2008, 149, 347537.; (c) Ryzhkina, I. S.; Kiseleva, V. K.; Mishina, O. A.; Timosheva, A. P.; Sergeeva, S. Yu.; Kravchenko, A. N.; Konovalov, I. A. Mendeleev Commun. 2013, 23, 262–264; (d) Prokopov, A. A.; Berlyand, A. S.; Kazantseva, O. N. Pharm. Chem. J. 2003, 37, 132–135; (e) Berlyand, A. S.; Prokopov, A. A. Pharm. Chem. J. 2014, 48, 347–349; (f) Gazieva, G. A.; Golovanov, D. G.; Lozhkin, P. V.; Lysenko, K. A.; Kravchenko, A. N. Russ. J. Inorg. Chem. 2007, 52, 1441–1445; (g) Berlyand, A. S.; Lebedev, O. V.; Prokopov, A. A. Pharm. Chem. J. 2013, 47, 176– 178; (h) Kravchenko, A. N.; Baranov, V. V.; Anikina, L. V.; Vikharev, Yu. B.; Bushmarinov, I. S.; Nelyubina, Yu. V. Russ. J. Bioorg. Chem. 2012, 38, 550–557 (Bioorg. Khim. 2012, 38, 621).

- (a) Plażuk, D.; Zakrzewski, J.; Salmain, M.; Błauz, A.; Rychlik, B.; Strzelczyk, P.; Bujacz, A.; Bujacz, G. Organometallics 2013, 32, 5774–5783; (b) Paparella, A. S.; Soares da Costa, T. P.; Yap, M. Y.; Tieu, W.; Wilce, M. C. J.; Booker, G. W.; Abell, A. D.; Polyak, S. W. Curr. Top. Med. Chem. 2014, 14, 4–20; (c) Sárközy, M.; Fekete, V.; Szücs, G.; Török, S.; Szücs, C.; Bárkányi, J.; Varga, Z. V.; Földesi, I.; Csonka, C.; Kónya, C.; Csont, T.; Ferdinandy, P. BMC Endocr. Disorder 2014, 14, 1–11; (d) Tieu, W.; Polyak, S. W.; Paparella, A. S.; Yap, M. Y.; Soares da Costa, T. P.; Ng, B.; Wang, G.; Lumb, R.; Bell, J. M.; Turnidge, J. D.; Wilce, M. C. J.; Booker, G. W.; Abell, A. D. ACS Med. Chem. Lett. 2015, 6, 216–220; (e) Soares da Costa, T. P.; Tieu, W.; Yap, M. Y.; Zvarec, O.; Bell, J. M.; Turnidge, J. D.; Wallace, J. C.; Booker, G. W.; Wilce, M. C.; Abell, A. D.; Polyak, S. W. ACS Med. Chem. Lett. 2012, 3, 509– 514.
- Raveh, A.; Moshe, S.; Evron, Z.; Flescher, E.; Carmeli, S. Tetrahedron 2010, 66, 2705–2712.
- (a) Silvero, G.; Ávalos, M.; Babiano, R.; Cintas, P.; Jiménez, J. L.; Palacios, J. C. Tetrahedron 2011, 67, 7811–7820; (b) Baumann, M.; Baxendale, I. R. Org. Lett. 2014, 16, 6067–6079.
- Baranov, V. V.; Kravchenko, A. N.; Nelyubina, Yu. V. Mendeleev Commun. 2014, 24, 105–107.
- 7. Broan, C. J.; Butler, A. R. J. Chem. Soc. Perkin Trans. 2 1991, 1501–1504.
- Khaksar, S.; Vahdat, S. M.; Tajbakhsh, M.; Jahani, F.; Heydari, A. Tetrahedron Lett. 2010, 51, 6388–6391.
- 9. Cao, L.; Ding, J.; Yin, G.; Gao, M.; Li, Y.; Wu, A. Synlett 2009, 1445-1448.
- 10. Singh, M.; Solel, E.; Keinan, E.; Reany, O. Chem. Eur. J. 2015, 21, 536-540.
- (a) Kam, K.; Rahimizadeh, M.; McDonald, R. S.; Harrison, P. H. M.; Chen, H.; Jenkins, S. I.; Pedrech, A. Can. J. Chem. 2005, 83, 1253–1260; (b) Cow, C. N.; Harrison, P. H. M. J. Org. Chem. 1997, 62, 8834–8840.
- (a) Singh, M.; Solel, E.; Keinan, E.; Reany, O. Chem. Eur. J. 2014, 20, 536–540; (b) Yahyaei, S.; Vessally, E.; Massoumi, B.; Rafati, M. Phosphorus Sulfur Silicon 2014, 189, 1–6; (c) Singh, M.; Parvari, G.; Botoshansky, M.; Keinan, E.; Reany, O. Eur. J. Org. Chem. 2014, 933–940; (d) Gieling, G. T. W.; Scheeren, H. W.; Israël, R.; Nolte, R. J. M. Chem. Commun. 1996, 241–243.
- 13. (a) Dietz, W.; Mayer, R. J. Pract. Chem. 1968, 37, 78-90.

- 14. (a) Verner, J.; Taraba, J.; Potáček, M. *Tetrahedron Lett.* **2002**, *43*, 4833–4836; (b) Takahashi, M.; Miyadai, S. *Heterocycles* **1990**, *31*, 883–888.
- (a) Eres'ko, V. A.; Epishina, L. V.; Lebedev, O. V.; Povstyanoi, M. V.; Khmel'nitskii, L. I.; Novikov, S. S. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Trans.) 1980, 29, 1138–1141; (b) Gazieva, G. A.; Nelyubina, Yu. V.; Kravchenko, A. N.; Sigachev, A. S.; Glukhov, I. V.; Struchkova, M. I.; Lyssenko, K. A.; Makhova, N. N. Russ. Chem. Bull. Int. Ed. 2009, 58, 1945–1954; (c) Baranov, V. V.; Gazieva, G. A.; Nelyubina, Yu. V.; Kravchenko, A. N.; Makhova, N. N. Russ. J. Org. Chem. 2011, 47, 1564–1571.
- Kravchenko, A. N.; Gazieva, G. A.; Vasilevskii, S. V.; Belyakov, P. A.; Nelyubina, Yu. V. Mendeleev Commun. 2012, 22, 299–301.
- (a) Gazieva, G. A.; Poluboyarov, P. A.; Popov, L. D.; Kolotyrkina, N. G.; Kravchenko, A. N.; Makhova, N. N. Synthesis **2012**, 44, 3366–3370; (b) Gazieva, G. A.; Vikharev, Yu. B.; Anikina, L. V.; Karpova, T. B.; Kravchenko, A. N.; Permyakov, E. A.; Svitanko, I. V. Mendeleev Commun. **2013**, 23, 202–203.
- (a) Svec, J.; Dusek, M.; Fejfarova, K.; Stacko, P.; Klán, P.; Kaifer, A. E.; Li, W.; Hudeckova, E.; Sindelar, V. *Chem. Eur. J.* **2011**, *17*, 5605–5612; (b) Terpigorev, A. N.; Rudakova, S. B. *Russ. J. Org. Chem.* **1998**, *34*, 1026–1031; (c) Kravchenko, A. N.; Baranov, V. V.; Nelyubina, Yu. V.; Gazieva, G. A.; Svitanko, I. V. *Russ. Chem. Bull. Int. Ed.* **2012**, *61*, 64–73; (d) Nelyubina, Yu. V.; Gazieva, G. A.; Baranov, V. V.; Belyakov, P. A.; Chizhov, A. O.; Lyssenko, K. A.; Kravchenko, A. N. *Russ. Chem. Bull. Int. Ed.* **2009**, *58*, 1353–1360.
- 19. General procedure for the preparation of the thioglycolurils 8a-e and 9a-k. Hydrochloric acid (35.5%) (2 mL, 0.0225 mol) was added to a solution of 4,5-dihydroxyimidazolidin-2-one(thione) 6 or 7 (0.01 mol) and KSCN (2.19 g, 0.0225 mol) in MeOH (for 8a-e, 9a-c) (30 mL) or Me₂CO (for 9d-k) (35 mL) at room temperature. The precipitate was filtered and washed with MeOH or Me₂CO, respectively. The filtrate was heated at reflux for 30 min with stirring. Then the reaction mixture was cooled and kept for 12-48 h at rt to furnish a precipitate. The precipitate was filtered and washed with MeOH or Me₂CO to give product 8a-e or 9a-k.

Synthesis of monothioglycoluril **8f**. Hydrochloric acid (35.5%) (2 ml, 0.0225 mol) was added to a solution of 1-(*tert*-butyl)-4,5-dihydroxy-3-methylimidazolidin-2-one **6f** (1.88 g, 0.01 mol) and KSCN (2.19 g, 0.0225 mol) in H₂O (20 mL) at rt. The reaction mixture was stirred at 80 °C for 30 min and cooled. The white precipitate of 1-(*tert*-butyl)-3-methyl-4-thioxoimidazolidin-2-one **12** was filtered, and monothioglycoluril **8f** was precipitated from the filtrate after standing for 24 h at rt. Both precipitates were recrystallized from MeOH.

Synthesis of monothioglycoluril **8g**. Hydrochloric acid (35.5%) (2 mL, 0.0225 mol) was added to a solution of 1-cyclohexyl-4,5-dihydroxyimidazolidin-2-one **6g** (2.00 g, 0.01 mol) and KSCN (2.19 g, 0.0225 mol) in H_2O (20 mL) at rt. The reaction mixture was stirred at 80 °C for 30 min, cooled, and kept for 12–48 h at rt to give a white precipitate of **8g**. The precipitate was filtered and washed with MeOH.