ORIGINAL RESEARCH

New approaches for the synthesis of pyrazole, thiophene, thieno[2,3-*b*]pyridine, and thiazole derivatives together with their anti-tumor evaluations

Rafat M. Mohareb · Amira E. M. Abdallah · Mahmoud A. Abdelaziz

Received: 25 February 2013/Accepted: 29 May 2013 © Springer Science+Business Media New York 2013

Abstract The reaction of cyanoacetylhydrazine (1) with acetylchloride (2) gave the *N*-acyl derivative 3. The latter underwent ready cyclization in sodium ethoxide to give the pyrazole derivative 4 which was the key compound for the synthesis of thiophene, thieno[2,3-b]pyridine, and thiazole derivatives. The anti-tumor evaluations of the newly synthesized products against the three human tumor cell lines, namely, breast adenocarcinoma (MCF-7), non-small cell lung cancer (NCI-H460), and CNS cancer (SF-268), were studied. Some of these compounds were found to exhibit much higher inhibitory effects toward the three tumor cell lines than the reference doxorubicin. Molecular modeling of the four compounds 12c, 12f, 16a, and 16d, which showed the maximum inhibitory effect, were done.

Keywords Pyrazole · Thiophene · Thieno[2,3-*b*]pyridine · Thiazole · Anti-tumor

R. M. Mohareb (⊠) Chemistry Department, Faculty of Science, Cairo University, Cario, Egypt e-mail: raafat_mohareb@yahoo.com

A. E. M. Abdallah Chemistry Department, Faculty of Science, Helwan University, Cario, Egypt

M. A. Abdelaziz Preparatory Year Department, AL-Ghad International Colleges for Applied Medical Sciences, Tabuk Male, Saudi Arabia

M. A. Abdelaziz

Basic Science Department, Modern Academy For Engineering and Technology in Maadi, Cairo, Egypt

Introduction

The pyrazole scaffold represents a common motif in many pharmaceutical active and remarkable compounds demonstrating a wide range of pharmacological activities; the most important activities are the anti-inflammatory (Elguero et al., 2002; Szabo et al., 2008); antibacterial and antifungal (Tanitame et al., 2005; Tanitame et al., 2004); hypoglycemic (Cho et al., 2009; Dugi et al., 2009); anti-hyperlipidemic (Momose et al., 2001); inhibition of cyclooxigenase-2 (Rida et al., 2009), p38 MAP kinase (Regan et al., 2002), and CDK2/Cyclin A (Brasca et al., 2007; Pevarello et al., 2006); and antiangiogenic activities (Abadi et al., 2003). Heterocyclic rings and, in particular, the pyrazole ring represent an advantageous choice for the synthesis of pharmaceutical compounds with different activities and good safety profiles (Michaelides, 2010; Hubbard and Till, 2000). Different pyrazole derivatives have also been tested for their antiproliferative activities in vitro and anti-tumor activity in vivo, often resulting in promising lead compounds (Ludwig et al., 2004; Perchellet et al., 2006; Insuasty et al., 2009; Labbozzetta et al., 2009; Pevarello et al., 2004; Sanchez and Cobo, 2010). In the view of the facts mentioned above and as part of our initial efforts to discover potentially active new agents, we have synthesized some new pyrazole derivatives. The novel derivatives were characterized by spectral data and elemental analysis. These compounds were screened against the three cancer cell lines, breast adenocarcinoma (MCF-7), non-small cell lung cancer (NCI-H460), and CNS cancer (SF-268). Our data indicate that these novel pyrazole derivatives target the tumor cells. In particular, four compounds 12c, 12f, 16a, and 16d emerged as potent anti-tumor compounds, which may be used as lead compounds, but deserve further study in order to obtain insight into their mechanism of action.

Results and discussion

Herein, in order to extend our research on anticancer heterocyclic derivatives with high inhibitory effects toward some cancer cell lines, we report the synthesis of new pyrazole derivatives starting from the N-acetyl-2-cyanoacetohydrazide 3; the latter is formed through acetylation of the 2-cvanohydrazide (1). Thus, compound 3 underwent cyclization in sodium ethoxide solution to give the pyrazole derivative 4. The structure of compound 4 was based on analytical and spectral data. Thus, the ¹H-NMR showed a singlet at δ 2.77 ppm indicating one CH₃ group, a singlet at δ 4.79 ppm (D₂O exchangeable) indicating the presence of one NH₂ group, a singlet at δ 6.86 ppm for the pyrazole H-4, and a singlet at δ 10.22 ppm indicating one OH group. Moreover, the ¹³C-NMR spectrum showed the presence of δ 29.6 (CH₃), 104.8, 152.3, 154.6 (pyrazole C), and 168.9 (C=O). Compound 4 reacted with bromine in acetic acid solution to give the 1-(5-amino-3-hydroxy-1H-pyrazol-1yl)-bromoethanone 5. It is of great value to note that the reaction occurred in acetic acid solution; thus, the acetyl group is an active moiety toward bromination (Sunil Kumar et al., 2007). However, one might expect that the C-4 of the pyrazole derivative 4 is activated by the 3-OH and the 5-NH₂ group; to our knowledge, such activity requires basic catalyzed conditions.

The N-acetyl group in compound 4 showed interesting reactivity towards Gewald's thiophene synthesis. Thus, its reaction with either malononitrile (6a) or ethyl cyanoacetate (6b) and elemental sulfur in the presence of triethylamine gave the thiophene derivatives 8a and 8b, respectively (Scheme 1). Their respective ¹H-NMR and ¹³C-NMR spectra were the tools of their structural elucidation. The 2-amino group of compounds 8a and 8b was condensed with ethyl cyanoacetate (6b) in dimethylformamide to give the thiophen-2-acetamide derivatives 9a and 9b, respectively. The IR spectrum of compound 9a showed the presence of two CN groups stretching at v 2,227 and 2,220 cm⁻¹ and the presence of one C=O stretching at v1,688 cm⁻¹. Moreover, the ¹H-NMR spectrum showed δ at 4.77 ppm (D₂O exchangeable) indicating the presence of one NH₂ group, a singlet at δ 4.81 ppm indicating the presence of CH_2 group, two singlets at δ 6.83 and 6.84 ppm corresponding to the pyrazole H-4 and the thiophene H-5, and two singlets at δ 8.21 and 10.08 ppm for the NH and the OH groups, respectively. The amide formation occurred at the 2-aminothiophene moiety, not at the 3-aminopyrazole moiety; this was established not only via the spectral data, indicated above, but also through the ready cyclization of the products 9a and 9b through the Michael addition of the CH₂ group to the 3-cyano group. Thus, both of compounds 9a and 9b underwent ready cyclization in sodium ethoxide solution in a boiling water bath to give the 6-hydroxythieno[2,3-*b*]pyridine-5-carbonitrile derivatives **10a** and **10b**, respectively. Such cyclization reactions will not proceed if the amide is being formed through the 2-aminopyrazole moiety present in both of compounds **8a** and **8b**.

Based on the optimized reaction conditions established above, a series of novel aryl hydrazono derivatives were obtained with the aim of improving the inhibitory effect against the tested cancer cell lines. Moreover, in order to study the relationship between the structure and activity for this type of compounds, we have studied the affects of substitution on the aryl azo compounds as well as the effect of CN group in the case of **9a** and the ester group in the case of **9b**. Thus, the reaction of either **9a** or **9b** with any of the aryldiazonium salts, namely, the benzenediazonium chloride (**11a**), the 4-methylphenyldiazonium salt (**11b**), or the 4-chlorophenyl diazonium salts (**11c**), in 0–5 °C gave the aryl hydrazono derivatives **12a–f** (Scheme 2).

Encouraged by the excellent results, we next investigated the ability of compounds 9a,b to form thiazoles and thiophene derivatives. Several studies (Bondock et al., 2010; Al-Said et al., 2011) have described the synthesis of thiazole and thiophene derivative, their importance, and applications as intermediates for the synthesis of heterocyclics (Gouda et al., 2010; Fadda et al., 2009). The present study aimed to contribute with the chemical and pharmacological studies of such group of compounds. Thus, the reaction of compound 9a or 9b with phenylisothiocyanate (13) in the presence of basic dimethylformamide gave the intermediate potassium sulfide salts 14a,b, respectively. Heterocyclization of the latter intermediate with α -halocarbonyl compounds gave, interestingly, either thiazole or thiophene derivatives depending on the nature of the *α*-halocarbonyl compound. Thus, their reaction with either phenacyl bromide (15a) or chloroacetone (15b) gave the thiophene derivatives **16a–d**. Their ¹H-NMR and ¹³C-NMR data are in agreement with their respective structures. Thus, the ¹H-NMR spectrum of **16a** (as an example) showed the presence of a singlet at δ 2.88 indicating the CH₃ group, two singlets of δ 4.77 and 4.82 ppm (D₂O exchangeable) indicating the presence of the two NH₂ groups, two singlets at δ 6.80 and 6.85 ppm corresponding to the pyrazole H-4 and the thiophene H-5, respectively, a multiplet at δ 7.29–7.38 ppm corresponding to the phenyl group, and three singlets at δ 8.26, 8.80, and 10.20 ppm (D₂O exchangeable) corresponding to the two NH groups and the OH group, respectively. Moreover, its ¹³C-NMR spectrum showed δ: 31.2 (CH₃), 104.3, 153.7, 154.3 (pyrazole C), 116.9 (CN), 119.0, 120.4, 120.9, 121.8, 124.8, 130.9, 133.6, 134.0, 139.4, 141.5, 143.8, 144.6 (two thiophene, C_6H_5), 163.9, 164.8 (2C=O). On the other hand, the reaction of the intermediate potassium sulfide salts 14a or 14b with ethyl chloroacetate (17) gave the thiazole

Scheme 1 Synthesis of compounds 3-8a,b

derivatives **18a** and **18b**, respectively. The analytical and spectral data of the latter products are in agreement with their respective structures.

Anti-tumor activity tests

Reagents

Fetal bovine serum (FBS) and L-glutamine were from Gibco Invitrogen Co. (Scotland, UK). RPMI-1640 medium

was from Cambrex (New Jersey, USA). Dimethyl sulfoxide (DMSO), doxorubicin, penicillin, streptomycin, and sulforhodamine B (SRB) were from Sigma Chemical Co. (Saint Louis, USA).

Cell cultures

Three human tumor cell lines, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), and SF-268 (CNS cancer), were used. MCF-7 was obtained from

Scheme 2 Synthesis of compounds 9a,b-12a-f

the European Collection of Cell Cultures (ECACC, Salisbury, UK), and NCI-H460 and SF-268 were kindly provided by the National Cancer Institute (NCI, Cairo, Egypt). They grow as a monolayer and routinely maintained in RPMI-1640 medium supplemented with 5 % heat-inactivated FBS, 2 mM glutamine, and antibiotics (penicillin 100 U/mL, streptomycin 100 µg/mL) at 37 °C in a humidified atmosphere containing 5 % CO₂. Exponentially growing cells were obtained by plating 1.5×10^5 cells/mL for MCF-7 and SF-268 and 0.75×10^4 cells/mL for NCI-H460, followed by 24 h of incubation. The effect of the vehicle solvent (DMSO) on the growth of these cell lines

was evaluated in all the experiments by exposing untreated control cells to the maximum concentration (0.5 %) of DMSO used in each assay.

Tumor cell growth assay

The effects of synthesized compounds 4-18a,b on the in vitro growth of human tumor cell lines were evaluated according to the procedure adopted by the National Cancer Institute (NCI, USA) in the "In vitro Anticancer Drug Discovery Screen" that uses the protein-binding dye sulforhodamine B to assess cell growth. Briefly, exponentially, cells growing in 96-well plates were then exposed for 48 h to five serial concentrations of each compound, starting from a maximum concentration of 150 µM. Following this exposure period, adherent cells were fixed, washed, and stained. The bound stain was solubilized and the absorbance was measured at 492 nm in a plate reader (Bio-Tek Instruments Inc., Powerwave XS, Wincoski, USA). For each test compound and cell line, a dose-response curve was obtained and the growth inhibition of 50 % (GI₅₀), corresponding to the concentration of the compounds that inhibited 50 % of the net cell growth, was calculated as described elsewhere. Doxorubicin was used as a positive control and tested in the same manner.

Effect on the growth of human tumor cell lines

The effect of compounds 4-18a,b was evaluated on the in vitro growth of three human tumor cell lines representing different tumor types, namely, breast adenocarcinoma (MCF-7), non-small cell lung cancer (NCI-H460), and CNS cancer (SF-268), after a continuous exposure for 48 h. The results are summarized in Table 1. All of the tested compounds were able to inhibit the growth of the tested human tumor cell lines in a dose-dependant manner (data not shown). The results indicated through Table 1 revealed that "compounds 8a, 9a, 10a, 10b, 12a, 12c, 12f, 16a, 16b, 16d and 18a showed the highest inhibitory effect against all the three tumor cell lines." On the other hand, compounds 12c, 12f, 16a, and 16d showed high inhibitory effects against all the three human tumor cell lines, which were much higher than the reference doxorubicin. Compounds 5, 7a, 9b, 12b, 12d, 12e, 16c, and 18b showed the lowest inhibitory effect. The rest of the compounds 4, 7b, and 8b showed a moderate growth inhibitory effect. Comparing compound 8a, 8b and 9a, 9b, it is obvious that the presence of the CN groups in 8a, 9a showed a higher inhibitory effect than the CO₂Et groups in 8b, 9b, and 10b. Comparing compounds 12a, 12b, 12c, 12d, 12e, and 12f, it is obvious that compound 12c with X = CN and Y = Cl showed the highest inhibitory effect among the six compounds. Moreover, **12f** with $X = CO_2Et$ and Y = Cl showed a high inhibitory effect, but it is still lower than 12c. Similarly, for compounds 16a-d, it is obvious that compound **16a** with the X = CN, $R = CH_3$ showed the highest inhibitory effect among the four compounds and **16d** with $X = CO_2Et$, R = Ph showed the maximum inhibitory effect toward breast adenocarcinoma (MCF-7) among the four compounds. The cytotoxicity effects of the newly synthesized compounds toward the three cancer cell lines are indicated through Figs. 1, 2, and 3.

Moreover, the data described through Table 1 were studied through statistical ANOVA program. The statistical data are presented through Tables 2 and 3 and the statistical ANOVA diagram Fig. 4.

Experimental

All melting points were determined on an electrothermal apparatus (Büchi 535, Switzerland) in an open capillary

Table 1 Effects of the synthesized compounds 4–18a,b on the growth of three human tumor cell lines

Compound	GI ₅₀ (µMmol/L)				
	MCF-7	NCI-H460	SF-268		
4	8.6 ± 1.4	4.9 ± 0.8	3.8 ± 0.8		
5	55.4 ± 12.2	42.1 ± 8.0	38.9 ± 8.8		
7a	38.1 ± 0.6	17.3 ± 1.4	24.3 ± 1.5		
7b	22.6 ± 12.2	12.6 ± 8.6	51.4 ± 14.6		
8a	0.6 ± 0.04	0.3 ± 0.08	0.1 ± 0.08		
8b	11.8 ± 0.6	14.5 ± 0.8	16.7 ± 1.6		
9a	4.3 ± 0.8	2.0 ± 0.8	1.5 ± 0.1		
9b	20.0 ± 0.2	22.6 ± 1.4	28.4 ± 0.6		
10a	0.7 ± 0.50	0.2 ± 0.08	1.0 ± 0.02		
10b	2.0 ± 0.6	2.0 ± 0.4	1.5 ± 8.0		
12a	0.9 ± 0.2	0.1 ± 0.02	0.3 ± 0.05		
12b	38.0 ± 1.8	44.0 ± 0.8	20.5 ± 1.1		
12c	0.01 ± 0.003	0.02 ± 0.001	0.01 ± 0.001		
12d	20.0 ± 0.2	32.6 ± 1.4	34.4 ± 0.6		
12e	26.7 ± 17.5	22.2 ± 12.8	30.0 ± 9.0		
12f	0.07 ± 0.05	0.02 ± 0.008	0.01 ± 0.001		
16a	0.03 ± 0.007	0.02 ± 0.008	0.01 ± 0.004		
16b	2.0 ± 1.2	3.6 ± 1.4	2.4 ± 0.8		
16c	32.0 ± 1.8	12.0 ± 0.8	14.5 ± 4.1		
16d	0.01 ± 0.006	0.03 ± 0.002	0.06 ± 0.005		
18a	4.2 ± 2.6	2.2 ± 0.04	0.5 ± 0.2		
18b	20.9 ± 4.9	18.6 ± 2.6	18.3 ± 2.6		
Doxorubicin	0.04 ± 0.008	0.09 ± 0.008	0.09 ± 0.007		

Results are given in concentrations that were able to cause 50 % of cell growth inhibition (GI₅₀) after a continuous exposure of 48 h and show mean \pm SEM of three independent experiments performed in duplicate

CELL NO 1 MCF-7 CELL NO 2 NCI-H460 CELL NO 3 SF-268

Table 2 ANOVA

Cells	Sum of squares	df	Mean square	F	Sig.			
Between groups	67.220	2	33.610	0.148	0.863			
Within groups	15018.954	66	227.560					
Total	15086.174	68						
Table 3 Test of homogeneity of variances								
Levene statistic	<i>df</i> 1		df2		Sig.			
Cells								
0.551	2		66		0.579			

tube and are uncorrected. Elemental analysis was performed on a Yanaco CHNS Corder elemental analyzer (Japan). IR spectra (v, cm⁻¹) were recorded in KBr pellets on a PA-9721 IR spectrophotometer (Shimadzu, Japan). ¹H-NMR and ¹³C-NMR spectra were obtained on a Jeol 300 MHz (Japan) spectrometer with DMSO-d₆ as a solvent using TMS as internal reference, and chemical shifts (δ) are expressed in ppm. Mass spectra were recorded on Kratos (75 eV) MS

Fig. 4 Statistics ANOVA diagram

equipment (Germany). Synthetic pathways are presented in Schemes 1, 2, and 3. The anti-tumor evaluations of the newly synthesized compounds on the growth of three human tumor cell lines are given in Table 1.

Scheme 3 Synthesis of compounds 14a,b-18a,b

1-(5-Amino-3-hydroxy-1H-pyrazol-1-yl)ethanone 4

A suspension of compound 3 (1.41 g, 0.01 mol) in sodium ethoxide solution [prepared by dissolving metallic sodium (0.64 g, 0.01 mol) in absolute ethanol (30 mL)] was boiled in a boiling water bath for 8 h. The reaction mixture was left to cool and then poured onto ice/water containing few drops of hydrochloric acid. The formed solid product was collected by filtration.

Compound 4

Crystallized from ethanol to give white crystals, yield 1.27 g (90 %), m.p. 210–213 °C. *Anal.* Calculated for $C_5H_7N_3O_2$ (141.13): C, 42.55; H, 5.00; N, 29.77. Found: C,

42.43; H, 4.81; N, 30.01. MS: $m/e = 141 (M^+, 10 \%)$. IR, υ : 3577–3323 (OH, NH₂), 1690 (C=O), 1653 (C=N). ¹H-NMR, δ : 2.77 (s, 3H, CH₃), 4.79 (s, 2H, NH₂), 6.86 (s, 1H, pyrazole H-4), 10.22 (s, 1H, OH). ¹³C-NMR, δ : 29.6 (CH₃), 104.8, 152.3, 154.6 (pyrazole C), 168.9 (C=O).

1-(5-Amino-3-hydroxy-1*H*-pyrazol-1-yl)bromoethanone **5**

To a solution of compound 4 (1.41 g, 0.01 mol) in acetic acid (40 mL) at 50 °C, bromine (1.80 g, 0.01 mol) was added dropwise. The reaction mixture was kept at room temperature for 1 h with continuous stirring. The solid product was formed upon pouring onto ice/water and the formed solid product was collected by filtration.

Compound 5

Crystallized from acetic acid to give white crystals, yield 1.49 g (68 %), m.p. 160–163 °C. *Anal.* Calculated for $C_5H_6BrN_3O_2$ (220.02): C, 27.29; H, 2.75; N, 19.10. Found: C, 27.39; H, 2.88; N, 19.01. MS: m/e = 220 (M⁺, 23 %), 222 (M⁺ + 2, 12 %). IR, v: 3547–3363 (OH, NH₂), 1688 (C=O), 1650 (C=N). ¹H-NMR, δ : 4.07 (s, 2H, CH₂), 4.81 (s, 2H, NH₂), 6.82 (s, 1H, pyrazole H-4), 10.02 (s, 1H, OH). ¹³C-NMR, δ : 38.2 (CH₂), 104.3, 153.0, 154.8 (pyrazole C), 167.3 (C=O).

2-Amino-4-(5-amino-3-hydroxy-1H-pyrazol-1yl)thiophene-3-carbonitrile **8a** and ethyl 2-amino-4-(5amino-3-hydroxy-1*H*-pyrazol-1-yl)thiophene-3carboxylate **8b**

General procedure

To a solution of compound 4 (1.41 g, 0.01 mol) in 1,4dioxan containing triethylamine (0.50 mL) and elemental sulfur (0.32 g, 0.01 mol), either malononitrile (**6a**) (0.66 g, 0.01 mol) or ethyl cyanoacetate (**6b**) (1.13 g, 0.01 mol) was added. The reaction mixture in each case was heated under reflux for 1 h, then poured onto ice/water containing few drops of hydrochloric acid, and the formed solid product, in each case, was collected by filtration.

Compound 8a Crystallized from acetic acid to give pale yellow crystals, yield 1.49 g (68 %), m.p. 160–163 °C. *Anal.* Calculated for C₈H₇N₅OS (221.24): C, 43.43; H, 3.19; N, 31.66; S, 14.49. Found: C, 43.29; H, 3.28; N, 31.85; S, 14.57. MS: m/e = 221 (M⁺, 33 %). IR, v: 3529–3342 (OH, 2NH₂), 2222 (CN), 1632 (C=N). ¹H-NMR, δ : 4.55, 4.83 (2s, 4H, 2NH₂), 6.86, 6.99 (2s, 2H, pyrazole H-4, thiophene H-5), 10.12 (s, 1H, OH). ¹³C-NMR, δ : 116.8 (CN), 104.2, 153.3, 154.6 (pyrazole C), 117.8, 125.6, 133.2, 138.1 (Thiophene C).

Compound 8b Crystallized from acetic acid to give yellow crystals, yield 2.09 g (78 %), m.p. 148–151 °C. *Anal.* Calculated for C₁₀H₁₂N₄O₃S (268.29): C, 44.77; H, 4.51; N, 20.88; S, 11.95. Found: C, 44.69; H, 4.58; N, 20.95; S, 11.83. MS: *m/e* = 268 (M⁺, 18 %). IR, v: 3544–3337 (OH, 2NH₂), 1688 (C=O), 1644 (C=N). ¹H-NMR, δ : 1.14 (t, 3H, J = 7.02 Hz, CH₃), 4.22 (q, 2H, J = 7.02 Hz, CH₂), 4.53, 4.86 (2s, 4H, 2NH₂), 6.84, 6.92 (2s, 2H, pyrazole H-4, thiophene H-5), 10.23 (s, 1H, OH). ¹³C-NMR, δ : 16.2 (CH₃), 42.3 (CH₂), 104.0, 153.1, 154.4 (pyrazole C), 118.3, 125.2, 133.6, 138.4 (Thiophene C), 164.2 (C=O).

N-(4-(5-amino-3-hydroxy-1*H*-pyrazol-1-yl)-3cyanothiophen-2-yl)-2-cyano-acetamide **9a** and ethyl 2-(2-cyanoacetamido)-4-(5-amino-3-hydroxy-1*H*pyrazol-1-yl)thiophene-3-carboxylate **9b**

General procedure

A solution of either **8a** (2.21 g, 0.01 mol) or **8b** (2.68 g, 0.01 mol) in dimethylformamide (30 mL), ethyl cyanoacetate **(6b)** (1.13 g, 0.01 mol) was added. The reaction mixture, in each case, was heated under reflux for 3 h and then left to cool on reaching room temperature. The solid product formed upon pouring onto ice/water was collected by filtration.

Compound **9a** Crystallized from 1,4-dioxan to give orange crystals, yield 2.27 g (79 %), m.p. 266–269 °C. *Anal.* Calculated for C₁₁H₈N₆O₂S (288.29): C, 45.83; H, 2.80; N, 29.15; S, 11.12. Found: C, 45.73; H, 3.18; N, 29.05; S, 11.33. MS: *m*/*e* = 288 (M⁺, 68 %). IR, v: 3572–3366 (OH, NH, NH₂), 2227, 2220 (2 CN), 1688 (C=O), 1636 (C=N). ¹H-NMR, δ: 4.77 (s, 2H, NH₂), 4.81 (s, 2H, CH₂), 6.83, 6.84 (2s, 2H, pyrazole H-4, thiophene H-5), 8.21 (s, 1H, NH), 10.08 (s, 1H, OH). ¹³C-NMR, δ: 39.2 (CH₂), 116.5, 117.9 (2 CN), 104.4, 152.9, 154.8 (pyrazole C), 118.0, 124.9, 134.5, 138.8 (thiophene C), 164.5 (C=O).

Compound **9b** Crystallized from 1,4-dioxan to give orange crystals, yield 2.88 g (86 %), m.p. 230–233 °C. *Anal.* Calculated for C₁₃H₁₃N₅O₄S (335.34): C, 46.56; H, 3.91; N, 20.88; S, 9.56. Found: C, 46.63; H, 4.02; N, 20.92; S, 9.63. MS: *m/e* = 335 (M⁺, 46 %). IR, v: 3576–3337 (OH, NH, NH₂), 1693, 1684 (2C=O), 2220 (CN), 1648 (C=N). ¹H-NMR, δ : 1.12 (t, 3H, *J* = 7.26 Hz, CH₃), 4.24 (q, 2H, *J* = 7.26 Hz, CH₂), 4.73 (s, 2H, NH₂), 4.88 (s, 2H, CH₂), 6.79, 6.92 (2s, 2H, pyrazole H-4, thiophene H-5), 8.22 (s, 1H, NH), 10.19 (s, 1H, OH). ¹³C-NMR, δ : 16.3 (CH₃), 39.7, 42.6 (2CH₂), 104.3, 153.2, 154.6 (pyrazole C), 117.9 (CN), 118.4, 125.0, 133.46, 138.74 (thiophene C), 164.0, 166.3 (2C=O).

4-Amino-3-(5-amino-3-hydroxy-1*H*-pyrazol-1-yl)-6hydroxythieno[2,3-b]-pyridine-5-carbonitrile **10a** and 3-(5-amino-3-hydroxy-1*H*-pyrazol-1-yl)-4,6dihydroxythieno[2,3-b]pyridine-5-carbonitrile **10b**

General procedure

A suspension of either **9a** (2.88 g, 0.01 mol) or **9b** (3.35 g, 0.01 mol) in sodium ethoxide solution [prepared by dissolving metallic sodium (0.64 g, 0.01 mol) in absolute ethanol (30 mL)] was boiled in a boiling water bath for 8 h. The reaction mixture was left to cool and then poured onto ice/water containing few drops of hydrochloric acid. The formed solid product was collected by filtration.

Compound **10a** Crystallized from 1,4-dioxan to give orange crystals, yield 2.47 g (86 %), m.p. 170–173 °C. *Anal.* Calculated for C₁₁H₈N₆O₂S (288.29): C, 45.83; H, 2.80; N, 29.15; S, 11.12. Found: C, 45.62; H, 2.92; N, 29.32; S, 11.33. MS: m/e = 288 (M⁺, 16 %). IR, v: 3576–3333 (2OH, 2NH₂), 2222 (CN), 1640 (C=N). ¹H-NMR, δ : 4.79, 4.86 (2s, 4H, 2NH₂), 6.75, 6.89 (2s, 2H, pyrazole H-4, thiophene H-5), 10.16, 10.22 (2s, 2H, 2OH). ¹³C-NMR, δ : 117.8 (CN), 104.5, 153.6, 154.9 (pyrazole C), 118.2, 124.7, 133.3, 138.8, 140.2, 143.8, 148.2 (thiophene, pyridine C).

Compound **10b** Crystallized from 1,4-dioxan to give pale brown crystals, yield 1.90 g (66 %), m.p. 180–183 °C. *Anal.* Calculated for C₁₁H₇N₅O₃S (289.27): C, 45.67; H, 2.44; N, 24.21; S, 11.08. Found: C, 45.86; H, 2.66; N; 24.02; S, 10.83. MS: m/e = 289 (M⁺, 100 %). IR, v: 3555–3320 (3OH, NH₂), 2227 (CN), 1630 (C=N). ¹H-NMR, δ : 4.83 (s, 2H, NH₂), 6.86, 6.94 (2s, 2H, pyrazole H-4, thiophene H-5), 10.09, 10.27, 10.29 (3s, 3H, 3OH). ¹³C-NMR, δ : 117.8 (CN), 104.3, 152.6, 155.7 (pyrazole C), 118.8, 124.8, 134.0, 138.8, 140.7, 141.5, 149.6 (thiophene, pyridine C).

N-(4-(5-amino-3-hydroxy-1H-pyrazol-1-yl)-3cyanothiophen-2-yl)-a-phenyl-hydrazono-2cyanoacetamide 12a, N-(4-(5-amino-3-hydroxy-1Hpyrazol-1-yl)-3-cyanothiophen-2-yl)-a-(pmethylphenylhydrazono)-2-cyanoacetamide 12b, N-(4-(5-amino-3-hydroxy-1H-pyrazol-1-yl)-3cyanothiophen-2-yl)-a-(p-chlorophenylhydrazono)-2cyanoacetamide 12c, ethyl 2-(a-phenylhydrazono-2cyanoacetamido)-4-(5-amino-3-hydroxy-1H-pyrazol-1yl)thiophene-3-carboxylate 12d, ethyl 2-α-(pmethylphenylhydrazono)-2-cyanoacetamido)-4-(5amino-3-hydroxy-1H-pyrazol-1-yl)thiophene-3carboxylate 12e and ethyl 2-a-(pchlorophenylhydrazono)-2-cyanoacetamido)-4-(5amino-3-hydroxy-1H-pyrazol-1-yl)thiophene-3carboxylate 12f

General procedure

To a cold solution $(0-5 \,^{\circ}\text{C})$ of either **9a** (2.88 g, 0.01 mol) or **9b** (3.35 g, 0.01 mol) in ethanol (40 mL) containing sodium hydroxide (5 mL, 10 %),benzenediazonium chloride (**11a**), p-methylbenzene-diazonium chloride (**11b**), or p-chlorobenzenediazonium chloride (**11c**) [prepared by adding sodium nitrite (0.70 g, 0.01 mol) solution to a cold solution (0–5 °C) of aniline (0.94 g, 0.01 mol), p-methylaniline (1.04 g, 0.01 mol), or p-chloroaniline (1.24 g, 0.01 mol) in the appropriate quantity of concentrated hydrochloric acid with continuous stirring] was added. The whole reaction mixture, in each case, was stirred at room

temperature for an additional 1 h and the formed solid product was collected by filtration.

Compound **12***a* Crystallized from ethanol to give reddish brown crystals, yield 3.21 g (82 %), m.p. 133–135 °C. *Anal.* Calculated for $C_{17}H_{12}N_8O_2S$ (392.39): C, 52.03; H, 3.08; N, 28.56; S, 8.17. Found: C, 51.93; H, 3.18; N, 28.45; S, 8.23. MS: *m/e* = 392 (M⁺, 42 %). IR, v: 3537–3321 (OH, 2NH, NH₂), 2225, 2220 (2 CN), 1685 (C=O), 1638 (C=N). ¹H-NMR, δ : 4.82 (s, 2H, NH₂), 6.82, 6.88 (2s, 2H, pyrazole H-4, thiophene H-5), 7.29–7.38 (m, 5H, C₆H₅), 8.20–825 (2s, 2H, 2NH), 10.18 (s, 1H, OH). ¹³C-NMR, δ : 116.8, 117.3 (2 CN), 104.5, 153.2, 154.6 (pyrazole C), 118.2, 122.0, 123.4, 124.6, 130.8, 133.9, 138.9 (thiophene, C₆H₅, C), 164.8 (C=O), 173.8 (C=N).

Compound **12b** Crystallized from ethanol to give red crystals, yield 3.57 g (88 %), m.p. 190–193 °C. *Anal.* Calculated for $C_{18}H_{14}N_8O_2S$ (406.42): C, 53.19; H, 3.47; N, 27.57; S, 7.89. Found: C, 52.92; H, 3.32; N, 27.62; S, 7.93. MS: *m/e* = 406 (M⁺, 18 %). IR, v: 3555–3340 (OH, 2NH, NH₂), 2222, 2220 (2 CN), 1689 (C=O), 1643 (C=N). ¹H-NMR, δ : 2.88 (s, 3H, CH₃), 4.79 (s, 2H, NH₂), 6.80, 6.84 (2s, 2H, pyrazole H-4, thiophene H-5), 7.28–7.36 (m, 4H, C₆H₄), 8.22, 8.25 (2s, 2H, 2NH), 10.23 (s, 1H, OH). ¹³C-NMR, δ : 24.8 (CH₃), 116.6, 117.8 (2 CN), 104.6, 154.6, 155.0 (pyrazole C), 118.8, 122.2, 123.6, 125.6, 128.9, 133.6, 138.7 (thiophene, C₆H₄, C), 164.6 (C=O), 173.4 (C=N).

Compound **12***c* Crystallized from ethanol to give Orange crystals, yield 3.07 g (72 %), m.p. 144–147 °C. *Anal.* Calculated for $C_{17}H_{11}ClN_8O_2S$ (426.84): C, 47.84; H, 2.60; N, 26.25; S, 7.51. Found: C, 47.97; H, 2.52; N, 26.32; S, 7.63. MS: *m/e* = 426 (M⁺, 8 %). IR, v: 3571–3320 (OH, 2NH, NH₂), 2226, 2220 (2 CN), 1687 (C=O), 1642 (C=N). ¹H-NMR, δ : 4.80 (s, 2H, NH₂), 6.78, 6.82 (2s, 2H, pyrazole H-4, thiophene H-5), 7.26–7.39 (m, 4H, C₆H₄), 8.24, 8.26 (2s, 2H, 2NH), 10.33 (s, 1H, OH). ¹³C-NMR, δ : 116.8, 117.9 (2 CN), 104.2, 154.4, 155.2 (pyrazole C), 118.3, 122.0, 123.9, 125.1, 129.2, 132.8, 139.5 (thiophene, C₆H₄, C), 163.8 (C=O), 172.8 (C=N).

Compound **12***d* Crystallized from 1,4-dioxan to give red crystals, yield 2.89 g (66 %), m.p. 196–199 °C. *Anal.* Calculated for C₁₉H₁₇N₇O₄S (439.45): C, 51.93; H, 3.90; N, 22.31; S, 7.30. Found: C, 52.23; H, 4.11; N, 22.42; S, 7.60. MS: m/e = 439 (M⁺, 12 %). IR, v: 3571–3332 (OH, 2NH, NH₂), 1689, 1682 (2C=O), 2223 (CN), 1638 (C=N). ¹H-NMR, δ : 1.11 (t, 3H, J = 6.53 Hz, CH₃), 4.23 (q, 2H, J = 6.53 Hz, CH₂), 4.80 (s, 2H, NH₂), 6.74, 6.98 (2s, 2H, pyrazole H-4, thiophene H-5), 7.28–7.41 (m, 5H, C₆H₅), 8.20, 8.31 (2s, 2H, 2NH), 10.21 (s, 1H, OH). ¹³C-NMR, δ : 16.1 (CH₃), 42.5 (CH₂), 104.6, 153.8, 154.0 (pyrazole C),

116.8 (CN), 118.2, 122.3, 123.9, 125.0, 133.46, 134.8, 138.7 (thiophene, C₆H₅, C), 164.0, 166.6 (2C=O), 172.5 (C=N).

Compound **12e** Crystallized from 1,4-dioxan to give brown crystals, yield 3.17 g (70 %), m.p. 120–122 °C. *Anal.* Calculated for C₂₀H₁₉N₇O₄S (453.47): C, 52.97; H, 4.22; N, 21.62; S, 7.07. Found: C, 52.73; H, 4.30; N, 21.82; S, 7.14. MS: *m*/*e* = 453 (M⁺, 33 %). IR, v: 3562–3330 (OH, 2NH, NH₂), 1688, 1684 (2C=O), 2223 (CN), 1634 (C=N). ¹H-NMR, δ : 1.13 (t, 3H, *J* = 6.88 Hz, CH₃), 2.89 (s, 3H, CH₃), 4.22 (q, 2H, *J* = 6.88 Hz, CH₂), 4.76 (s, 2H, NH₂), 6.76, 6.98 (2s, 2H, pyrazole H-4, thiophene H-5), 7.28–7.37 (m, 4H, C₆H₄), 8.19, 8.29 (2s, 2H, 2NH), 10.25 (s, 1H, OH). ¹³C-NMR, δ : 16.4 (CH₃), 27.5 (CH₃), 42.6 (CH₂), 104.2, 152.9, 153.8 (pyrazole C), 116.9 (CN), 118.4, 122.7, 123.6, 125.0, 133.46, 134.3, 137.5 (thiophene, C₆H₄, C), 163.6, 166.8 (2C=O), 172.2 (C=N).

Compound **12***f* Crystallized from 1,4-dioxan to give brown crystals, yield 3.17 g (70 %), m.p. 120–122 °C. *Anal.* Calculated for C₁₉H₁₆ClN₇O₄S (473.89): C, 48.16; H, 3.40; N, 20.69; S, 6.77. Found: C, 48.01; H, 3.52; N, 20.88; S, 6.93. MS: m/e = 473 (M⁺, 20 %). IR, v: 3551–3322 (OH, 2NH, NH₂), 1688, 1684 (2C=O), 2223 (CN), 1634 (C=N). ¹H-NMR, δ : 1.11 (t, 3H, J = 6.88 Hz, CH₃), 4.26 (q, 2H, J = 6.88 Hz, CH₂), 4.88 (s, 2H, NH₂), 6.72, 6.89 (2s, 2H, pyrazole H-4, thiophene H-5), 7.24–7.36 (m, 4H, C₆H₄), 8.20, 8.30 (2s, 2H, 2NH), 10.25 (s, 1H, OH). ¹³C-NMR, δ : 27.8 (CH₃), 42.8 (CH₂), 104.5, 152.8, 153.9 (pyrazole C), 116.9 (CN), 118.6, 122.2, 123.8, 124.8, 133.8, 134.6, 137.7 (thiophene, C₆H₄, C), 163.4, 166.9 (2C=O), 172.0 (C=N).

5-Acetyl-4-amino-N-(4-(5-amino-3-hydroxy-1Hpyrazol-1-yl)-3-cyanothiophen -2-yl)-2-(phenylamino)thiophene-3-carboxamide 16a, 4-amino-5-benzoyl-N-(4-(5-amino-3-hydroxy-1H-pyrazol-1-yl)-3-cyanothiophen-2-yl)-2-(phenylamino)thiophene-3carboxamide 16b, 5-acetyl-4-amino-N-(4-(5-amino-3hydroxy-1H-pyrazol-1-yl)-3-ethoxycarbonyl-thiophen-2-yl)-2-(phenylamino)thiophene-3-carboxamide 16c, 4-amino-5-benzoyl-N-(4-(5-amino-3-hydroxy-1Hpyrazol-1-yl)-3-ethoxycarbonylthiophen-2-yl)-2-(phenylamino)thiophene-3-carboxamide 16d, N-(4-(5amino-3-hydroxy-1H-pyrazol-1-yl)-3-cyanothiophen-2yl)-2-cyano-2-(4-hydroxy-3-phenylthiazol-2(3H)ylidene)acetamide 18a and ethyl 2-(2-cyano-2-(4hydroxy-3-phenylthiazol-2-(3H)-ylidene)acetamido)-4-(5-amino-3-hydroxy-1H-pyrazol-1-yl)thiophene-3carboxylate 18b

General procedure

To a solution of either 9a (2.88 g, 0.01 mol) or 9b (3.35 g, 0.01 mol) in dimethylformamide (30 mL) containing

potassium hydroxide (0.56 g, 0.01 mol), phenylisothiocyanae (13) (1.30 g, 0.01 mol) was added. The whole reaction mixture was stirred at room temperature overnight. The next day, chloroacetone (15a) (0.92 g, 0.01 mol), phenacylbromide (15b) (2.0 g, 0.01 mol), or ethyl chloroacetate (17) (1.22 g, 0.01 mol) was added with continuous stirring overnight at room temperature and then poured onto ice/water containing few drops of hydrochloric acid (till pH 6). The solid product, formed in each case, was collected by filtration.

Compound **16a** Crystallized from ethanol to give yellow crystals, yield 3.64 g (76 %), m.p. 120–122 °C. *Anal.* Calculated for $C_{21}H_{17}N_7O_3S_2$ (479.53): C, 52.60; H, 3.57; N, 20.45; S, 13.37. Found: C, 52.43; H, 3.41; N, 20.49; S, 13.26. MS: *m*/e = 479 (M⁺, 15 %). IR, v: 3555–3312 (OH, 2NH, 2NH₂), 2223, 2227 (2CN), 1683 (C=O), 1634 (C=N). ¹H-NMR, δ : 2.88 (s, 3H, CH₃), 4.77, 4.82 (2s, 4H, 2NH₂), 6.80, 6.85 (2s, 2H, pyrazole H-4, thiophene H-5), 7.29–7.38 (m, 5H, C₆H₅), 8.26, 8.80 (2s, 2H, 2NH), 10.20 (s, 1H, OH). ¹³C-NMR, δ : 31.2 (CH₃), 116.9 (CN), 104.3, 153.7, 154.3 (pyrazole C), 119.0, 120.4, 120.9, 121.8, 124.8, 130.9, 133.6, 134.0, 139.4, 141.5, 143.8, 144.6 (two thiophene, C₆H₅, C), 163.9, 164.8 (2C=O).

Compound **16b** Crystallized from ethanol to give pale yellow crystals, yield 3.35 g (62 %), m.p. 190–193 °C. *Anal.* Calculated for $C_{26}H_{19}N_7O_3S_2$ (541.60): C, 57.66; H, 3.54; N, 18.10; S, 11.84. Found: C, 57.48; H, 3.42; N, 18.29; S, 11.66. MS: *m/e* = 541 (M⁺, 20 %). IR, v: 3512–3357 (OH, 2NH, 2NH₂), 2220, (CN), 1685 (C=O), 1636 (C=N). ¹H-NMR, δ: 4.78, 4.84 (2s, 4H, 2NH₂), 6.83, 6.89 (2 s, 2H, pyrazole H-4, thiophene H-5), 7.26–7.39 (m, 10H, 2C₆H₅), 8.25, 8.86 (2s, 2H, 2NH), 10.24 (s, 1H, OH). ¹³C-NMR, δ: 117.2 (CN), 104.6, 153.8, 154.2 (pyrazole C), 118.8, 120.2, 120.9, 121.8, 124.8, 126.0, 128.5, 129.9, 133.6, 134.2, 139.4, 142.1, 143.8, 144.8 (two thiophene, 2C₆H₅, C), 163.2, 166.2 (2C=O).

Compound **16***c* Crystallized from ethanol to give pale brown crystals, yield 4.67 g (89 %), m.p. 190–193 °C. *Anal.* Calculated for C₂₃H₂₂N₆O₅S₂ (526.59): C, 52.46; H, 4.21; N, 15.96; S, 12.18. Found: C, 52.59; H, 4.50; N, 16.22; S, 12.28. MS: m/e = 526 (M⁺, 22 %). IR, v: 3524–3318 (OH, 2NH, 2NH₂), 1693, 1683,1680 (3C=O), 1636 (C=N). ¹H-NMR, δ : 1.14 (t, 3H, J = 6.89 Hz, CH₃), 2.69 (s, 3H, CH₃), 4.22 (q, 2H, J = 6.89 Hz, CH₂), 4.79, 4.86 (2s, 4H, 2NH₂), 6.80, 6.85 (2s, 2H, pyrazole H-4, thiophene H-5), 7.29–7.38 (m, 5H, C₆H₅), 8.26, 8.80 (2s, 2H, 2NH), 10.24 (s, 1H, OH). ¹³C-NMR, δ : 16.8, 26.8 (2CH₃), 42.8 (CH₂), 104.5, 152.9, 154.8 (pyrazole C), 118.3, 120.4, 121.6, 121.8, 124.8, 130.9, 134.8, 133.6, 139.4, 141.5, 143.8, 144.6 (two thiophene, C₆H₅, C), 164.1, 165.4, 168.0 (3C=O). Compound **16d** Crystallized from ethanol to give yellow crystals, yield 2.94 g (56 %), m.p. 110–113 °C. Anal. Calculated for $C_{28}H_{24}N_6O_5S_2$ (588.66): C, 57.13; H, 4.11; N, 14.28; S, 10.89. Found: C, 57.42; H, 4.38; N, 14.30; S, 10.93. MS: m/e = 588 (M⁺, 52 %). IR, v: 3583–3338 (OH, 2NH, 2NH₂), 1688, 1685, 1680 (3C=O), 1636 (C=N). ¹H-NMR, δ : 1.12 (t, 3H, J = 6.29 Hz, CH₃), 4.24 (q, 2H, J = 6.29 Hz, CH₂), 4.73, 4.88 (2s, 4H, 2NH₂), 6.82, 6.84 (2s, 2H, pyrazole H-3, thiophene H-5), 7.26–7.41 (m, 10H, 2C₆H₅), 8.28, 8.82 (2s, 2H, 2NH), 10.26 (s, 1H, OH). ¹³C-NMR, δ : 16.6 (CH₃), 42.3 (CH₂), 117.0 (CN), 104.6, 152.6, 154.3 (pyrazole C), 118.0, 120.6, 121.8, 124.8, 126.0, 126.9, 127.4, 131.6, 133.6, 134.5, 139.9, 141.8, 142.0, 143.8,

Docking of compound 12c:

12c energy = -22.5

Fig. 5 Docking of compound 12c

144.8 (two thiophene, two C_6H_5 , C), 163.7, 165.4, 166.2 (3C=O).

Compound 18a Crystallized from 1,4-dioxan to give yellow crystals, yield 3.38 g (73 %), m.p. 266–269 °C.

Fig. 6 Docking of compound 12f

Docking of compound **12f**:

6.83 6.88 (3s, 3H, pyrazole H-4, thiophene H-5, thiazole H-5), 7.31–7.42 (m, 5H, C_6H_5), 8.29 (s, 1H, NH), 10.26, 10.29 (2s, 2H, 2OH). ¹³C-NMR, δ : 116.6, 117.3 (2CN), 119.0, 120.3 (C=C), 104.6, 153.8, 154.8 (pyrazole C), 118.0, 121.3, 121.7, 121.8, 126.8, 130.0, 130.9, 139.4,

Docking of compound 16a

142.8, 143.8, 148.0, 150.0, 151.6 (thiophene, thiazole, C₆H₅, C), 164.0 (C=O).

Compound 18b Crystallized from ethanol to give orange crystals, yield 3.06 g (60 %), m.p. 188–190 °C. Anal.

Fig. 7 Docking of compound 16a

Calculated for C₂₂H₁₈N₆O₅S₂ (510.55): C, 51.76; H, 3.55; N, 16.46; S, 12.56. Found: C, 51.61; H, 3.40; N, 16.86; S, 12.72. MS: m/e = 510 (M⁺, 30 %). IR, υ : 3563–3388 (2OH, NH, NH₂), 2222 (CN), 1690, 1688 (2C=O), 1634 (C=N). ¹H-NMR, δ : 1.13 (t, 3H, J = 7.07 Hz, CH₃), 4.26 (q, 2H, J = 7.07 Hz, CH₂), 4.76 (s, 2H, NH₂), 6.83, 6.86, 7.01 (3s, 3H, pyrazole

H-4, thiophene H-5, thiazole H-5), 7.29–7.40 (m, 5H, C₆H₅), 8.35 (s, 1H, NH), 10.24, 10.28 (2 s, 2H, 2OH). 13 C-NMR, δ : 16.6 (CH₃), 42.6 (CH₂), 117.2 (CN), 104.6, 152.2, 154.8 (pyrazole C), 118.3, 120.4, 121.4, 122.5, 124.8, 126.6, 127.4, 131.6, 133.6, 139.9, 142.0, 143.8, 144.8, 148.9, 152.0, 153.3 (thiophene, thiazole, C₆H₅, C), 162.3, 163.8 (2C=O).

Fig. 8 Docking of compound 16d

 $\underline{\widehat{\mathcal{D}}}$ Springer

Preparation for docking

Docking was carried out on an Intel Pentium 1.6 GHz processor, 512 MB memory, with windows XP operating system and Molecular Operating Environment (MOE 2008.10; Chemical Computing Group, Canada) as the computational software. All the minimizations were performed with MOE until a root mean square deviation (RMSD) gradient of 0.05 kcal/mol/Å with MMFF94x force field was reached and the partial charges were automatically calculated. The 3D structure of the Protein Cyclin-Dependent Kinase2 (CDK2) complexes with (Thiophene Carboxamide) was obtained from the Protein Data Bank (PDB ID: 1EVE) at Research Collaboration for Structural Bioinformatics (RCSB), protein data bank base 60 with 2.5 Å resolution.

Scoring

Poses generated by the placement methodology were scored using the London dG scoring function implemented in MOE, which estimates the free energy of binding of the ligand from the given pose. The top 10 poses for each ligand were output in the MOE database. Each resulting ligand pose was then subjected to MMFF94x energy minimization. The minimized docking conformations were then rescored using the London dG scoring method. Validation of the function implemented in MOE was done by docking the native ligand (Thiophene Carboxamide) into its binding site; the docked results of the previous mentioned ligand were compared to the crystal structure of the bound ligand–protein complex. The RMSD of the docked ligand was 2.5 Å as it seems exactly superimposed on the native-bound one. These results indicate the accuracy of the MOE in comparison with the biological methods.

In the present work, all new compounds were docked using the rigid receptor/flexible ligand approach adopting five energy maps which are hydrophobicity, electrostatic, hydrogen bond formation, and two Van der Waal parameters. The docking scores were expressed in energy terms. The lower the binding energy, the better the binding affinity. The docking study displayed showed that most of the designed compounds have a promising affinity to inhibit CDK2. It is of great value that among our docking studies, we find that the maximum inhibitory effect has been seen toward CDK2; for that reason, we selected the thiophene derivatives **12c**, **12f**, **16a**, and **16d** to be docked against such protein kinase using thiophene carboxamide as a reference compound. See Figures **5**, **6**, **7**, and **8**

Conclusions

In this work, we succeeded in synthesizing a series of pyrazole derivatives incorporated with other heterocyclic rings. The anti-tumor evaluations of the newly synthesized products showed that compounds **12c**, **12f**, **16a**, and **16d** were the most active compounds toward the three cancer cell lines.

Acknowledgments R. M. Mohareb would like to express his deepest thank to the Alexander von Humboldt Foundation in Bonn for affording his a fellowship in Germany, München during summer, 2012 for doing research and completing this work.

References

- Abadi AH, Abdel Haleem Eissa Hassan A, Hassan GS (2003) Chem Pharm Bul 51:838–844
- Al-Said MS, Bashandy MS, Al-gasoumi SI, Ghorab MM (2011) Antibreast cancer activity of some novel 1,2-dihydropyridine, thiophene and thiazole derivatives. Eur J Med Chem 46(1):137–141
- Bondock S, Fadaly W, Metwally MA (2010) Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur J Med Chem 45(9):3692–3701
- Brasca MG, Albanese C, Amici R, Ballinari D, Corti L, Croci V, Fancelli D, Fiorentini F, Nesi M, Orsini P, Orzi F, Pastori W, Perrone E, Pesenti E, Pevarello P, Riccardi-Sirtori F, Roletto F, Roussel P, Varasi M, Vulpetti A, Mercurio C (2007) 6-Substituted pyrrolo[3,4-c]pyrazoles: an improved class of CDK2 inhibitors. Chem Med Chem 2:841–852
- Cho N, Kamaura M, Yogo T, Imoto H (2009) PCT Int Appl WO 2009139340
- Dugi K, Mark M, Himmelsbach F (2009) PCT Int Appl WO 2009022009
- Elguero J, Goya P, Jagerovic N, Silva AMS (2002) In: Attanasi OA, Spinelli D (eds) Targets in heterocyclic systems, 6th edn. Società Chimica Italiana, Roma, pp 52–98
- Fadda AA, Abdel-Latif E, El-Mekawy RE (2009) Synthesis and molluscicidal activity of some new thiophene, thiadiazole and pyrazole derivatives. Eur J Med Chem 44(3):1250–1256
- Gouda MA, Berghot MA, Abd El-Ghani GE, khalil AM (2010) Synthesis and antimicrobial activities of some new thiazole and pyrazole derivatives based on 4,5,6,7-tetrahydrobenzothiophene moiety. Eur J Med Chem 45(4):1338–1345
- Insuasty B, Tigreros A, Orozco F, Quiroga J, Abonia R, Nogueras M, Khalil AM, Berghot MA, Gouda MA (2009) Synthesis and antibacterial activity of some new thiazole and thiophene derivatives. Eur J Med Chem 44(11):4434–4440
- Labbozzetta M, Baruchello R, Marchetti P, Gueli MC, Poma P, Notarbartolo M, Simoni D, D'Alessandro N (2009) Lack of nucleophilic addition in the isoxazole and pyrazole diketone modified analogs of curcumin; implications for their antitumor and chemosensitizing activities. Chem Biol Interact 181: 29–36
- Ludwig S, Planz O, Sedlacek HH, Pleschka S (2004) PCT Int Appl WO12

Hubbard SR, Till JH (2000) Rev Biochem 69(373):2004085682

Michaelides MR (2010) PCT Int Appl WO 2010065825

- Momose Y, Maekawa T, Odaka H, Kimura H (2001) PCT Int Appl WO 2001038325
- Perchellet EM, Ward MM, Skaltsounis AL, Kostakis IK, Pouli N, Marakos P, Perchellet JP (2006) Antiproliferative and proapoptotic activities of pyranoxanthenones, pyranothioxanthenones, and their pyrazole-fused derivatives in HL-60 cells. Anticancer Res 26:2791–2804

- Pevarello P, Brasca MG, Amici R, Orsini P, Traquandi G, Corti L, Piutti C, Sansonna P, Villa M, Pierce BS, Pulici M, Giordano P, Martina K, Fritzen EL, Nugent RA, Casale E, Cameron A, Ciomei M, Roletto F, Isacchi A, Fogliatto G, Pesenti E, Pastori W, Marsiglio A, Leach KL, Clare PM, Fiorentini F, Varasi M, Vulpetti A, Warpehoski MA (2004) 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 1. Lead finding. J Med Chem 47:3367–3380
- Pevarello P, Fancelli D, Vulpetti A, Amici R, Villa M, Pittalà V, Vianello P, Cameron A, Ciomei M, Mercurio C, Bischoff JR, Roletto F, Varasi M, Brasca MG (2006) 3-Amino-1,4,5,6tetrahydropyrrolo[3,4-c]pyrazoles: a new class of CDK2 inhibitors. Bioorg Med Chem Lett 16:1084–1090
- Regan J, Breitfelder S, Cirillo P, Gilmore T, Graham AG, Hickey E, Klaus B, Madwed J, Moriak M, Moss N, Pargellis C, Pav S, Proto A, Swinamer A, Tong L, Torcellini C (2002) Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate. J Med Chem 45:2994–3008
- Rida SM, Saudi MNS, Youssef AM, Halim MA (2009) Synthesis and biological evaluation of the pyrazole class of cyclooxygenase-2inhibitors. Lett Org Chem 6:282–288

- Sanchez A, Cobo J (2010) Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorg Med Chem 18:4965–4974
- Sunil Kumar YC, Sadashiva MP, Rangappa KS (2007) An efficient synthesis of 2-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)morpholine: a potent M1 selective muscarinic agonist. Tetrahedron Lett 48:4565–4568
- Szabo G, Fischer J, Kis-Varga A, Gyires K (2008) New celecoxib derivatives as anti-inflammatory agents. J Med Chem 51:142– 147
- Tanitame A, Oyamada Y, Ofuji K, Fujimoto M, Suzuki K, Ueda T, Terauchi H, Kawasaki M, Nagai K, Wachi M, Yamagishi J (2004) Synthesis and antibacterial activity of novel and potent DNA gyrase inhibitors with azole ring. Bioorg Med Chem 12:5515–5524
- Tanitame A, Oyamada Y, Ofuji K, Terauchi H, Kawasaki M, Wachi M, Yamagishi J (2005) Synthesis and antibacterial activity of a novel series of DNA gyrase inhibitors: 5-[(E)-2-arylvinyl]pyrazoles. Bioorg Med Chem Lett 15:4299–4303