

Available online at www.sciencedirect.com

Tetrahedron 60 (2004) 5353-5355

Tetrahedron

A one-pot assembly of 4-allyl-3-pyridinecarboxaldehyde. A new synthesis of 1-methyl-1,2,3,3a,4,8b-hexahydropyrrolo[3,2-*f*]pyrindine, an annulated nicotine analogue

Shengjun Luo,^a Fang Fang,^a Mingyue Zhao^b and Hongbin Zhai^{a,*}

^aLaboratory of Modern Synthetic Organic Chemistry and State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China ^bZhengzhou Tobacco Research Institute, Zhengzhou, Henan 450000, China

Received 8 March 2004; revised 22 April 2004; accepted 23 April 2004

Abstract—This paper describes a two-step synthesis of 1-methyl-1,2,3,3a,4,8b-hexahydropyrrolo[3,2-*f*]pyrindine, a conformationally constrained nicotine analogue. The target molecule was effectively assembled by an intramolecular azomethine ylide-alkene [3+2] cycloaddition. The cyclization precursor, 4-allyl-3-pyridinecarboxaldehyde, was formed efficaciously in a single step from 3-pyridinecarboxaldehyde via sequential in situ protection, *ortho* lithiation, cuprate formation, allylation, and deprotection. The cuprate formation plays a vital role in minimizing/eliminating the extent of multiple alkylation. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

(–)-Nicotine (1, Fig. 1), an alkaloid present in tobacco at 0.2-5% levels, targets and activates nicotinic acetylcholine receptors (nAChRs).¹ The nAChRs provide ligand-gated ion channels in the human brain and participate in various biological processes related to numerous nervous system disorders.² Due to the therapeutic potential of (–)-nicotine for central nervous system (CNS) disorders such as Alzheimer's, Parkinson's, and Tourette's diseases, nicotine analogues have received much attention from both synthetic and medicinal chemists.² In particular, conformationally constrained nicotinoids have become attractive candidates for new selective nAChRs-targeting ligands.^{2a,3,4} On one hand, this is because of the discovery of epibatidine, an alkaloid with a rigid structure, which displays strong

Figure 1.

Keywords: Annulated nicotine analogue; Intramolecular azomethine ylidealkene [3+2] cycloaddition; Synthesis.

* Corresponding author. Tel.: +86-21-64163300; fax: +86-21-64166128; e-mail address: zhaih@mail.sioc.ac.cn

0040–4020/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.04.069

activity despite of its toxicity.⁵ On the other hand, molecular modeling studies have demonstrated that the two heterocyclic rings of nicotine are skewed and approximately perpendicular to one another to secure low energy conformations.^{3,6}

Our laboratory has been fascinated in the chemistry of nicotine analogues aimed to develop new selective nAChRs-targeting ligands. A tricyclic nicotine analogue, 1-methyl-1,2,3,3a,4,8b-hexahydropyrrolo[3,2-f]pyrindine (**2**, Fig. 1), was previously designed and synthesized in six steps from 3-bromopyridine.^{4b} The conformational rigidity of **2** was achieved as a result of a methylene bridge erected between C-4 and C-5' of nicotine (**1**).

2. Results and discussion

Herein we wish to report a new synthesis of **2** with high efficiency, featuring the construction of the hexahydropyrrolo[3,2-*f*]pyrindine tricyclic framework via intramolecular azomethine ylide-alkene [3+2] cycloaddition.^{4b,7} The apparent precursor for the cycloaddition would be 4-allyl-3-pyridinecarboxaldehyde (**3**, Fig. 2), whose efficient synthesis itself represents one of the challenges for the current project. In principle, aldehyde **3** might be obtainable from 4-allyl-3-bromopyridine (**4**) by sequential treatment with BuLi and *N*,*N*-dimethylformamide (DMF). Alkene **4** was reportedly⁸ synthesized from 3-bromopyridine in only

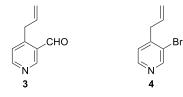
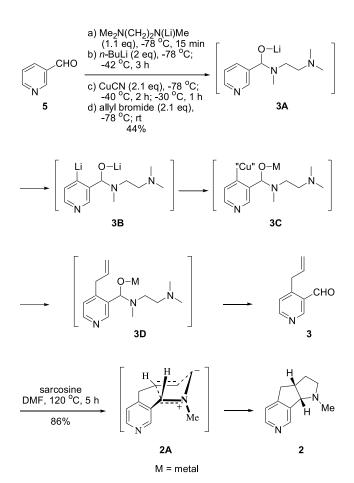



Figure 2.

40% yield. The unsatisfactory yield for this transformation resulted mainly from the further alkylatability because of the enhanced acidity of the benzylic hydrogens. By the same token, the conversion of 4 to 3 could not be a clean reaction.

Ortho lithiation of aromatic aldehydes with prior in situ aldehyde protection, first introduced by Comins and co-workers,⁹ has proved to be a convenient and versatile technique having considerable potential in organic synthesis.¹⁰ We envisaged that this protocol might be modified to synthesize enal **3** by a one-pot reaction from 3-pyridinecarboxaldehyde (**5**, Scheme 1). Indeed, the desired 4-allyl-3-pyridinecarboxaldehyde **3** was afforded when aldehyde **5** was protected in situ with LTMDA [Me₂N(CH₂)₂N(Li)Me, prepared by mixing *N*,*N*,*N'*-trimethylethylenediamine and *n*-BuLi], *ortho* lithiated with *n*-BuLi, converted to a high-order cuprate with CuCN, alkylated with allyl bromide, and finally hydrolyzed. The yield for this step was 44%, which amounted to an average yield of 85% for each of the five operations (**3A**–**3D** were

the four plausible intermediates). We have not been able to further optimize this reaction so far. However, the current protocol should be acceptable considering the fact that such a useful intermediate as **3** can be assembled in a one-pot fashion. The absence of CuCN resulted simply in a complex reaction mixture because **3D** (an 4-allylpyridine derivative) was prone to further allylation due to the presence of the highly acidic benzylic/allylic hydrogens. Replacement of CuCN with CuBr led to less satisfactory results.

Having the enal in hand set the stage for intramolecular azomethine ylide-alkene [3+2] cycloaddition.⁷ Treatment^{4b} of **3** with sarcosine (120 mol%) in DMF at 120 °C for 5 h effected the desired cycloaddition (see the transition state **2A**) to produce in 86% yield the tricycle **2**, an annulated nicotine analogue. The spectroscopic data of the sample were in accord with those reported previously.^{4b} Currently pharmacological studies of **2** are under way.

3. Conclusion

In summary, a two-step synthesis of 1-methyl-1,2,3,3a,4,8bhexahydropyrrolo[3,2-*f*]pyrindine (**2**), a conformationally constrained nicotine analogue, has been accomplished. The target molecule was effectively assembled by an intramolecular azomethine ylide-alkene [3+2] cycloaddition. The cyclization precursor, 4-allyl-3-pyridinecarboxaldehyde (**3**), was formed efficaciously in a single step from 3-pyridinecarboxaldehyde (**5**) via sequential in situ protection, *ortho* lithiation, cuprate formation, allylation, and deprotection. The cuprate formation plays a vital role in minimizing/ eliminating the extent of multiple alkylation.

4. Experimental

4.1. General

NMR spectra were recorded in CDCl_3 (¹H at 300 MHz and ¹³C at 75.47 MHz), using TMS as the internal standard when appropriate. Column chromatography was performed on silica gel. THF were distilled over sodium benzophenone ketyl under N₂ prior to use. DMF was distilled over calcium hydride under N₂ prior to use.

4.1.1. 4-Allyl-3-pyridinecarboxaldehyde (3). *n*-BuLi (2.08 M, 5.6 mL, 12 mmol) was added to a stirred solution of N, N, N'-trimethylethylenediamine (1.62 mL, 12.5 mmol) in THF (40 mL) at -78 °C. After 15 min, 3-pyridinecarboxaldehyde (1.0 mL, 10.6 mmol) was added at -78 °C, and the stirring was continued for 15 min. n-BuLi (2.08 M, 10 mL, 21 mmol) was added at -78 °C and the stirring was continued at -42 °C for 3 h. After cooling to -78 °C, CuCN (1.99 g, 22.2 mmol) was added as a solid and the temperature was maintained at -40 °C for 2 h and then at -30 °C for 1 h. After cooling to -78 °C, a solution of allyl bromide (1.9 mL, 22 mmol) in THF (10 mL) was added at -78 °C. The reaction mixture was allowed to warm to rt, diluted with saturated aqueous Na₂SO₃ and saturated aqueous NaHCO₃, and extracted with EtOAc. The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by column

5354

chromatography to afford **3** (686 mg, 44%) as a colorless oil: FT-IR (KBr, cm⁻¹): 2861, 2754, 1702, 1639, 1592, 1556, 1489, 1400, 1222, 1058, 997, 923, 839, 735, 690, 658; ¹H NMR (CDCl₃, 300 MHz) δ 3.73 (d, 2H, *J*=5.2 Hz), 4.97 (dd, 1H, *J*=17.2, 2.8 Hz), 5.06 (dd, 1H, *J*=10.5, 2.7 Hz), 5.81–5.96 (m, 1H), 7.18 (d, 1H, *J*=4.8 Hz), 8.58 (d, 1H, *J*=4.8 Hz), 8.87 (s, 1H), 10.17 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 35.9, 117.7, 125.2, 129.0, 134.3, 150.5, 153.6, 153.7, 191.2; MS (EI): 147 (M⁺, 30), 146 (M⁻¹, 100); HRMS (EI) calcd for C₉H₉NO, 147.0684, found 147.0687.

4.1.2. 1-Methyl-1,2,3,3a,4,8b-hexahydropyrrolo[3,2flpyrindine (2). A mixture of aldehyde 3 (686 mg, 4.66 mmol) and sarcosine (495 mg, 5.56 mmol) in DMF (40 mL) was heated under N₂ at 120 °C for 5 h, cooled to rt, and concentrated in vacuo. The residue was diluted with saturated aqueous NaHCO₃ solution and extracted with isopropanol/CHCl₃ (1/3). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was chromatographed (SiO₂, CH₂Cl₂-MeOH, 40/1) to give 2 (700 mg, 86%) as a pale yellow oil: ¹H NMR (CDCl₃, 300 MHz) & 1.62-1.74 (m, 1H), 2.15-2.25 (m, 1H), 2.44-2.55 (m, 1H), 2.55 (s, 3H), 2.77-2.86 (m, 1H), 2.99-3.21 (m, 3H), 3.80 (d, J=7.6 Hz, 1H), 7.13 (d, J=5.2 Hz, 1H), 8.42 (d, J=5.2 Hz, 1H), 8.60 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 32.23, 39.23, 40.50, 41.92, 57.59, 73.45, 120.34, 139.25, 145.78, 148.34, 152.95. MS (EI): 174 (M⁺). Anal. calcd for C₁₁H₁₄N₂: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.69; H, 7.84; N, 16.38.

Acknowledgements

We thank National Natural Science Foundation of China (No. 20372073), The Bureau of Tobacco, PRC, and Science and Technology Commission of Shanghai Municipality ('Venus' Program) for financial support.

References and notes

- (a) Decker, M. W.; Meyer, M. D.; Sullivan, J. P. *Exp. Opin. Invest. Drugs* **2001**, *10*, 1819. (b) Nordberg, A. *Biol. Psychiat.* **2001**, *49*, 200. (c) Paterson, D.; Nordberg, A. *Prog. Neurobiol.* **2000**, *61*, 75. (d) Clementi, F.; Fornasari, D.; Gotti, C. *Eur. J. Pharmacol.* **2000**, *393*, 3.
- (a) McDonald, I. A.; Cosford, N.; Vernier, J.-M. Annu. Rep. Med. Chem. 1995, 30, 41. (b) Decker, M. W.; Aneric, S. P. Neuronal Nicotinic Recept. 1999, 395.
- 3. Glennon, R. A.; Dukat, M. Med. Chem. Res. 1996, 465.
- (a) Meijler, M. M.; Matsushita, M.; Altobell, L. J., III.; Wirsching, P.; Janda, K. D. J. Am. Chem. Soc. 2003, 125, 7164. (b) Zhai, H.; Liu, P.; Luo, S.; Fang, F.; Zhao, M. Org. Lett. 2002, 4, 4385. (c) Ullrich, T.; Binder, D.; Pyerin, M. Tetrahedron Lett. 2002, 43, 177. (d) Lennox, J. R.; Turner, S. C.; Rapoport, H. J. Org. Chem. 2001, 66, 7078. (e) Turner, S. C.; Zhai, H.; Rapoport, H. J. Org. Chem. 2000, 65, 861. (f) Xu, Y.-z.; Choi, J.; Calaza, M. I.; Turner, S. C.; Rapoport, H. J. Org. Chem. 1999, 64, 4069. (g) Kanne, D. B.; Abood, L. G. J. Med. Chem. 1988, 31, 506. (h) Glassco, W.; Suchocki, J.; George, C.; Martin, B. R.; May, E. L. J. Med. Chem. 1993, 36, 3381. (i) Chavdarian, C. G.; Seeman, J. I.; Wooten, J. B. J. Org. Chem. 1983, 48, 492.
- Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992, 114, 3475.
- 6. Elmore, D. E.; Dougherty, D. A. J. Org. Chem. 2000, 65, 742.
- 7. (a) Smith, R.; Livinghouse, T. *Tetrahedron* 1985, 41, 3559.
 (b) Bolognesi, M. L.; Andrisano, V.; Bartolini, M.; Minarini, A.; Rosini, M.; Tumiatti, V.; Melchiorre, C. J. Med. Chem. 2001, 44, 105.
- Hong, C. Y.; Overman, L. E.; Romero, A. *Tetrahedron Lett.* 1997, 38, 8439.
- (a) Comins, D. L.; Killpack, M. O. J. Org. Chem. 1990, 55, 69.
 (b) Comins, D. L.; Brown, J. D. J. Org. Chem. 1984, 49, 1078.
- (a) Schultz, A. G.; Antoulinakis, E. G. J. Org. Chem. 1996, 61, 4555. (b) Bjork, P.; Hornfeldt, A.-B.; Gronowitz, S. J. Heterocycl. Chem. 1994, 31, 1161.