

Subscriber access provided by UNIV OF CAMBRIDGE

Regiocontrolled Synthesis of #-Sulfonylmethyl o-Nitrostyrenes via Znl2-Mediated Sulfonylation and AgNO2/Pd(PPh3)4-Promoted o-Nitration

Meng-Yang Chang, Han-Yu Chen, and Heui-Sin Wang

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b02311 • Publication Date (Web): 19 Sep 2017

Downloaded from http://pubs.acs.org on September 20, 2017

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Regiocontrolled Synthesis of α-Sulfonylmethyl *o*-Nitrostyrenes via ZnI₂-Mediated Sulfonylation and AgNO₂/Pd(PPh₃)₄-Promoted *o*-Nitration

Meng-Yang Chang,* Han-Yu Chen and Heui-Sin Wang

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan

Supporting Information Placeholder

ABSTRACT: We report herein the AgNO₂/Pd(PPh₃)₄-promoted regiocontrolled *o*-nitration of α -sulfonylmethyl styrenes in MeNO₂ with good yields. The *o*-nitration process provides a series of sulfonyl *o*-nitrostyrenes. Substituted α -sulfonylmethyl styrenes were synthesized from ZnI₂-mediated sulfonylation of substituted α -methylstyrenes and sodium sulfinates (RSO₂Na) in MeCN with good to excellent yields. The structures of the key products were confirmed by X-ray crystallography. A plausible mechanism has been proposed herein.

Introduction

Functionalized nitroarenes are important core structures in the preparation of dyes, plastics, perfumes, explosives and pharmaceuticals.¹ Numerous synthetic applications for such nitroarenes have been developed.² Apart from mixed-acid systems (HNO₃/H₂SO₄ or AcOH), nitrated salts (NaNO₂, NH4NO3, AgNO3, AgNO2, Ce(NH4)2(NO3)6, Cu(NO3)2, $Fe(NO_3)_3$, $Bi(NO_3)_3$) and nitration by means of metalation (mecuration, palladation, thallation, etc.) have been reported as efficient methods.^{1b} Among them, nitronium ion-mediated electrophilic nitration of arenes, one of the most extensively used organic reactions, results in low regioselectivity owing to the formation of mixtures of isomeric nitrated products.^{1c} However, there have been fewer report on the synthesis of onitrostyrenes (o-vinylnitroarenes) via a nitration route compared to common nitroarenes. As shown in Scheme 1, onitrostyrenes can be obtained easily by some synthetic routes, Suzuki-Miyaura cross-coupling,^{3a-c} including Wittig olefination,3d-f Grignard double methylation followed by dehydration^{3g} and photolytic irradiation.^{3h} The major synthetic applications of the precursor of o-nitrostyrenes are focused on the formation of indole ring system via transition metal (Pd^{4a}, Fe/Ru/Rh^{4b}, Ti^{4c}, Rh^{4d}, Sn^{4e}, Co^{4f}) and organodiborane catalyzed one-pot ring-closure,4g and electrolytic cyclization.4h The solid phase synthesis of benzothiazine skeleton from onitroarenes has been discussed.4i In continuation of our investigation into the synthetic applications of sulfonyl chemistry,⁵ we introduce the styrenes 3 as the starting materials for synthesizing o-nitrostyrenes 4. As shown in Scheme 2, the synthesis of **4** having the α -sulfonylmethyl group is well developed, and includes (1) ZnI₂-mediated sulfonylation of substituted α -methylstyrenes **1** and sodium sulfinates (**2**, RSO₂Na) in wet MeCN at reflux, and (2) AgNO₂/Pd(PPh₃)₄ promoted regiocontrolled *o*-nitration of **3** in MeNO₂ at reflux.

Scheme 1. Synthetic Routes of *o*-Nitrostyrenes

Scheme 2. Synthetic Route of α -Sulfonylmethyl *o*-Nitrostyrenes

Results and Discussions

Among these recent reports on the syntheses of α sulfonylmethyl styrenes,⁶ the one-pot strategy for the direct conjugation of carbon-sulfur (C-S) bond takes advantage of the tandem protocol that was established by Jiang (Cu⁺/RSO₂NHNH₂),^{6a} Zhou (TBHP/RSO₂NHNH₂),^{6b} Liska (Cu^+/RSO_2Cl) .^{6c} Lei $(Co^{2+}/RSO_{2}H),^{6d}$ Kuhakarn (I₂/RSO₂Na),^{6e} and Yallapragada (I₂/DMSO/TosMIC).^{6f} Despite remarkable advances in the types of sulfonylative transformations, the continuing quest for a novel alternative route is still an important challenge. In comparison with the sulfonylating system, the combination of Zn^{2+/}RSO₂Na is applied to explore a new method for installing a sulfonyl group into the α -methyl group of **1**. Sodium sulfinates **2** have been widely used as sulfonylating reagents for the formation of carbonsulfur and heteroatom-sulfur bonds.7 Because of their ready availability, inexpensiveness, ease of operation and high air stability, sodium sulfinates are generally used as sulfonylating surrogates more than other sulfonyl synthons, such as sulfonyl chlorides, sulfonyl acids or sulfonyl hydrazines.⁸ Substituted α -methylstyrenes 1 were easily prepared in high yields from Wittig methylenation (Ph₃PCH₃I, t-BuOK) of commercially available acetophenones (Y = H, 3,4-Cl₂, 4-CF₃, 3-F, 4-Cl, 4-NO₂ and 4-Ph or 2-naphthyl) under the standard protocols. With the starting materials 1 in hand, the next step was to find the optimal conditions for introducing the sulfonyl group of 2 on the α -methyl position of **3**.

Ш

 Table 1. Optimal Conditions for $3a^a$

Me Lewis acids					
		ToISO2 condi	Na 2a tions	o≈\$≈o Tol	
	1a			3a	
entry	Lewis acids	solvent	temp.	(°C) time (h)	3a $(\%)^b$
1	ZnI_2	MeCN	25	10	10
2	ZnI_2	MeCN	82	10	80
3	ZnI_2	MeCN	82	20	65
4	ZnI_2	CH_2Cl_2	40	10	
5	ZnI_2	DMF	82	10	58
6	ZnI_2	DMSO	82	10	61
7	$ZnCl_2$	MeCN	82	10	25
8	Zn(OAc) ₂	MeCN	82	10	
9	Zn(OTf) ₂	MeCN	82	10	
10	ZnSO ₄	MeCN	82	10	
11	MgI ₂	MeCN	82	10	57
12	AgI	MeCN	82	10	35
13	CuI	MeCN	82	10	50
14	KI	MeCN	82	10	
15	LiI	MeCN	82	10	
16	ZnI_2	MeCN	82	10	35^d

^{*a*}The reactions were run on a 1.0 mmol scale with **1a**, Lewis acids (1.2 quiv), TolSO₂Na **2a** (2.2 equiv), solvent (9 mL) and H₂O (1 mL). ^{*b*}Isolated yields. ^{*c*}No reaction. ^{*d*}ZnI₂ (0.5 equiv) was added.

First, **1a** and **2a** (equiv ratio = 1:2.2) were chosen as the model substrates for scanning the reaction conditions, as shown in Table 1. By controlling the ZnI_2 as the Lewis acid in wet MeCN, reaction temperature and time were examined. In entry 1, only a 10% yield of 3a was isolated at 25 °C. After elevating the temperature (rt \rightarrow reflux), the yield was increased to 80% (entry 2). However, by elongating the reaction time (10 \rightarrow 20 h) the yield of **3a** was decreased to 65% (entry 3). Furthermore, the factor of the solvent was studied. In entries 4-6, after changing the solvents (from refluxing MeCN to refluxing CH₂Cl₂, warming DMF and DMSO), the results showed that no formation of 3a was obtained in CH₂Cl₂, and DMF and DMSO provided 3a in 58% and 61% yields, respectively. For the other shown zinc complex of entries 7-10, only ZnCl₂ provided 3a in only 25% yield and no isolation of 3a for $Zn(OAc)_2$, $Zn(OTf)_2$ and $ZnSO_4$. Next, other metal iodides were studied (entries 11-15). However, MgI₂ (57%), AgI (35%), CuI (50%), NaI (NR), and KI (NR) provided poorer yields of 3a than ZnI_2 (80%) did under similar conditions. With these results in hand, we found that ZnI₂ belonged to the most reactive and used catalyst compared to other Lewis acids. After decreasing the amounts (1.1 \rightarrow 0.5 equiv) of ZnI₂, entry 16 showed that lower yields (35%) of 3a were detected. According to the results, the 1.1 equivalent of ZnI₂/wet MeCN/reflux/10 h condition would be an optimal combination for yielding 3a. On the basis of the results, a plausible mechanism with a reasonable explanation is described in Scheme 3. Initially, the complexation of 1a with ZnI_2 generates A. Next, **A** is converted to **B** having a coordinated Zn^{2+} complex along with the removal of an iodide ion. The releasing iodide ion promotes the deprotonation of **B** to yield **C** with an allylic ZnI side arm and HI. By the involvement of TolSO₂Na 2a (2 equiv), 3a is produced by intermolecular nucleophilic substitution of C with one TolSO₂Na 2a. Among the process, NaI and Zn should be generated. Subsequently, the other TolSO₂Na 2a traps the in situ formed HI to afford the resulting NaI and TolSO₂H under the equilibrium conditions.

Scheme 3. Plausible Mechanism for 3a

With the optimal condition (Table 1, entry 2), we further explored the substrate scope of the reaction; the results of α sulfonylation are shown in Table 2. For the formation of α sulfonylmethyl styrenes **3a-t** (entries 1-20), the diversified and well-tolerated Y and R substituents of **1a-h** and **2a-m**, including the electron-donating aryl group (**2f**, R = 4-MeOC₆H₄), electron-neutral aryl group (**2a-b**, R = Tol, Ph; **1g**, biphenyl, **1h**, 2-naphthyl) or aliphatic group (**2c-d**, R = Me, *n*Bu) and an electron-withdrawing aryl group (**1b-c**, Y = 3-F, 4-CF₃ and **1f**, Y = 4-NO₂) did not affect the distributed yields of **3a-t** (70%-85%) by ZnI₂-mediated allylic sulfonylation. However, the optimal condition was inappropriate for CF₃SO₂Na **2n**

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

53

54

55

56

57

58

59 60 (Langlois' reagent), and a complex mixture was observed (entry 21).⁹ Especially, when reaction of **1i** ($Y = 3,4-CH_2O_2$) and 2a was treated with 1.2 equivalents of ZnI₂, no desired 3v was obtained, and only dimer 3v-1 was isolated in a 46% yield (entry 22).¹⁰ From the results, we believed that selfdimerization of α -methylstyrenes having oxygenated aryl group was easier to initiate than sulfonylation route due to electron-donating group could stabilize the intermediate with the tertiary carbocation under ZnI2 mediated conditions. Overall, for the electronic effect of Y substituent on the skeleton of α -methylstyrenes 1, the electron-donating oxygenated group was inappropriate in the formation of 3. For R substituent of sodium sulfinates 2, both of electron-donating aromatic group and electron-withdrawing aromatic group could provide good yields of 3, and no obvious electronic effect occurred under the ZnI_2 -mediated sulforgration reaction besides $R = CF_3$ group.

Table 2. Synthesis of 3^a

Y	Me Znl2 RSO2Na 2 MeCN / HaQ		Me Me
1		3 3 (Y = 3	v-1 ,4-CH ₂ O ₂)
entry	1 , Y =	2 , R =	3 , $(\%)^b$
1	1a , H	2a , Tol	3a , 80
2	1a , H	2b , Ph	3b , 73
3	1a , H	2c , Me	3c , 70
4	1a , H	2d , <i>n</i> Bu	3d , 76
5	1a , H	2e , 4 -FC ₆ H ₄	3e , 82
6	1a , H	2f, 4-MeOC ₆ H ₄	3f , 83
7	1a , H	2g , 3-MeC ₆ H ₄	3g , 82
8	1a , H	2h , 4 -EtC ₆ H ₄	3h , 74
9	1a , H	2i , 4- <i>i</i> PrC ₆ H ₄	3i , 76
10	1a , H	2j , 4 - n BuC ₆ H ₄	3 j, 85
11	1a , H	$2\mathbf{k}$, 4 - t BuC ₆ H ₄	3k , 80
12	1a , H	2l , 4 -BrC ₆ H ₄	31 , 80
13	1a , H	$2\mathbf{m}$, 4-ClC ₆ H ₄	3m , 72
14	1b , 3-F	2a , Tol	3n , 78
15	1c , 4-CF ₃	2a , Tol	30 , 71
16	1d , 3,4-Cl ₂	2a , Tol	3p , 70
17	1e, 4-Cl	2a , Tol	3q , 76
18	1f , 4-NO ₂	2a , Tol	3r , 70
19	1g , 4-Ph	2a , Tol	3s , 78
20	1h, 2-naphthyl	2a , Tol	3t , 77
21	1a , Ph	2n , CF ₃	3u , $-c$
22	1i, 3,4-CH ₂ O ₂	2a , Tol	3v , $-^{d}$

^{*a*}The reactions were run on a 1.0 mmol scale with **1**, ZnI₂ (1.2 quiv), RSO₂Na (2.2 equiv), co-solvent of solvent (9 mL) and H₂O (1 mL), 10 h, 82 °C. ^{*b*}Isolated yields. ^{*c*}Complex mixture. ^{*d*}46% of **3v-1** was isolated.

With 3 in hand, the regiocontrolled nitration of α -sulfonylmethyl styrenes was examined next. The initial exper-

iment was performed with 3a and a common HNO₃/H₂SO₄ (0.5/1.0 mL) in CH₂Cl₂ at 25 °C under open-vessel condition, as shown in Table 3, entry 1.11 However, an inseparated mixture of o- and p-nitrated products (4a and 4a') was provided in a 28% yield with a ratio of 1:1 along with the formation of a β ketosulfone 4a-1 (46%). In entry 2, a combination of $NH_4NO_3/TFAA (0.5/1.0 \text{ mL})$ provided a similar result (*o*-/*p*- = 6/4) with a 48% yield compared with entry 1.¹² Other transition metal nitrates were applied in this o-nitration, including Ag(I),¹³ Ce(IV),¹⁴ Pd(II),¹⁵ Cu(II),¹⁶ Fe(III),¹⁷ and Bi(III)¹⁸ salts. However, no regioselective nitration was observed for AgNO₃ (1.5 equiv)/CCl₄ combination in a 55% yield with a ratio of 2:1 (entry 3). For $Ce(NH_4)_2(NO_3)_6$ (2.0 equiv)/MeCN, only complex products were isolated (entry 4). When a 10 mol % of $Pd(OAc)_2$ was involved to the *t*-BuONO (1.5 equiv) mediated nitration, the ratio of o- and p-nitrated product was increased to 4:1 (entry 5).

Table 3. Optimal Conditions for 4a^a

	$ \begin{array}{c} & & & \\ \hline NO_2 \\ \hline S \geq 0 \\ \hline Tol \end{array} \begin{array}{c} & & \\ \hline conditions \end{array} \begin{array}{c} & & O_2 \\ \hline O \\ \hline O \end{array} $) + :S≍O O₂N' Tol) + s≍o toi	
3a	4a		4a'		4a-1
entry	reagents	solvent	temp (°C)	time (h)	ratio/yield $(o/p, \%)^{b-c}$
1	HNO ₃ /H ₂ SO ₄ (0.5/1.0 mL)	CH_2Cl_2	25	10	1:1, 28
2	NH ₄ NO ₃ /TFAA (1.5/2.0 equiv)	CH ₂ Cl ₂	25	10	6:4, 48
3	AgNO ₃ (1.5 equiv)	CCl ₄	25	10	2:1, 55
4	$Ce(NH_4)_2(NO_3)_6$ (2.0 equiv)	MeCN	25	10	<u></u> d
5	$Pd(PPh_3)_4/tBuONO$ (10 mol%/1.5 equiv)	DME	25	10	4:1,43
6	$Cu(NO_3)_2/K_2S_2O_8$ (1.2/1.2 equiv)	MeCN	25	10	1:1, 21
7	$Fe(NO_3)_3/K_2S_2O_8$ (1.2/1.2 equiv)	MeCN	25	10	1:1, 13
8	$Bi(NO_3)_3/K_2S_2O_8$ (1.2/1.2 equiv)	MeCN	25	10	1:1, 10
9	$AgNO_3/Pd(PPh_3)_4$ (1.5 equiv/10 mol %)	MeCN	25	10	5:1, 60
10	AgNO ₂ /Pd(PPh ₃) ₄ (1.5 equiv/10 mol %)	MeCN	25	10	>20:1, 51
11	$AgNO_2/Pd(PPh_3)_4$ (1.5 equiv/20 mol %)	MeCN	25	10	>20:1, 55
12	$AgNO_2/Pd(PPh_3)_4$ (1.5 equiv/20 mol %)	MeNO ₂	25	10	>20:1, 62
13	AgNO ₂ /Pd(PPh ₃) ₄ (1.5 equiv/20 mol %)	MeNO ₂	101	10	>20:1, 73
14	$AgNO_2/Pd(PPh_3)_4$ (1.5 equiv/20 mol %)	MeNO ₂	101	20	>20:1, 63
15	$\frac{\text{AgNO}_2/\text{Pd}_2(\text{dba})_3}{(1.5 \text{ equiv}/20 \text{ mol }\%)}$	MeNO ₂	101	10	>20:1, 50
16	$\frac{\text{AgNO}_2/\text{Pd}(\text{OAc})_2}{(1.5 \text{ equiv}/20 \text{ mol }\%)}$	MeNO ₂	101	10	20:1, 28
The r	(1.5 equilized into 70)	a 0.5 mm	ol scale	with 3	a solvent

^{*a*}The reactions were run on a 0.5 mmol scale with **3a**, solvent (5 mL). ^{*b*}Determined by ¹H-NMR spectra. ^{*c*}Isolated yields. ^{*d*}Complex results.

Furthermore, three available commercial nitrated complexes, 1.2 equivalent of Cu(NO₃)₂, Fe(NO₃)₃ and Bi(NO₃)₃ were examined in the presence of $K_2S_2O_8$ (1.2 equiv). But, no obvious outcomes of o-nitrated product 4a were detected, as shown in entries 6-8. By combining AgNO₃ (1.5 equiv) and Pd(PPh₃)₄ (10 mol %) of entries 3 and 5, the ratio of 4a upgraded to 5:1 in a 60% yield (entry 9). After changing the source of nitronium ions from AgNO₃ to AgNO₂, 4a was yielded as the dominant product (20:1) in a 51% yield (entry 10).¹⁹ Thus, the combination of AgNO₂/Pd(PPh₃)₄ overcame the regioselective o-nitration issue. Next, it was necessary to increase the yield by optimizing the reaction conditions. In entry 11, the catalytic amounts of Pd(PPh₃)₄ were increased (10 \rightarrow 20 mol%); however, the yield of 4a increased slightly (51 \rightarrow 55%). After replacing the solvent (MeCN \rightarrow MeNO₂) and elevating the reaction temperature (25 \rightarrow 101 °C), the yield was increased to 62% and 73%, respectively (entries 12-13). But, elongating the time (10 \rightarrow 20 h) in entry 14 showed that the yield of 4a was decreased. After changing the palladium catalyst from $Pd(PPh_3)_4$ to $Pd_2(dba)_3$ or $Pd(OAc)_2$ (entries 15-16), 50% and 28% yields of 4a were observed, respectively. According to the above experimental results, the 1.5 equivalent of Ag-NO₂/20 mol % of Pd(PPh₃)₄/MeNO₂/reflux/10 h condition would be an optimal combination for yielding 4a. To the best of our knowledge, the direct use of styrenes to synthesize onitrostyrenes via AgNO₂/Pd(PPh₃)₄-promoted regiocontrolled nitration has not been explored to date.²⁰ The structure of 4a was determined by single-crystal X-ray crystallography.²¹

On the basis of the experimental results, a plausible mechanism for the formation of 4a is described, as shown in Scheme 4.22 Initially, complexation of Pd(PPh₃)₄ with olefin motif of 3a yields I. Next, I is converted to II with a coordinated Pd⁺ complex (PdL_n, $L = PPh_3$). Furthermore, **III** should be produced via an intermolecular cross-coupling of II with NO2 group (in situ formed from AgNO₂).²³ Following the delocalized resonance of III, IV-1 (a trans-form) and IV-2 (a cisform) having an o-carbocation should be generated more easily than *p*-carbocation due to the oxygen atom of sulfonyl group provides a stabilized six-membered coordination. By the involvement of a releasing ligand (L), the nitro group of palladium arm on IV-1 could transfer to the ortho position of benzene ring by an intramolecular migration on the basis of a sixmembered transition orientation. Subsequently, Pd⁰(PPh₃)₄ is regenerated and 4a is obtained via dehydrogenative aromatization. Finally, sulfonyl group induced regioselective o-nitration was furnished by the combination of AgNO₂/Pd(PPh₃)₄.

Scheme 4. Plausible Mechanism for 4a

To explore the substrate scope, different R substituent of **3a-m** (for Y = H) in Table 2, entries 1-20, was first examined. As shown in Table 4 and entries 1-13, the treatment of **3a-m** afforded 4a-m in a yield range of 60%-80% under the optimal conditions. The sulfonylarenes possessing the electrondonating group at the para position of sulfonyl, such as methyl (4a, 73%), methoxy (4f, 80%), ethyl (4h, 60%), isopropyl (4i, 66%), *n*-butyl (4j, 70%), and *t*-butyl (4k, 71%), and electronneutral phenyl group (4b, 66%), were suitable for the current reaction, leading to the formation of desired products in moderate to good yields. The *meta*-tolylsulfonyl group of 3g also generated a 71% yield of 4g. The halophenyl group was compatible, including fluoro (4e, 70%), bromo (4l, 70%), and chloro (4m, 75%) for the synthesis of the resulting o-nitrated products. For the sulfonylaliphatic substituents, methyl (4c, 63%) and *n*-butyl (4d, 60%) groups were well tolerated, albeit with lower yields. For the isolated yields of 4a-m, it should be noted that the strong electron-donating 4-methoxyphenyl group (for Y group) was a better partner for the present conversion. The structural frameworks of 4c and 4f were determined by single-crystal X-ray crystallography.²⁰ When Y = 3-F (for **3n**, entry 14), **4n** was isolated in only a 25% yield.

Table 4. Synthesis of 4^a

Ŷ	AgNO ₂ Pd(PPh ₃) ₄ MeNO ₂	0 2N Y − − − − − − − − − − − − − − − − − − −	
entry	3 , R =, Y =	4 , $(\%)^b$	
1	3a , Tol, H	4a , 73	
2	3b , Ph, H	4b , 66	
3	3c , Me, H	4c , 63	
4	3d , <i>n</i> Bu, H	4d , 60	
5	3e , 4-FC ₆ H ₄ , H	4e , 70	
6	3f , 4-MeOC ₆ H ₄ , H	4f , 80	
7	3g , 3-MeC ₆ H ₄ , H	4g , 71	
8	3h , 4-EtC ₆ H ₄ , H	4h , 60	
9	3i , 4- <i>i</i> PrC ₆ H ₄ , H	4i , 66	
10	3j , 4- <i>n</i> BuC ₆ H ₄ , H	4j , 70	
11	3k , 4- <i>t</i> BuC ₆ H ₄ , H	4k , 71	
12	31 , 4-BrC ₆ H ₄ , H	41 , 70	
13	3m , 4-ClC ₆ H ₄ , H	4m , 75	
14	3n , Tol, 3-F	4n , 25	
15	30 , Tol, 4-CF ₃	40 , — ^{<i>c</i>}	
16	3p , Tol, 3,4-Cl ₂	4 \mathbf{p} , $-^{c}$	
17	3q , Tol, 4-Cl	4 $q, -^{c}$	
18	3r , Tol, 4-NO ₂	4r , $-c^{-d}$	
19	3s , Tol, 4-Ph	4s , — ^c	
20	3t .Tol. 2-naphthyl	4t . — ^c	

^aThe reactions were run on a 0.5 mmol scale with **3**, Pd(PPh₃)₄ (23 mg, 0.2 mmol), AgNO₂ (115 mg, 1.5 equiv), MeNO₂ (5 mL), 10 h, 101 °C. ^bIsolated yields. ^cComplex mixture. ^d45% of **3r** was recovered.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

However, attempts to examine the *o*-nitration of **30-q** with the *para*-aryl substituents (Y = 4-CF₃, 3, 4-Cl₂, 4-Cl, entries 15-17) failed due to the electronic effect affecting the aryl π system reactions' production of a complex mixture. When Y was a para-nitro group (entry 18), starting material 3r was recovered at 45%. In entries 19-20, complex mixtures with different nitrated products were generated for biphenyl (for 3s, Y = 4-Ph) and 2-naphthyl (for **3t**) group under the *o*-nitration conditions. In the other hand, 3u and 3v could be not obtained by ZnI₂ mediated reaction such that no available materials were examined next for AgNO₂/Pd(PPh₃)₄ mediated onitration. Overall, for the electronic effect of Y substituent on the skeleton of α -sulforylmethyl styrenes 3, the optimal condition was inappropriate for both of 4-trifluoromethylphenyl group and 4-nitrophenyl group due to their stronger electronwithdrawing nature. On the basis of unavailable starting materials (from Table 2, entry 22), no **3v** with an electron-donating oxygenated group was studied in the formation of 4.

Scheme 5. Synthesis of 5 and 6

Compared with the AgNO₂/Pd(PPh₃)₄ combination, treatment of **30-t** (Y \neq H) with the HNO₃ (0.5 mL)/H₂SO₄ (1 mL) system was examined next (Scheme 4). In Table 3 and entry 1, we observed that 3a (Y = H) provided the mixture of *o*- and *p*nitrated products (ratio 1:1). With these results in hand, nitration of **30-t** was investigated. Unexpectedly, when *para*-Y is not a hydrogen atom, we found that β-ketosulfones was generated as major products and replaced the desired o-nitrated products. As shown in Scheme 5, the treatment of 30-t (Y = 4-CF₃, 3,4-Cl₂, 4-Cl, 4-NO₂, 4-Ph or 2-naphthyl) with the HNO₃/H₂SO₄ system converted it into β-ketosulfones 6a-f (52%-70%) along with the trace amounts of vicinal nitroalcohols 5a-f (5%-12%). Although the isolated yields of 6a-f were not high, one-pot HNO₃/H₂SO₄ mediated double bond cleavage of 1.1-disubstituted olefins was first reported via the in situ formed retro-nitroaldol reaction of 5a-f and removal of nitromathane. To the best of our knowledge, the present route is a novel nitration method for the transformation from α sulforylmethyl styrenes to α -sulforyl ketones in the tandem and oxidant manner. For nitration of 6e, however, dehydration of intermediate 5e also provided an 11% yield of 6e-1. For HNO_3/H_2SO_4 mediated nitration of α -sulforylmethyl styrenes, the difference between Y = H and $Y \neq H$ should be the sub-

stituent effect and position. The structure of **6c** was determined by single-crystal X-ray crystallography.²¹ In another way, HNO₃/H₂SO₄ mediated nitration of **1a** was also studied (Scheme 6). By the protocol, dimerization of **1a** provided nitrated indane **7a** with a 33% yield via two intermediates of the plausible *in situ* formed carbocations under acidic conditions.²¹ The structure of **7a** was determined by single-crystal X-ray crystallography.²¹

Scheme 6. Synthesis of 7a

In summary, we have developed two-step synthetic route for the synthesis of sulfonyl *o*-nitrostyrenes with moderate to good yields, including (1) ZnI₂-mediated sulfonylation of substituted α -methylstyrenes and sodium sulfinates (RSO₂Na) in wet MeCN at reflux for 10 h, and (2) AgNO₂/Pd(PPh₃)₄promoted regiocontrolled *o*-nitration of α -sulfonylmethyl styrenes in MeNO₂ at reflux for 10 h. The structures of the key products were confirmed by X-ray crystallography. Further investigations regarding the synthetic application of sodium sulfinates will be conducted and published in due course.

Experimental Section

General Methods. All reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry nitrogen with magnetic stirring. Products in organic solvents were dried with anhydrous magnesium sulfate before concentration *in vacuo*. Purity was determined by NMR and melting point. Melting points were determined with an SMP3 melting apparatus. ¹H and ¹³C NMR spectra were recorded on a Varian spectrometer operating at 400 and 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm), and the coupling constants (*J*) are given in hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer microTOF-Q by ESI using a hybrid ion-trap. Xray crystal structures were obtained with a diffractometer (CAD4, Kappa CCD).

A representative synthetic procedure of compounds **3a-t** is as follows: A solution of sodium sulfinates **2** (RSO₂Na, 2.2 mmol) in H₂O (1 mL) was added to a solution of substituted α methylstyrenes **1** (1.0 mmol) in MeCN (9 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 10 min. ZnI₂ (380 mg, 1.2 mmol) was added to the reaction mixture at 25 °C. Then, the reaction mixture was stirred at 82 °C for 10 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 8/1~4/1) afforded compounds **3a-t** and **3v-1**.

1-Methyl-4-(2-phenylallylsulfonyl)benzene (**3a**).^{6d} Yield = 80% (218 mg); Colorless solid; mp = 96-97 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₆H₁₇O₂S 273.0949; Found 273.0948; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.28-7.20 (m, 7H), 5.59 (s, 1H), 5.21 (s, 1H), 4.25 (s, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 138.8, 136.6, 135.4, 129.5 (2x), 128.6 (2x), 128.3 (2x), 127.9, 126.2 (2x), 121.7, 62.1, 21.5.

(2-Phenylallylsulfonyl)benzene (**3b**).^{6d} Yield = 73% (188 mg); Colorless solid; mp = 61-62 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/*z*: $[M + H]^+$ Calcd for C₁₅H₁₅O₂S 259.0793; Found 259.0796; ¹H NMR (400 MHz, CDCl₃): δ 7.80-7.77 (m, 2H), 7.57-7.52 (m, 1H), 7.45-7.40 (m, 2H), 7.28-7.21 (m, 5H), 5.59 (s, 1H), 5.22 (s, 1H), 4.28 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 138.3, 136.4, 133.6, 128.8 (2x), 128.6 (2x), 128.3 (2x), 128.0 (2x), 126.1, 121.8, 62.0.

(3-Methylsulfonylprop-1-en-2-yl)benzene (3c).^{6d} Yield = 70% (137 mg); Colorless gum; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₃O₂S 197.0636; Found 197.0633; ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.38-7.29 (m, 3H), 5.73 (s, 1H), 5.53 (s, 1H), 4.17 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 136.4, 128.5 (2x), 128.2, 126.1 (2x), 121.8, 60.2, 40.0.

3-(*n*-Butylsulfonylprop-1-en-2-yl)benzene (**3d**). Yield = 76% (181 mg); Colorless gum; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₉O₂S 239.1106; Found 239.1102; ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.44 (m, 2H), 7.39-7.32 (m, 3H), 5.73 (s, 1H), 5.55 (s, 1H), 4.13 (s, 2H), 2.80-2.76 (m, 2H), 1.72-1.65 (m, 2H), 1.33-1.24 (m, 2H), 0.83 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.9, 136.4, 128.7 (2x), 128.4, 126.3 (2x), 122.0, 58.6, 51.9, 23.7, 21.5, 13.3.

1-Fluoro-4-(2-phenylallylsulfonyl)benzene (*3e*). Yield = 82% (226 mg); Colorless solid; mp = 84-86 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₅H₁₄FO₂S 277.0699; Found 277.0702; ¹H NMR (400 MHz, CDCl₃): δ 7.77-7.72 (m, 2H), 7.25-7.19 (m, 5H), 7.06-7.01 (m, 2H), 5.57 (s, 1H), 5.22 (s, 1H), 4.28 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 165.4 (d, *J* = 254.7 Hz), 138.3, 136.3, 134.2 (d, *J* = 3.0 Hz), 131.3 (d, *J* = 9.1 Hz, 2x), 128.2 (2x), 127.8, 125.9 (2x), 121.7, 115.9 (d, *J* = 22.0 Hz, 2x), 61.8.

1-Methoxy-4-(2-phenylallylsulfonyl)benzene (**3***f*).^{6d} Yield = 83% (239 mg); Colorless solid; mp = 84-85 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₆H₁₇O₃S 289.0899; Found 289.0901; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.8 Hz, 2H), 7.28-7.21 (m, 5H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.58 (s, 1H), 5.21 (s, 1H), 4.25 (s, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 138.8, 136.8, 130.8 (2x), 130.0, 128.3 (2x), 127.9, 126.2 (2x), 121.6, 114.0 (2x), 62.3, 55.6.

1-Methyl-3-(2-phenylallylsulfonyl)benzene (**3***g*). Yield = 82% (223 mg); Colorless solid; mp = 60-61 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₆H₁₇O₂S 273.0949; Found 273.0953; ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.57 (m, 1H), 7.54 (br s, 1H), 7.32-7.19 (m, 7H), 5.58 (s, 1H), 5.24 (s, 1H), 4.26 (s, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.9, 138.6, 138.1,

136.3, 134.2, 128.7, 128.6, 128.1 (2x), 127.8, 126.0 (2x), 125.4, 121.6, 61.8, 21.0.

1-Ethyl-4-(2-phenylallylsulfonyl)benzene (3h). Yield = 74% (212 mg); Colorless solid; mp = 79-80 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₇H₁₉O₂S 287.1106; Found 287.1112; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.24-7.19 (m, 7H), 5.59 (s, 1H), 5.25 (s, 1H), 4.25 (s, 2H), 2.66 (q, *J* = 8.0 Hz, 2H), 1.21 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 138.8, 136.5, 135.6, 128.7 (4x), 128.3 (2x), 127.8, 126.1 (2x), 121.7, 62.0, 28.8, 15.1.

1-Isopropyl-4-(2-phenylallylsulfonyl)benzene (**3i**). Yield = 76% (228 mg); Colorless solid; mp = 66-68 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₈H₂₁O₂S 301.1262; Found 301.1257; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.21-7.17 (m, 5H), 5.60 (s, 1H), 5.29 (s, 1H), 4.26 (s, 2H), 2.94-2.87 (m, 1H), 1.21 (d, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 155.1, 138.7, 136.5, 135.7, 128.7 (2x), 128.2 (2x), 127.8, 126.8 (2x), 126.0 (2x), 121.7, 61.9, 34.1, 23.5 (2x).

1-n-Butyl-4-(2-phenylallylsulfonyl)benzene (*3j*). Yield = 85% (267 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₃O₂S 315.1419; Found 315.1423; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.25-7.19 (m, 7H), 5.60 (d, *J* = 0.8 Hz, 1H), 5.26 (d, *J* = 0.8 Hz, 1H), 4.25 (s, 2H), 2.63 (t, *J* = 7.6 Hz, 2H), 1.60-1.53 (m, 2H), 1.37-1.26 (m, 2H), 0.93 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.4, 138.9, 136.6, 135.6, 128.8 (2x), 128.7 (2x), 128.3 (2x), 127.9, 126.1 (2x), 121.7, 62.1, 35.5, 33.1, 22.2, 13.8.

1-t-Butyl-4-(2-phenylallylsulfonyl)benzene (**3***k*). Yield = 80% (251 mg); Colorless solid; mp = 82-84 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₉H₂₃O₂S 315.1419; Found 315.1423; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.8 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.21-7.16 (m, 5H), 5.60 (s, 1H), 5.31 (s, 1H), 4.26 (s, 2H), 1.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 157.3, 138.7, 136.5, 135.3, 128.4 (2x), 128.2 (2x), 127.8, 126.0 (2x), 125.7 (2x), 121.7, 61.9, 35.0, 30.9 (3x).

1-Bromo-4-(2-phenylallylsulfonyl)benzene (*31*).^{6d} Yield = 80% (269 mg); Colorless solid; mp = 127-129 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{14}BrO_2S$ 336.9898; Found 336.9903; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H), 7.259-7.20 (m, 5H), 5.60 (s, 1H), 5.25 (s, 1H), 4.28 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 137.3, 136.4, 132.1 (2x), 130.2 (2x), 129.0, 128.4 (2x), 128.1, 126.2 (2x), 122.1, 62.2.

1-Chloro-4-(2-phenylallylsulfonyl)benzene (**3***m*).^{6d} Yield = 72% (210 mg); Colorless solid; mp = 114-116 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₅H₁₄ClO₂S 293.0403; Found 293.0405; ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.8 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.255-7.21 (m, 5H), 5.60 (s, 1H), 5.25 (s, 1H), 4.28 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 140.4, 138.4, 136.8, 136.4, 130.1 (2x), 129.1 (2x), 128.4 (2x), 128.1, 126.1 (2x), 122.1, 62.2.

1-Methyl-4-((2-(3-fluorophenylallyl)sulfonyl)benzene (3n). Yield = 78% (226 mg); Colorless solid; mp = 75-77 °C (re-

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

crystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₆FO₂S 291.0855; Found 291.0854; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.21-7.17 (m, 1H), 7.07-7.05 (m, 1H), 6.94-6.89 (m, 2H), 5.59 (s, 1H), 5.25 (s, 1H), 4.21 (s, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.6 (d, J = 244.1 Hz), 144.8, 141.1 (d, J = 7.5 Hz), 135.6 (d, J = 2.3 Hz), 135.2, 129.8 (d, J = 8.3 Hz), 129.5 (2x), 128.6 (2x), 122.7, 121.9 (d, J = 3.0 Hz), 114.7 (d, J = 21.2 Hz), 113.2 (d, J = 22.8 Hz), 61.9, 21.5.

1-Methyl-4-((2-(4-

trifluoromethylphenyl)allyl)sulfonyl)benzene (**30**).^{6d} Yield = 71% (241 mg); Colorless solid; mp = 128-130 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₇H₁₆F₃O₂S 341.0823; Found 341.0830; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 5.55 (s, 1H), 5.33 (s, 1H), 4.25 (s, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 142.3, 135.7, 135.2, 129.9, 129.5 (2x), 128.5 (2x), 126.6 (2x), 125.2 (q, *J* = 3.1 Hz, 2x), 123.7, 122.6, 62.0, 21.4.

1-Methyl-4-((2-(3,4-dichlorophenyl)allyl)sulfonyl)benzene

(*3p*). Yield = 70% (238 mg); Colorless solid; mp = 87-89 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₅Cl₂O₂S 341.0170; Found 341.0178; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.21-7.18 (m, 2H), 7.10 (dd, J = 2.0, 8.4 Hz, 1H), 5.56 (s, 1H), 5.25 (s, 1H), 4.16 (s, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 138.7, 135.0, 134.7, 132.3, 131.8, 130.1, 129.5 (2x), 128.4 (2x), 128.1, 125.6, 123.2, 61.8, 21.4.

1-Methyl-4-((2-(4-chlorophenylallyl)sulfonyl)benzene

(3q).^{6d} Yield = 76% (233 mg); Colorless solid; mp = 120-22 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₆H₁₆ClO₂S 307.0560; Found 307.0563; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.20 (br s, 4H), 5.57 (s, 1H), 5.21 (s, 1H), 4.21 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 137.3, 135.6, 135.3, 133.9, 129.5 (2x), 128.6 (2x), 128.5 (2x), 127.6 (2x), 122.2, 62.1, 21.5.

1-Methyl-4-((2-(4-nitrophenylallyl)sulfonyl)benzene (**3***r*). Yield = 70% (222 mg); Colorless solid; mp = 135-137 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₆H₁₆NO₄S 318.0800; Found 318.0805; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 9.2 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 5.72 (s, 1H), 5.37 (s, 1H), 4.25 (s, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.2, 145.2, 145.1, 135.1, 129.74, 129.69 (2x), 128.5 (2x), 127.2 (2x), 125.1, 123.6 (2x), 61.7, 21.5.

4-(3-Tosylprop-1-en-2-yl)-1,1'-biphenyl (3s).^{6d} Yield = 78% (271 mg); Colorless solid; mp = 112-114 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₂H₂₁O₂S 349.1262; Found 349.1263; ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.57-7.50 (m, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 7.6 Hz, 2H), 7.38-7.34 (m, 3H), 7.22 (d, *J* = 8.4 Hz, 2H), 5.65 (s, 1H), 5.23 (s, 1H), 4.29 (s, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 140.8, 140.4, 137.6, 136.2, 135.5, 129.5 (2x), 128.8 (2x), 128.7 (2x), 127.5, 127.0 (2x), 126.9 (2x), 126.6 (2x), 121.6, 62.1, 21.6.

4-(3-Tosylprop-1-en-2-yl)-2-naphthalene (**3t**).^{6d} Yield = 77% (248 mg); Colorless solid; mp = 114-116 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₉O₂S 323.1106; Found 323.1112; ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.76 (m, 1H), 7.71-7.69 (m, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 1.6 Hz, 1H), 7.47-7.44 (m, 2H), 7.41 (dd, J = 2.0, 8.8 Hz, 1H), 7.08 (d, J = 8.4 Hz, 2H), 5.73 (s, 1H), 5.34 (s, 1H), 4.37 (s, 2H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 136.5, 135.8, 135.4, 132.9, 132.7, 129.3 (2x), 128.5 (2x), 128.2, 128.0, 127.4, 126.20, 126.17, 125.4, 124.0, 122.0, 62.2, 21.3.

5-Benzo[1,3]dioxol-5-yl-5,7,7-trimethyl-6,7-dihydro-5Hindeno[5,6-d][1,3]dioxole (**3v-1**). Yield = 46% (75 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₂₀H₂₁O₄ 325.1440; Found 325.1438; ¹H NMR (400 MHz, CDCl₃): δ 6.71-6.62 (m, 4H), 6.53 (s, 1H), 5.96 (d, *J* = 1.6 Hz, 1H), 5.95 (d, *J* = 1.2 Hz, 1H), 5.91 (d, *J* = 2.0 Hz, 1H), 5.91 (d, *J* = 1.6 Hz, 1H), 2.34 (d, *J* = 13.2 Hz, 1H), 2.16 (d, *J* = 12.8 Hz, 1H), 1.61 (s, 3H), 1.29 (s, 3H), 1.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 147.2, 146.7, 145.3, 145.2 (2x), 141.5, 119.4, 107.6, 107.4, 104.9, 102.8, 101.0, 100.8, 59.7, 50.3, 42.6, 30.93, 30.87, 30.4.

A representative synthetic procedure of compounds **4a**-**n** is as follows: Pd(PPh₃)₄ (116 mg, 0.1 mmol) was added to a solution of substituted α -sulfonylmethylstyrenes **3a-n** (0.5 mmol) in MeNO₂ (5 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. AgNO₂ (115 mg, 0.75 mmol) was added to the reaction mixture at 25 °C. The reaction mixture was stirred at 101 °C for 10 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 8/1~4/1) afforded compounds **4a-n**.

1-Methyl-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (4a). Yield = 73% (116 mg); Colorless solid; mp = 103-105 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₆H₁₆NO₄S 318.0800; Found 318.0812; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (dd, J = 1.2, 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.57 (dt, J = 1.2, 7.6 Hz, 1H), 7.48-7.41 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.43 (s, 1H), 5.37 (s, 1H), 4.14 (d, J = 0.8 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 136.2, 135.9, 135.0, 133.6, 132.7, 129.8 (2x), 129.0 (2x), 128.2 (2x), 124.4, 124.3, 62.7, 21.5. Single-crystal X-Ray diagram: crystal of compound 4a was grown by slow diffusion of EtOAc into a solution of compound 4a in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, a = 8.8147(15) Å, b = 8.1358(14) Å, c = 20.421(4) Å, V= 1463.8(4) Å³, Z = 4, d_{calcd} = 1.440 g/cm³, F(000) = 664, 2 θ range 1.995~26.522°, R indices (all data) R1 = 0.0915, wR2 = 0.2397.

4-((2-(2-Nitrophenylallyl)sulfonyl)benzene (**4b**). Yield = 66% (100 mg); Colorless solid; mp = 119-121 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₄NO₄S 304.0644; Found 304.0648; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (dd, J = 1.2, 8.4 Hz, 1H), 7.84-7.81 (m, 2H), 7.64-7.60 (m, 1H), 7.58 (dd, J = 1.2, 8.0 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.50-7.40 (m, 2H), 5.46 (s, 1H), 5.39 (s, 1H), 4.17 (d, J = 0.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 146.94, 138.9, 136.1, 134.9, 133.8, 133.6, 132.7, 129.2 (2x), 129.1, 128.2 (2x), 124.48, 124.47, 62.6.

1-Nitro-2-(3-methylsulfonylprop-1-en-2-yl)benzene (4c).Yield = 63% (76 mg); Colorless solid; mp = 117-119 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₀H₁₂NO₄S 242.0487; Found 242.0486; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (dd, J = 1.2, 8.4 Hz, 1H), 7.66-7.62 (m, 1H), 7.54-7.49 (m, 2H), 5.70 (s, 1H), 5.48 (s, 1H), 4.11 (s, 2H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 135.8, 135.0, 133.7, 132.6 (2x), 129.3, 124.7, 124.3, 61.3, 40.6. Single-crystal X-Ray diagram: crystal of compound 4c was grown by slow diffusion of EtOAc into a solution of compound 4c in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the triclinic crystal system, space group P - 1, a = 7.1934(7) Å, b = 7.9479(7) Å, c = 9.7888(9) Å, V =540.42(9) Å³, Z = 2, $d_{calcd} = 1.483$ g/cm³, F(000) = 252, 2θ range 2.889~26.442°, R indices (all data) R1 = 0.287, wR2 = 0.0674.

1-Nitro-2-(3-n-butylsulfonylprop-1-en-2-yl)benzene (4d). Yield = 60% (85 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₈NO₄S 284.0957; Found 284.0961; ¹H NMR (400 MHz, CDCl₃): δ 8.04 (dd, *J* = 1.2, 8.0 Hz, 1H), 7.63 (dt, *J* = 1.2, 7.6 Hz, 1H), 7.54 (dd, *J* = 1.2, 8.0 Hz, 1H), 7.49 (dt, *J* = 1.2, 8.0 Hz, 1H), 5.67 (s, 1H), 5.46 (s, 1H), 4.04 (s, 2H), 2.94 (t, *J* = 8.0 Hz, 2H), 1.79-1.71 (m, 2H), 1.45-1.36 (m, 2H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.1, 136.0, 134.6, 133.6, 132.6, 129.1, 124.5, 124.3, 59.1, 52.6, 23.8, 21.5, 13.4.

1-Fluoro-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (4e). Yield = 70% (112 mg); Colorless solid; mp = 107-109 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₅H₁₃FNO₄S 322.0549; Found 322.0545; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.4 Hz, 1H), 7.86-7.81 (m, 2H), 7.61-7.57 (m, 1H), 7.49-7.44 (m, 1H), 7.41 (dd, *J* = 1.6, 7.6 Hz, 1H), 7.21-7.15 (m, 2H), 5.46 (s, 1H), 5.40 (s, 1H), 4.17 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8 (d, *J* = 254.7 Hz), 146.9, 135.9, 134.9 (d, *J* = 3.1 Hz), 134.8, 133.6, 132.7, 131.1 (d, *J* = 9.9 Hz, 2x), 129.2, 124.6, 124.5, 116.5 (d, *J* = 22.8 Hz, 2x), 62.7.

1-Methoxy-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (4*f*). Yield = 80% (133 mg); Colorless solid; mp = 107-108 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₆H₁₆NO₅S 334.0749; Found 334.0753; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (dd, *J* = 1.6, 8.4 Hz, 1H), 7.73 (d, *J* = 9.2 Hz, 2H), 7.60-7.56 (m, 1H), 7.48-7.42 (m, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 5.43 (s, 1H), 5.37 (s, 1H), 4.13 (s, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.8, 136.3, 135.2, 133.5, 132.8, 130.4 (2x), 129.0, 124.5 (2x), 124.3 (2x), 114.3 (2x), 62.9, 55.7. Single-crystal X-Ray diagram: crystal of compound **4f** was grown by slow diffusion of EtOAc into a solution of compound **4f** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the triclinic crystal system, space group P 21/c, *a* = 10.958(3) Å, *b* = 7.579(2) Å, *c* = 18.911(5) Å, *V* = 1508.8(6) Å³, *Z* = 4, *d*_{calcd} = 1.467 g/cm^3 , F(000) = 696, 2θ range $1.935 \sim 27.104^\circ$, R indices (all data) R1 = 0.1205, wR2 = 0.2805.

1-Methyl-3-((2-(2-*nitrophenyl*)*allyl*)*sulfonyl*)*benzene* (**4***g*). Yield = 71% (113 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₆NO₄S 318.0800; Found 318.0802; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (dd, J = 1.2, 8.0 Hz, 1H), 7.60-7.54 (m, 3H), 7.46-7.32 (m, 4H), 5.46 (s, 1H), 5.38 (s, 1H), 4.15 (s, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 146.8, 139.4, 138.6, 136.0, 134.9, 134.4, 133.5, 132.7, 129.0 (2x), 128.3, 125.2, 124.4 (2x), 62.5, 21.1.

1-Ethyl-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (4*h*). Yield = 60% (99 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₈NO₄S 332.0957; Found 332.0961; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (dd, J = 1.6, 8.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.56 (dt, J = 1.2, 7.6 Hz, 1H), 7.44 (dt, J = 1.6, 8.4 Hz, 1H), 7.40 (dd, J = 1.6, 7.6 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 5.46 (s, 1H), 5.37 (s, 1H), 4.15 (s, 2H), 2.71 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.9, 146.9, 136.2, 136.1, 135.0, 133.5, 132.7, 129.0, 128.6 (2x), 128.3 (2x), 124.4, 124.3, 62.6, 28.8, 15.1.

1-Isopropyl-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (4i). Yield = 66% (114 mg); Colorless solid; mp = 94-96 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₈H₂₀NO₄S 346.1113; Found 346.1118; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (dd, *J* = 1.2, 8.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.51 (dt, *J* = 1.2, 7.6 Hz, 1H), 7.39 (dt, *J* = 0.8, 7.6 Hz, 1H), 7.34-7.29 (m, 3H), 5.45 (s, 1H), 5.35 (s, 1H), 4.14 (s, 2H), 2.96-2.89 (m, 1H), 1.21 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 155.3, 146.7, 135.95, 135.9, 135.0, 133.4, 132.5, 128.8, 128.2 (2x), 127.1 (2x), 124.3, 124.2, 62.4, 34.0, 23.4 (2x).

1-n-Butyl-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (4j). Yield = 70% (126 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₂NO₄S 360.1270; Found 360.1276; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.58-7.54 (m, 1H), 7.48-7.40 (m, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 5.47 (s, 1H), 5.38 (s, 1H), 4.15 (s, 2H), 2.67 (t, *J* = 8.0 Hz, 2H), 1.64-1.56 (m, 2H), 1.39-1.30 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 146.9, 136.2, 136.1, 135.0, 133.5, 132.8, 129.2 (2x), 129.0, 128.2 (2x), 124.4, 124.3, 62.7, 35.5, 33.1, 22.2, 13.8.

1-t-Butyl-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (**4***k*). Yield = 71% (127 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₂NO₄S 360.1270; Found 360.1274; ¹H NMR (400 MHz, CDCl₃): δ 7.95 (dd, J = 1.2, 8.0 Hz, 1H), 7.70 (dd, J = 8.4 Hz, 2H), 7.53 (dt, J = 1.6, 7.6 Hz, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.42 (dt, J = 1.6, 8.0 Hz, 1H), 7.35 (dd, J = 1.6, 7.6 Hz, 1H), 5.49 (s, 1H), 5.38 (s, 1H), 4.15 (s, 2H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 146.8, 139.5, 136.1, 135.8, 135.0, 133.5, 132.7, 128.9, 127.9 (2x), 126.1 (2x), 124.4, 124.3, 62.5, 35.1, 30.9 (3x).

1-Bromo-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (41). Yield = 70% (133 mg); Colorless solid; mp = 105-107 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₅H₁₃BrNO₄S 381.9749; Found 381.9753; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.0 Hz, 1H), 7.68-7.62 (m, 4H), 7.60-7.56 (m, 1H), 7.46-7.45 (m, 1H), 7.40-7.38 (m, 1H), 5.46 (s, 1H), 5.40 (s, 1H), 4.16 (s, 2H); ¹³C

60

NMR (100 MHz, CDCl₃): δ 146.9, 139.6, 137.7, 135.8, 134.6, 133.6, 132.6, 132.4 (2x), 129.7 (2x), 129.1, 124.7, 124.5, 62.6.

1-Chloro-4-((2-(2-nitrophenyl)allyl)sulfonyl)benzene (4m). Yield = 75% (126 mg); Colorless solid; mp = 78-80 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₅H₁₃ClNO₄S 338.0254; Found 338.0255; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (dd, J = 1.2, 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.62-7.58 (m, 1H), 7.50-7.46 (m, 3H), 7.41 (dd, J = 1.6, 7.6 Hz, 1H), 5.47 (s, 1H), 5.41 (s, 1H), 4.17 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 146.9, 140.6, 137.3, 135.9, 134.7, 133.6, 132.7, 129.7 (2x), 129.5 (2x), 129.2, 124.8, 124.6, 62.7.

1-Methyl-4-((2-(3-fluoro-2-

nitrophenyl)allyl)sulfonyl)benzene (**4n**). Yield = 25% (42 mg); Colorless gum; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₅FNO₄S 336.0706; Found 336.0712; ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.06 (m, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.15-7.10 (m, 1H), 7.03 (dd, J = 2.8, 8.8 Hz, 1H), 5.47 (s, 1H), 5.39 (s, 1H), 4.13 (s, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.6 (d, J = 257.8 Hz), 145.1, 139.6 139.5 (d, J = 9.1 Hz), 135.8, 134.4, 129.9 (2x), 128.3 (2x), 127.4 (d, J = 9.8 Hz), 124.7, 119.8 (d, J = 23.5 Hz), 116.0 (d, J = 23.5 Hz), 62.5, 21.6.

A representative synthetic procedure of compounds **5a-b**, **6a-6f** and **6e-1** is as follows: HNO₃ (97%, 0.5 mL) was added to a solution of **3o-t** (0.5 mmol) in CH₂Cl₂ (5 mL) at 25 °C. Then, H₂SO₄ (98%, 1 mL) was added to the reaction mixture. The reaction mixture was stirred at 25 °C for 10 h. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $8/1 \sim 4/1$) afforded compounds **5a-b**, **6a-6f** and **6e-1**.

1-Nitro-3-(toluene-4-sulfonyl)-2-(4-

trifluoromethylphenyl)propan-2-ol (*5a*). Yield = 10% (20 mg); Colorless solid; mp = 190-192 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₇H₁₇F₃NO₅S 404.0780; Found 404.0775; ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.43 (m, 4H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 7.6 Hz, 2H), 5.20 (br s, 1H), 4.85 (d, *J* = 12.4 Hz, 1H), 4.79 (d, *J* = 12.0 Hz, 1H), 3.95 (s, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.5, 142.2, 136.3, 129.9 (2x), 127.6 (2x), 125.72 (2x), 125.67 (q, *J* = 3.8 Hz, 2x), 125.66, 125.62, 83.0, 73.6, 62.2, 21.5.

2-(3,4-Dichlorophenyl)-1-nitro-3-(toluene-4-

sulfonyl)propan-2-ol (**5b**). Yield = 12% (24 mg); Colorless solid; mp = 160-162 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₆Cl₂NO₅S 404.0126; Found 404.0130; ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 2.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 2H), 7.16 (dd, J = 2.0, 8.4 Hz, 1H), 5.19 (br s, 1H), 4.79 (d, J = 12.4 Hz, 1H), 4.74 (d, J = 12.4 Hz, 1H), 3.92 (d, J = 14.8 Hz, 1H), 3.88 (d, J = 15.2 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.8, 138.4, 136.1, 130.7, 133.3, 133.1, 129.9 (2x), 127.59 (2x), 127.57, 124.6, 82.9, 73.2, 62.0, 21.6.

2-(*Toluene-4-sulfonyl*)-*1*-(*4-trifluoromethylphenyl*)*ethanone* (*6a*). Yield = 61% (104 mg); Colorless solid; mp = 140-142 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₆H₁₄F₃O₃S 343.0616; Found 343.06155; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 4H), 7.34 (d, J = 8.0 Hz, 2H), 4.74 (s, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.5, 145.7, 138.3, 135.5, 135.4, 135.2, 129.9 (2x), 129.7 (2x), 128.5 (2x), 125.8 (q, J = 3.8 Hz, 2x), 63.8, 21.7.

1-(3,4-Dichlorophenyl)-2-(toluene-4-sulfonyl)ethanone (**6b**). Yield = 52% (89 mg); Colorless solid; mp = 172-174 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₅H₁₃Cl₂O₃S 342.9963; Found 342.9966; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 1.6 Hz, 1H), 7.82 (d, *J* = 1.6 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.66 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 186.2, 145.8, 139.2, 135.3, 135.2, 133.7, 131.1, 130.9, 130.0 (2x), 128.5 (2x), 128.4, 63.8, 21.6.

1-(4-Chlorophenyl)-2-(toluene-4-sulfonyl)ethanone (6c).Yield = 60% (92 mg); Colorless solid; mp = 139-141 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₅H₁₄ClO₃S 309.0352; Found 309.0356; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.8 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.0Hz, 2H), 4.68 (s, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.0, 145.5, 141.0, 135.6, 134.0, 130.7 (2x), 129.8 (2x), 129.1 (2x), 128.5 (2x), 63.6, 21.6. Single-crystal X-Ray diagram: crystal of compound 6c was grown by slow diffusion of EtOAc into a solution of compound 6c in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/n, a = 5.676(2) Å, b =9.256(4) Å, c = 27.339(12) Å, V = 1436.2(10) Å³, Z = 4, d_{calcd} = 1.428 g/cm³, F(000) = 640, 2θ range 2.323~26.533°, R indices (all data) R1 = 0.1330, wR2 = 0.1640.

1-(4-Nitrophenyl)-2-(toluene-4-sulfonyl)ethanone (6*d*). Yield = 70% (112 mg); Colorless solid; mp = 144-146 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₅H₁₄NO₅S 320.0593; Found 320.0596; ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J* = 8.8 Hz, 2H), 8.15 (d, *J* = 8.8 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 4.75 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.0, 151.0, 145.9, 139.9, 135.3, 130.5 (2x), 130.0 (2x), 128.5 (2x), 124.0 (2x), 64.1, 21.7.

1-Biphenyl-4-yl-2-(toluene-4-sulfonyl)ethanone (*6e*). Yield = 52% (91 mg); Colorless solid; mp = 118-120 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₁H₁₉O₃S 351.1055; Found 351.1058; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J* = 9.2 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 2H), 7.79-7.73 (m, 7H), 7.36 (d, *J* = 8.4 Hz, 2H), 4.75 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.5, 146.0, 145.7, 144.3, 135.72, 135.67, 130.3 (2x), 129.9 (2x), 128.6 (2x), 128.2 (2x), 127.8 (3x), 124.3 (2x), 63.8, 21.7.

4-[2-Nitro-1-(toluene-4-sulfonylmethyl)vinyl]biphenyl (6e-I). Yield = 11% (22 mg); Colorless solid; mp = 196-198 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₀NO₄S 394.1113; Found 394.1115; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.4 Hz, 2H), 7.68-7.65 (m, 2H), 7.62-7.58 (m, 4H), 7.50-7.46 (m, 2H), 7.43-7.40 (m, 1H), 7.40 (s, 1H), 7.31 (d, J = 8.0 Hz, 2H), 5.15 (s, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.8, 144.1, 139.5, 139.2, 138.7, 135.8, 133.6, 129.9 (2x), 129.0 (2x), 128.4 (2x), 128.3, 128.2 (2x), 127.9 (2x), 127.1 (2x), 56.6, 21.7.

1-Naphthalen-2-yl-2-(toluene-4-sulfonyl)ethanone (*6f*). Yield = 65% (105 mg); Colorless solid; mp = 145-147 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₁₉H₁₇O₃S 325.0899; Found 325.0903; ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, *J* = 1.2 Hz, 1H), 7.97-7.95 (m, 2H), 7.89-7.86 (m, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.66-7.62 (m, 1H), 7.59-7.55 (m, 1H), 7.31 (d, *J* = 8.8 Hz, 2H), 4.84 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.0, 145.4, 136.0, 135.7, 133.1, 132.24, 132.16, 130.0, 129.8 (2x), 129.3, 128.8, 128.6 (2x), 127.8, 127.1, 123.9, 63.8, 21.6.

1,1,3-Trimethyl-3-(4-nitrophenyl)indan (7a). HNO₃ (97%, 0.5 mL) was added to a solution of 1a (118 mg, 1.0 mmol) in CH₂Cl₂ (5 mL) at 25 °C. Then, H₂SO₄ (98%, 1 mL) was added to the reaction mixture. The reaction mixture was stirred at 25 °C for 10 h. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $20/1 \sim 4/1$) afforded compounds 7a. Yield = 33% (46 mg); Colorless solid; mp = 177-179 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{18}H_{20}NO_2$ 282.1494; Found 282.1499; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 8.8 Hz, 2H), 7.33-7.28 (m, 2H), 7.26-7.23 (m, 1H), 7.13-7.11 (m, 1H), 2.41 (d, J =13.2 Hz, 1H), 2.28 (d, J = 13.2 Hz, 1H), 1.74 (s, 3H), 1.38 (s, 3H), 1.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 152.1, 147.1, 145.9, 127.8, 127.6 (2x), 127.0, 124.7, 123.3 (2x), 122.8, 59.1, 51.2, 43.0, 30.52, 30.48, 30.3. Single-crystal X-Ray diagram: crystal of compound 7a was grown by slow diffusion of EtOAc into a solution of compound 7a in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, a = 11.1208(9)Å, b = 11.5061(10) Å, c = 11.8471(10) Å, V = 1479.7(2) Å³, Z = 4, d_{calcd} = 1.263 g/cm³, F(000) = 600, 2θ range $1.876 \sim 26.527^{\circ}$, R indices (all data) R1 = 0.0535, wR2 = 0.1143.

ASSOCIATED CONTENT

Supporting Information

Scanned photocopies of NMR (CDCl₃) spectral data for all compounds and X-ray analysis data of **4a**, **4c**, **4f**, **6c** and **7a** were supported. This information is available free of charge via the Internet at http: //pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Email: mychang@kmu.edu.tw

ORCID

Meng-Yang Chang: 0000-0002-1983-8570

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to thank the Ministry of Science and Technology of the Republic of China for financial support (MOST 106-2628-M-037-001-MY3).

REFERENCES

- (a) Ono, N. The Nitro Group in Organic Synthesis, Wiey-VCH, New York, 2001. (b) Houben-Weyl: Methoden der Organischen Chemie, Vol. E16D/1 (Ed.: Muller, E.) Thieme, Stuttgart, 1992.
 (c) Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration: Methods and Mechanisms, VCH, New York, 1989. (d) Bozorov, K.; Zhao, J.-Y.; Aisa, H. A. ARKIVOC 2017, *i*, 41-66. (e) Yan, G.; Yang, M. Org. Biomol. Chem. 2013, 11, 2554-2566.
- (2) Selected recent examples on the synthetic applications of nitroarenes, see: (a) Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmit, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Science 2015, 348, 886-891. (b) RyanSydonie, S. J.; Schimler, D.; Blandand, D. C.; Sanford, M. S. Org. Lett. 2015, 17, 1866-1869. (c) Xiao, F.; Liu, Y.; Tang, C.; Deng, G.-J. Org. Lett. 2012, 14, 984-987. (d) Xie, Y.; Liu, S.; Liu, Y.; Wen, Y.; Deng, G.-J. Org. Lett. 2012, 14, 1692-1695. (e) Vinayak, B.; Chandrasekharam, M. Org. Lett. 2017, 19, 3528-3531 and references cited therein.
- (3) Examples on synthesis of ortho-nitrostyrenes, for Suzuki-Miyaura cross-coupling, see: (a) Peyroux, E.; Berthiol, F.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2004, 1075-1082. (b) Liona-Minguez, S.; Desroses, M.; Ghassemian, A.; Jacques, S. A.; Eriksson, L.; Isacksson, R.; Koolmeister, T.; Stenmark, P.;Scobie, M.; Helleday, T. Chem. Eur. J. 2015, 21, 7394-7398. (c) Zhou, F.; Wang, D.-S.; Driver, T. G. Adv. Synth. Catal. 2015, 357, 3463-3468. For Wittig olefination, see: (d) Tong, S.; Xu, Z.; Mamboury, M.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54, 11809-11812. (e) Okuro, K.; Gurnham, J.; Alper, H. J. Org. Chem. 2011, 76, 4715-4720. (f) Bowman, W. R.; Fletcher, A. J.; Pedersen, J. M.; Lovell, P. J.; Elsegood, M. R. J.; Lopez, E. H.; McKee, V.; Potts, G. B. S. Tetrahedron 2007, 63, 191-203. For Grignard addition/dehydration, see: (g) Serra, S. Tetrahedron: Asymmetry 2011, 22, 619-628. (h) Pirrung, M. C.; Dore, T. M.; Zhu, Y.; Rana, V. S. Chem. Commun. 2010, 46, 5313-5315.
- (4) Selected examples on the synthetic applications of orthonitrostyrenes, for Pd, see: (a) Caron, L.; Campeau, L. C.; Fagnou, K. Org. Lett. 2008, 10, 4533-4536 and references cited therein. For Fe/Ru/Rh, see: (b) Crotti, C.; Cenini, S.; Rindone, B.; Tollari, S.; Demartin, F. J. Chem. Soc., Chem. Commun. 1986, 784-786. For Ti, see: (c) Tong, S.; Xu, Z.; Mamboury, M.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54, 11809-11812. For Rh, see: (d) Okuro, K.; Gurnham, J.; Alper, H. J. Org. Chem. 2011, 76, 4715-4720. For Sn, see: (e) Bowman, W. R.; Fletcher, A. J.; Pedersen, J. M.; Lovell, P. J.; Elsegood, M. R. J.; Lopez, E. H.; McKee, V.; Potts, G. B. S. Tetrahedron 2007, 63, 191-203. For Co, see: (f) Rao, D. N.; Rasheed, S.; Raina, G.; Ahmed, O. N.; Jaladanki, C. K.; Bharatam, P. V.; Das, P. J. Org. Chem. 2017, 82, 7234-7244. For diborane, see: (g) Yang, K.; Zhou, F.; Kuang, Z.; Gao, G.; Driver, T. G.; Song, Q. Org. Lett. 2016, 18, 4088-4091. For electrolysis, see: (h) Du, P.; Brosmer, J. L.; Peters, D. G. Org. Lett. 2011, 13, 4072-4075. For solid phase synthesis, see: (i) Hari, A.; Miller, B. L. Org. Lett. 2000, 2, 3667-3670.
- (5) Synthetic applications of β-ketosulfones by the authors, see: (a)
 (a) Chang, M.-Y.; Cheng, Y.-C.; Lu, Y.-J. Org. Lett. 2014, 16, 6252-6255. (b) Chang, M.-Y.; Cheng, Y.-C.; Lu, Y.-J. Org. Lett. 2015, 17, 1264-1267. (c) Chang, M.-Y.; Cheng, Y.-C.; Lu, Y.-J. Org. Lett. 2015, 17, 3142-3145. (d) Chang, M.-Y.; Cheng, Y.-C. Org. Lett. 2016, 18, 608-611. (e) Chang, M.-Y.; Cheng, Y.-C. Org. Lett. 2016, 18, 1682-1685. (f) Chan, C.-K.; Chen, Y.-H.; Hsu, R.-T.; Chang, M.-Y. Tetrahedron 2017, 73, 46-54 and references cited therein.

- (6) Selected examples on synthesis of α-methylsulfonyl styrenes, for Cu⁺/RSO₂NHNH₂, see: (a) Li, X.; Xu, Y.; Wy, W.; Jiang, C.; Qi, C.; Jiang, H. *Chem. Eur. J.* 2014, 20, 7911-7915. For TBHP/RSO₂NHNH₂, see: (b) Li, X.; Xu, X.; Zhou, C. *Chem. Commun.* 2012, 48, 12240-12242. For Cu⁺/RSO₂Cl, see: (c) Gauss, P.; Ligon-Auger, S. C.; Griesser, M.; Gorsche, C.; Svajdlenkova, H.; Koch, T.; Moszner, N.; Liska, R. *J. Polymer Sci. Part A* 2016, 54, 1417-1427. For Co²⁺/RSO₂H, see: (d) Zhang, G.; Zhang, L.; Yi, H.; Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L. Z.; Lei, A. *Chem. Commun.* 2016, 52, 10407-10410. For I₂/RSO₂Na, see: (e) Sawangphon, T.; Katrun, P.; Chaisiwamongkol, K.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.; Kuhakarn, C. *Synth. Commun.* 2013, 43, 1692-1707. For I₂/DMSO/TosMIC, see: (f) Kadari, L.; Palakodety, R. K.; Yallapragada, L. P. *Org. Lett.* 2017, *19*, 2580-2583.
- (7) Recent examples on synthetic applications of sodium sulfinates, see: (a) Liao, J.; Zhang, Z.; Tang, X.; Wu, W.; Guo, W.; Jiang, H. J. Org. Chem. 2015, 80, 8903-8909. (b) Yuan, K.; Soule, J.-F.; Doucet, H. ACS Catal. 2015, 5, 978-991. (c) Skillinghaug, B.; Skold, C.; Rydfjord, J.; Svensson, F.; Behrends, M.; Savmarker, J.; Sjoberg, P. J. R.; Larhed, M. J. Org. Chem. 2014, 79, 12018-12032. (d) Zhao, F.; Tan, Q.; Xiao, F.; Zhang, S.; Deng, G.-J. Org. Lett. 2013, 15, 1520-1523. (e) Skillinghaug, B.; Rydfjord, J.; Odell, L. R. Tetrahedron Lett. 2016, 57, 533-536. (f) Ortgies, D. H.; Hassanpour, A.; Chen, F.; Woo, S.; Forgione, P. Eur. J. Org. Chem. 2016, 408-425. (g) Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. Adv. Synth. Catal. 2015, 357, 2022-2026.
- (a) Ortgies, D. H.; Chen, F.; Forgione, P. Eur. J. Org. Chem.
 2014, 3917-3922. (b) Miao, T.; Wang, L. Adv. Synth. Catal.
 2014, 356, 967-971. (c) Xiao, F.; Xie, H.; Liu, S.; Deng, G.-J. Adv. Synth. Catal. 2014, 356, 364-368. (d) Chen, J.; Li, J.; Su, W. Org. Biomol. Chem. 2014, 12, 4078-4083. (e) Cheng, K.; Yu, H.-Z.; Zhao, B.; Hu, S.; Zhang, X.-M.; Qi, C. RSC Adv. 2014, 4, 57923-57928. (f) Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Org. Biomol. Chem. 2014, 12, 9743-9759.
- (9) Huang, P.; Li, Y.; Fu, X.; Zhang, R.; Jin, K.; Wang, W.; Duan, C. *Tetrahedron Lett.* **2016**, *57*, 4705-4708.
- (10) Selected Examples on dimerization of vinylarenes, for InBr₃, see:
 (a) Peppe, C.; Lang, E. S.; De Andrade, F. M.; De Castro, L. B. *Synlett* 2004, 1723-1726. For I₂, see: (b) Stavber, G.; Zupan, M.; Stavber, S. *Tetrahedron Lett.* 2006, 47, 8463-8466. For BBr₃, see: (c) Howard, F.; Sawadjoon, S.; Samec, J. S. M. *Tetrahedron Lett.* 2010, *51*, 42.8-4210.
- (11) For HNO₃/H₂SO₄, see: (a) Katritzky, A. R.; Vakulenko, A. V.; Sivapackiam, J.; Draghici, B.; Damavarapu, R. *Synthesis.* 2008, 699-706. (b) Morley, J. O.; Matthews, T. P. *Org. Biomol. Chem.* 2006, 4, 359-366. For HNO₃/Ac₂O, see: (c) Gilman, H.; Young, R. V. J. Am. Chem. Soc. 1934, 56, 464-466. For HNO₃/TBAB, see: (d) Joshi, A. V.; Baidoosi, M.; Mukhopadhyay, S.; Sasson, Y. Org. Process Res. Dev. 2003, 7, 95-97.
- (12) For NH₄NO₃/TFAA, see: Salzbrunn, S.; Simon, J.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. *Synlett.* **2000**, 1485-1487.
- (13) For AgNO₃/CCl₄, see: (a) Gordon, J. E. J. Org. Chem. **1970**, 36, 2722-2725. For AgNO₃/TMSCl, see: (b) Prakash, G. K. S.; Panja, C.; Mathew, T.; Surampudi, V.; Petasis, N. A.; Olah, G. A. Org. Lett. **2004**, 6, 2205-2207.
- (14) For Ce(NH₄)₂(NO₃)₆/Ac₂O, see: Tanemura, K.; Suzukia, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T. J. Chem. Res. S. 2003, 497-499.
- (15) For Pd(OAc)₂/tBuONO, see: (a) Kilpatrick, B.; Heller, M.; Arns, S. *Chem. Commun.* 2013, 49, 514-516. (b) Liang, Y.-F.; Li, X.; Wang, X.; Yan, Y.; Feng, P.; Jiao, N. ACS Catal. 2015, 5, 1956-1963. For NaNO₂/Pd₂(dba)₃, see: (c) Fors, B. P.; Buchwald, S. L. *J. Am. Chem. Soc.* 2009, 131, 12898-12899. (d) Pawar, G. G.; Brahmanandan, A.; Kapur, M. Org. Lett. 2016, 18, 448-451.
- (16) For Cu(OTf)₂/KNO₂, see: Joseph, P. J. A.; Priyadarshini, S.; Kantam, M. L.; Maheswaran, H. *Tetrahedron Lett.* **2012**, *53*, 1511-1513.
- (17) For Fe(NO₃)₃/CuCl₂, see: Sadhu, P.; Alla, S. K.; Punniyamurthy,

T. J. Org. Chem. 2015, 80, 8245-8253.

- (18) For Bi(NO₃)₃/K₂S₂O₈, see: Manna, S; Maity, S.; Rana, S.; Agasti, S.; Maiti, D. Org. Lett. **2012**, *14*, 1736-1739.
- (19) A review on Ag⁺-catalyzed C-H/C-C bond functionalization, see:
 (a) Zheng, Q.-Z.; Jiao, N. *Chem. Soc. Rev.* 2016, *45*, 4590-4627. Selected examples on AgNO₂ mediated reactions, for Ag-NO₂/TEMPO, see: (b) Maity, S.; Manna, S.; Rana, S.; Naveen, T.; Mallick, A.; Maiti, D. *J. Am. Chem. Soc.* 2013, *135*, 3355-3358. For AgNO₂/K₂S₂O₈, see: (c) Wu, D.; Zhang, J.; Cui, J.; Zhang, W.; Liu, Y. *Chem. Commun.* 2014, *50*, 10857-10860. (d) Pawar, G. G.; Brahmanandanand, A.; Kapur, M. *Org. Lett.* 2016, *18*, 448-451. For AgNO₂, see: (e) Yuan, B.; Zhang, F.; Li, Z.; Yang, S.; Yan, R. *Org. Lett.* 2016, *18*, 5928-5931. (f) Ballini, R.; Barboni, L.; Giarlo, G. *J. Org. Chem.* 2004, *69*, 6907-6908. (g) Prakash, G. K. S.; Panja, C.; Mathew, T.; Surampudi, V.; Petasi, N. A.; Olah, G. A. *Org. Lett.* 2004, *6*, 2205-2207.
- (20) Examples on nitration of styrenes, for HNO₃, see: (a) Lewis, R. J.; Moodie, R. B. J. Chem. Soc., Perkin Trans 2 1997, 563-567. For NaNO₂/I₂, see: (b) Jew, S.-S.; Kim, H.-D.; Cho, Y.-S.; Cook, C.-H. Chem. Lett. 1986, 1747-1748. For AgNO₂/I₂ (INO₂), see: (c) Sy, W.-W.; By, A. W. Tetrahedron Lett. 1985, 26, 1193-1196. (d) Hassner, A.; Kropp, J. E.; Kent, G. J. J. Org. Chem. 1969, 34, 2628-2632. For CuO/NaNO₂/I₂, see: (e) Campos, P. J.; Garcia, B.; Rodriguez, M. A. Tetrahedron Lett. 2000, 41, 979-982.
- (21) CCDC 1533995 (4a), 1533996 (4c), 1533999 (4f), 1533997 (6c), and 1533998 (7a) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).
 For indane synthesis, see: (a) Masahiro, F.; Shigeki, T.; Yasuko, E.; Kumi, S.; Hiroyoshi, O. *Chem. Commun.* 2006, 4635-4637. (b) Ma, H.; Sun, Q.; Li, W.; Wang, J.; Zhang, Z.; Yang, Y.; Lei, Z. *Tetrahedron Lett.* 2011, *52*, 1569-1573. (c) Staber, G.; Zupan, M.; Stavber, S. *Tetrahedron Lett.* 2006, *47*, 8463-8466. (d) Lewis, S. P.; Taylor, N. J.; Piers, W. E.; Collins, S. *J. Am. Chem. Soc.* 2003, *125*, 14686-14687.
 (22) Selected examples on palladium-mediated reaction of allylic.
- (22) Selected examples on palladium-mediated reaction of allylic sulfones, see: (a) Gomez, J. E.; Guo, W.; Kleij, A. W. Org. Lett. 2016, 18, 6042-6045. (b) Hampton, C. S.; Harmata, M. J. Org. Chem. 2016, 81, 4807-4822. (c) Altenhofer, E. F.; Harmata, M. J. Org. Chem. 2015, 80, 8168-8174. (d) Deng, K.; Chalker, J.; Yang, A.; Cohen, T. Org. Lett. 2005, 7, 3637-3640. (e) Garrido, J. L.; Alonso, I.; Carretero, J. C. J. Org. Chem. 1998, 63, 9406-9413.
- (23) (a) Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 12898-12899. (b) Al-Masum, M.; Saleh, N.; Islam, T. Tetrahedron Lett. 2013, 54, 1141-1144. (c) Chang, M.-Y.; Lin, C.-H.; Tai, H.-Y. Tetrahedron Lett. 2013, 54, 3194-3198.