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Stereoselective Synthesis of lcc-Hydroxyvitamin D 3 A-Ring Synthons 
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Abstract: Palladium-catalyzed cyclization of 8-bromo-2,8-nonadienoates proceeded stereoselectively to give I cc- 
hydroxyvitamin D 3 A-ring synthons in good yields. 

l(x,25-Dihydroxyvitamin D 3 is known as the hormonaUy active form of vitamin D 3. Recently this 

hormone was found to induce cell differentiation of myeloid leukemia cells in addition to the role in calcium reg- 

ulation, l) Since these potent biologically activities, a lot of synthetic efforts for la,25-dihydroxyvitamin D 3 

have been made. 2) On the basis of Lythgoe's synthesis of vitamin D 3, Hoffman la Roche's group achieved the 

synthesis of let,25-dihydroxyvitamin D 3 using 2e as a useful precursor of A-ring synthon. 3) So far several 

synthetic methods for A-ring synthons starting from readily available chiral cyclohexanes have been reported, 4) 

but cyclization of acyclic compound has scarcely been reported. The latter has potent possibility to obtain vari- 

ous A-ring derivatives, because acyclic compounds are easily accessible. For our interest of structure-activity re- 

lationships, 5) especially the effect of stereochemistry at C1 and C3 of lo~-hydroxyvitamin D 3' the synthesis of 

A-ring synthon and its derivatives has been investigated. In this paper we wish to report a facile and stereoselec- 

tive syntheses of 2 a-2 d using the palladium-catalyzed intramolecular cyclization. 6) 
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The key intermediate (E)-8-bromo-2,8-nonadienoate l a  for the optically active 2a was prepared 

from the allylic alcohol 3 in 5 steps (Scheme 1). Sharpless asymmetric epoxidation of 3 followed by Swern 

oxidation and subsequent Horner-Emmons reaction gave the (E)-a, lS-unsaturated epoxy ester 4 in 61% yield 

from 3. The epoxy group of 4 was reduced regioselectively by the palladium-catalyzed hydrogenolysis with 

formic acid 7) to give the optically active alcohol (5S)-5 8) whose hydroxy group was protected as silyl ether to 
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give l a  in 87% yield from 4. Cyclization of l a  to 2a was carried out using 5 mol% of Pd(OAc)2-PPh3(1:2) 

and K2CO 3 (2 eq) in CH3CN under reflux for 18 h 9) in 66% yield, l~-Hydroxy group of 2b  was introduced 

using SeO210) followed by silylation of the alcohol to give 2 b 11) in 29% yield. Because of unsatisfactory re- 

sult of the conversion 2a to 2b, 1-hydroxy group was introduced before cyclization. Thus, the disiloxy ester 
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Br 

Br 

OR 
5 R=H 
la  R=TBS 

Br 

C02E t 

4 

=" T B S O ' ° ' v  TB . . . .  TBS 

2a 2b 

(a) (1) (+)-DET, Ti(Oipr) 4, TBHP, -23°C, (2) (COCI) 2, DMSO, Et3N, -780C, (3) (EtO)2P(=O)CH2CO2E{, Nail, THF, 0°C, 61% 

overall; (b) (1) 5 mol% Pd2(dba)3CHCl3, 5 mol% n-Bu3P, 5 eq of HCO2H, 2 eq of Et3N, dioxane, rt, (2) t-BuMe2SiCl, imidazole, 

DMF, 87% overall; (c) 5 rnol% Pd(OAc)2, 10 mol% PPh 3, 2 eq of K2CO 3, CH3CN, reflux, 66%; (d) (1) 0.7 eq of SeO 2, 4 eq of 

NMO, MeOH-CH2CI 2, (2) t-BuMe2SiC1, imidazole, DMF, 29% overall. 

l b  was prepared from ~-bromoacrolein as shown in Scheme 2. Reaction of ~-bromoacrolein with lithium 

enolate of ten-butyl acetate gave the hydroxy ester 7 in 66% yield. After protecting the hydroxy group as silyl 

ether, DIBAH reduction of 8 followed by Horner-Emmons reaction and subsequent reduction of ester group 

Scheme 2 
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(a) (1) t-BuMe2SiC1, imidazole, DMF, (2) 1.2 eq of DIBAH, toluene, -78°C, (3) (EtO)2P(--O)CH2CO2Et , Nail, THE 0°C, (4) 

DIBAH, toluene, -78°C, 53% overall; (b) (1) (+)-DET, Ti(Oipr)4 , TBHP, -23°C, (2) (COC1)2, DMSO, Et3N, -78°C, (3) 

(EtO)2P(=O)CH2CO2Et, Nail, TI-W, 0°C, 70% overall; (c) (1) 5 tool% Pd2(dba)3CHCI3, 5 tool% n-Bu3P, 5 eq of HCO2H, 2 eq of 

Et3N, dioxane, rt, 73%, (2) t-BuMe2SiC1, imidazole, DMF, 92%; (d) 5 rnol% Pd(OAc)2 , l0 tool% PPh3, 2 eq of K2CO3, CH3CN 

reflux, 90%. 
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gave the allylic alcohol 9 in 53% yield from 7. The allylic alcohol 9 was converted to the esters a diastereo mix- 

ture of (5R, 7S) and (5R, 7R)-I1 by a similar procedure as 3 to 5 in 51% yield (4 steps). As protecting the 

hydroxy group as silyl ether (92% yield), the mixture of l b  and l c  was subjected to the cyclization to give a 

mixture of 2b and 2 c (1:1) in 90% yield, which were separated by column chromatography on silica gel. 

Stereoselective 1,3-syn or 1,3-ant/alcohols were prepared by reduction of ~-hydroxyketone using 

Et3B-NaBH412) or Me4NBH(OAc)313) respectively. Reaction of et-bromoacrolein with the dianion prepared 

from methyl acetoacetate (75% yield) followed by reduction with Me4NBH(OAc)3 gave the 1,3-ann" diol 1 3 in 

75% yield. After silylation of the hydroxy groups, the ester was reduced with DIBAH to give the aldehyde 15 

in 72% yield (2 steps). Reaction of 1 5 with (EtO)2P(=O)CH2CO2Et gave the (E)-et, p-unsaturated ester 1 b in 

80% yield. The cyclization of l b  to 2b was carried out in 86% yield. Similarly 1,3-syn disilyloxy ester l c  

which was prepared by reduction of 1 2 with Et3B-NaBH 4 (56% yield) cyclized to give 2c 11) in 71% yield 

(Scheme 3). 
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(a) Me4NBH(OAc) 3, CH3CN, 0°C, 75%; (b) Et3B, NaBH4, MeOH-THF, -78°C, 58%; (c) (1) t-BuMe2SiC1, DMF, imidazole, (2) 

DIBAH, toluene, -78°C, 72% overall; (d) (EtO)2P(=O)CH2CO2Et, Nail, THF, 0°C, 80%; (e) 5 mol% Pd(OAc)2 , 10 mol% PPh 3, 

2 eq of K2CO 3, CH3CN reflux, 86%. 

As described as above, cyclization of (E)-unsaturated esters gave (E)-exodienes stereoselectively. 

These stereochemical outcome is explained by the well known cis addition and syn elimination mechanism of 

Heck reaction, 14) which implied us that (Z)-exocyclic diene could be obtained by cyclization of (Z)-dienyl ester. 

The (Z)-cc,13-unsaturated ester l d  was prepared by (Z)-olefination 15) of 1 5. The ester l d  was cyclized to give 

2 d 11) in 90% yield without formation of E isomer (Scheme 4). 

The palladium-catalyzed cyclization is stereoselective and the method described here is useful and ap- 
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plicable to other various type of A-ring synthons. Total synthesis of 1 ct,25-dihydroxyvitamin D 3 based on this 

methodology is now in progress. 

Scheme 4 
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(a) (CF3CH20)2P(=O)CH2CO2Me , 18-crown-6, (TMS)2NK, THF, -78°C, 68%; (b) 5 mol% Pd(OAc)2, 10 mol% PPh3, 2 eq of 

K2CO 3, CH3CN reflux, 90%. 
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