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Abstract: Tricyclic compounds were obtained as a single diastere-
omer via carbon–carbon double-bond isomerization–Diels–Alder
reaction of dimethyl 5-methylene-4-isopropylidene-2-cyclohep-
tene-1,1-dicarboxylate with dienophiles under the catalysis of
[RhCl(cod)2]2/dppe/AgOTf. Further experiments provided the
proof of isomerization of carbon–carbon double bond. Meanwhile a
sequential double Diels–Alder reaction took place without carbon–
carbon double-bond isomerization when 4-phenyl-4H-1,2,4-triaz-
ole-3,5-dione used as a dienophile.
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The Diels–Alder reaction is a powerful tool for construc-
tion of complicated six-membered derivatives with good
to excellent selectivity.1 After the first report of rhodium-
catalyzed Diels–Alder reaction by Livinghouse and co-
workers,2 the chemistry of this catalytic reaction has been
greatly explored.3 Recently, the catalytic enatioselective
reactions have also been independently achieved by
Mikami’s group4 and Hayashi’s group5 using chiral rhod-
ium catalysts.

Recently, we have observed that the cyclometallation of
9,9-disubstituted 1,2,7,8-tetraenes under the catalysis of
[RhCl(CO)2]2 (2 mol%) or [RhCl(cod)]2 (2.5 mol%)/dppp
(5 mol%) afforded the seven-membered cross-conjugated
trienes 2 (Equation 1).6 We reasoned that the Diels–Alder
reaction of the diene unit of the cross-conjugated triene 2
with dienophile would afford complex polycyclic com-
pounds efficiently, if the issue of selectivity can be ad-
dressed. Interestingly, when 2a was treated with N-ethyl
maleimide under the catalysis of [RhCl(cod)]2/dppe/AgO-
Tf, instead of the normal [4+2] product 3a,7 tricyclic prod-
uct 4a was isolated as a single diastereomer in 97% yield,
probably via in situ generated triene 5a (Scheme 1).8 The
structure of this product was unambiguously established
by X-ray diffraction studies (Figure 1).9 The reaction was
much slower at 80 °C; however, a 89% yield could also be
achieved for 4a after 42 hours.
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When N-phenyl maleimide or p-iodophenyl maleimide
was treated with 2a under the same conditions, the corre-
sponding tricyclic products 4b or 4c could be isolated as a
single diastereomer in 86% yield (Scheme 2). The tricy-
clic product 4d was also formed in 66% yield as the only
diastereomer when maleic anhydride was used as the di-
enophile.

Scheme 2

When a less active dienophile, for example, 1,4-diace-
toxy-2-butyne, was used instead of the expected tricyclic
compound, we isolated the carbon–carbon double-bond
migration product 5a in 53% yield, together with another
carbon–carbon double-bond isomer 5a¢ in ca. 40% yield,
which was contaminated with unidentified byproducts
(Equation 2). This reaction clearly indicated that the cy-
cloaddition reaction shown in Schemes 1 and 2 took place
after the formation of the carbon–carbon double-bond mi-
gration product 5a.

Equation 2

Further study led to the observation that in the absence of
the dienophile the reaction of 2a – under the same condi-
tions – afforded the carbon–carbon double-bond isomer-
ization product 5a in the yield of 62% highly selectively,
together with another carbon–carbon double-bond isomer
5a¢ in only 4% yield. The product 5a¢ was also formed ex-
clusively in the presence of Lewis acid AlCl3 in CH2Cl2

(Scheme 3).

Treatment of triene 5a with 4-phenyl-4H-1,2,4-triazole-
3,5-dione (6) could also smoothly afford the tricyclic
compound 4e in 95% yield (Scheme 4). The structure of

4e was also unambiguously confirmed by the X-ray dif-
fraction studies (Figure 2).10

When this active dienophile 6 was treated with 2a under
the catalysis of [RhCl(cod)]2/dppe/AgOTf at room tem-
perature, surprisingly the polycyclic product 7 was isolat-
ed as a single diastereomer in 23% yield (Scheme 5). The
structure of 7 was unambiguously confirmed by the X-ray
diffraction studies (Figure 3).11 Obviously, the normal
Diels–Alder tricyclic product 8 was formed firstly, fol-
lowed by the further reaction with 4-phenyl-4H-1,2,4-tri-
azole-3,5-dione. Furthermore, in the absence of this
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catalyst, the reaction also took place to afford 7 in 94%
yield with 4 equivalents of dienophile 6.

In conclusion, we observed here some interesting cy-
cloaddition reactions of dimethyl 5-methylene-4-isopro-
pylidene-2-cycloheptene-1,1-dicarboxylate with different
dienophiles: with maleimide or maleic anhydride, the car-
bon–carbon double-bond isomerization took place under
the catalysis of cationic rhodium catalyst first, followed
by Diels–Alder reaction, providing an efficient strategy to
the construction of tricyclic compounds with high stereo-
selectivity. On the other hand, the polycyclic product 7
could also be obtained via a sequential double Diels–
Alder reaction when 4-phenyl-4H-1,2,4-triazole-3,5-di-
one (6) was used. In this reaction, the carbon–carbon dou-
ble-bond isomerization was not observed. Further studies
in this area are being pursued in this laboratory.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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