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A rhodium(I)/dppe catalyst promoted dimerization of monosubstituted allenes in a stereoselective manner to give cross-conjugated

trienes, which are different from those obtained by a palladium catalyst.

Introduction

Cross-conjugated trienes, known as [3]dendralenes [1], are
attractive synthetic precursors used for consecutive double
[4 + 2] cycloaddition reactions [2-4] to provide a rapid access to
polycyclic carbon frameworks. Thus, a number of methods for
the preparation of the parent 3-methylenepenta-1,4-diene [5]
and its substituted derivatives [6-17] has been developed.
Among these, transition-metal-catalyzed dimerization of allenes
presents a unique entry to substituted cross-conjugated trienes.
For example, a nickel(0)/triphenylphosphine complex catalyzes
a dimerization reaction of 3-methylbuta-1,2-diene to afford 2,5-
dimethyl-3,4-bismethylenehex-1-ene [18,19]. The nickel-
catalyzed reaction, however, leads to a complex mixture of
products when monosubstituted allenes such as penta-1,2-diene

and 1-phenylpropa-1,2-diene are employed [20]. On the other

hand, a palladium-catalyzed dimerization reaction of monosub-
stituted allenes produces substituted cross-conjugated trienes 2
in high yield (Scheme 1) [21]. We report here that dimerization
of monosubstituted allenes is also catalyzed by a rhodium(I)/
dppe complex to form cross-conjugated trienes 3, which are
different from those obtained with the palladium catalyst.

Results and Discussion

We initiated our study using undeca-1,2-diene (1a) as the model
substrate and a rhodium(I) complex as the catalyst (Table 1).
When 1a was treated with a catalytic amount of [RhCl(cod)],
(2.5 mol %, cod = cycloocta-1,5-diene) in toluene at 130 °C for
12 h, 2a was formed in 40% NMR yield along with another
minor dimerized product (13% NMR yield) and unidentified
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Scheme 1: A new entry to substituted cross-conjugated trienes.

compounds (Table 1, entry 1). The structure of the minor dimer-
ized product was determined to be (E)-10,11-dimethyleneicos-
8-ene (3a) by 'H and '3C NMR spectroscopy. Thus, the two
isomeric dimers, one identical to the isomer obtained by the
palladium-catalyzed reaction and the other a different isomer,
were produced by the rhodium-catalyzed reaction. Next, several
phosphine ligands were examined (Table 1, entries 2—5). To our
delight, the use of the dppe ligand suppressed the formation of
2a and the unidentified compounds, and increased the NMR
yield of 3a to 96% (86% isolated yield, Table 1, entry 4). A
complex mixture of products was obtained when the reaction
temperature was lowered from 130 °C to 90 °C (Table 1,
entry 6). Moreover, the use of [Rh(OH)(cod)], and
Rh(acac)(cod) as the precatalyst resulted in a decrease of the

reaction rate (Table 1, entries 7 and 8).

Table 1: Optimization of reaction conditions?@.

CrHis C7Hss C7His
2.5 mol % [RhX(cod)],
2 | 5.0 mol % ligand %ﬁ*_ %/7
” toluene, temp, 12 h _\C H ot

1a 2a 75 3a 75
Enty X  Ligand® T(°C) ;{;ezd/o‘)’(f ;(;ezd/o‘;ﬁ
1 Cl none 130 40 13
2 Cl PPh3d 130 24 18
3 Cl dppm 130 24 37
4 cl dppe 130 <5 96 (86)
5 Cl dppp 130 17 50
6 cl dppe 90 38 24
7 OH dppe 130 40 10
8 acac® dppe 130 44 <5

@Reactions conducted on a 0.4 mmol scale.

bdppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2-
bis(diphenylphosphino)ethane, dppp = 1,3-
bis(diphenylphosphino)propane.

°NMR yield using mesitylene as an internal standard. Isolated yield
given in parenthesis.

dUsing 10 mol % of PPhs.

€Using 5.0 mol % of Rh(acac)(cod).
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We propose that the dimerization reaction proceeds through the
pathway outlined in Scheme 2. Initially, two molecules of 1a
coordinate to a thodium(I) center at the terminal carbon—carbon
double bonds from their sterically less-hindered sides. Oxida-
tive cyclization occurs in a head-to-head manner to form the
five-membered rhodacyclic intermediate A [22-25], which is in
equilibrium with another rhodacyclic intermediate B via c—n1—c
isomerization. Then, B-hydride elimination takes place with B
to form rhodium hydride C stereoselectively. Finally, reductive
elimination from C yields 3a together with the catalytically
active rhodium(I) complex. It is also conceivable, however, that
oxidative cyclization of two molecules of 1a occurs in a tail-to-
tail manner to directly furnish B. The other isomer 2a could be
formed through allylic 1,3-migration of rhodium from C and

subsequent reductive elimination.

3}/ o &
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7115
CrHys H/Rh(”')'-n RA(IINL,
c A
RH
CsHqis (L, C7His
B

Scheme 2: A proposed reaction pathway.

Under the optimized reaction conditions using dppe as the
ligand, various monosubstituted allenes 1b—j were subjected to
the catalytic dimerization reaction (Table 2). In most cases,
essentially one isomer 3 was formed, and the other isomer 2
was barely detectable in the 'H NMR spectrum of the crude
reaction mixture (<5%). Allenes 1b—i possessing a primary
alkyl group reacted well to afford the corresponding products
3b-i in yields ranging from 63% to 90% (Table 2, entries 1-8).
Functional groups such as benzyloxy, siloxy, hydroxy and
cyano groups were tolerated in the alkyl chain under the reac-
tion conditions. Cyclohexylpropa-1,2-diene (1j) possessing a
secondary alkyl group also participated in the dimerization reac-
tion (Table 2, entry 9). On the other hand, 1,1-disubstituted
allenes such as 3-methylbuta-1,2-diene and 3-pentylocta-1,2-
diene failed to undergo the dimerization reaction, in contrast to

the nickel-catalyzed reaction [18,19].
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Table 2: Synthesis of cross-conjugated trienes by the allene dimeriza-
tion reaction@.

R’
. 2.5 mol % [RhCl(cod)], R
5.0 mol % dppe
2 R
R' toluene, 130 °C, 6 h
1 3 R
Entry 1 R R' 3 Yield
(%)b
1 1b CsHqq H 3b 85
2 1c CHyPh H 3c 78¢
3 1d Cy H 3d 83d
4 1e CH,0Bn H 3e 70
5 1f  (CH)30Bn H 3f 78
6 1g (CH,)30SiMest-Bu  H 3g 90
7 1h  (CH,)30H H 3h 63
8 1i  (CH)3CN H 3i 75
9 1j —(CHo)s— 3 60d

@Reactions conducted on a 0.4 mmol scale.

bisolated yield unless otherwise noted.

®The product was accompanied by a small amount of an unidentified
impurity.

dNMR yield using mesitylene as an internal standard.

Next, we examined the consecutive double [4 + 2] cyclo-
addition reaction of the cross-conjugated trienes obtained in the
present study. Triene 3a was treated with 4-phenyl-1,2,4-triazo-
line-3,5-dione (4, PTAD), a highly reactive dienophile, in
toluene at 0 °C (Scheme 3). The conversion of 3a was complete
within 1 h, and after chromatographic isolation, bisadducts Sa

IIDh
o N
<"p°

4 (2.4 equiv)

C7H4s

toluene

C7H4s 0°C,1h

5a 75%

CsH1s
NC
NC

NC

NC
6 (2.7 equiv)

C7H4s

toluene

CrH1s 60 °C, 24 h NC

CN C7Hys5

3a 7a 62%

Scheme 3: [4 + 2] cycloaddition reaction of 3a with PTAD and TCNE.
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and 5a’ were obtained in 75% and 6% yields, respectively. The
major bisadduct 5a resulted from initial addition to the more
congested diene moiety of 3a (site ). When tetracyanoethylene
(6, TCNE), which was a less reactive dienophile than 4, was
used, [4 + 2] cycloaddition also occurred preferentially at site 3,
but only once on heating at 60 °C for 24 h.

Conclusion

In summary, we have developed a new dimerization reaction of
monosubstituted allenes catalyzed by a rhodium(I)/dppe com-
plex, allowing the stereoselective formation of substituted
cross-conjugated trienes. It is interesting that the rhodium cata-
lyst and the palladium catalyst gave different types of cross-

conjugated trienes.

Experimental
General procedure for rhodium-catalyzed

dimerization of monosubstituted allenes

To a side-arm tube equipped with a stirrer bar, was added
[RhCl(cod)]; (4.9 mg, 2.5 mol %) and dppe (7.7 mg, 5 mol %).
The tube was evacuated and refilled with argon three times.
Then, toluene (4 mL) and substrate 1 (0.4 mmol) were added
via syringe and the tube was closed. After heating at 130 °C for
6 h, the reaction mixture was cooled to room temperature,
passed through a pad of Florisil® and eluted with ethyl acetate
(= 90-100 mL). The filtrate was concentrated under reduced
pressure and the residue purified by preparative thin-layer chro-
matography to give product 3. Although the isolated 3 was rela-
tively labile, it could be kept at =30 °C for days without any
detectable decomposition or polymerization.

7a' 19%
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Supporting Information

Supporting Information File 1

Experimental details and spectroscopic data for new
compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-7-67-S1.pdf]
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