

Bioorganic & Medicinal Chemistry Letters 9 (1999) 3053-3056

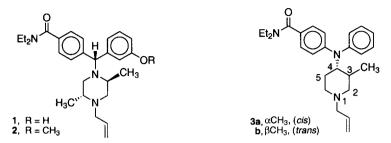
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

(±)-4-[(N-ALLYL-CIS-3-METHYL-4-PIPERIDINYL)PHENYLAMINO]-N,N-DIETHYLBENZAMIDE DISPLAYS SELECTIVE BINDING FOR THE DELTA OPIOID RECEPTOR

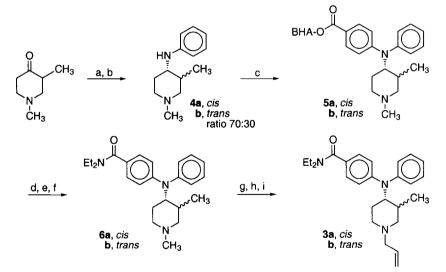
James B. Thomas,^a Xavier M. Herault, ^a Richard B. Rothman,^b Jason P. Burgess,^a S. Wayne Mascarella,^a Heng Xu,^b Robert B. Horel,^b Christina M. Dersch,^b and F. Ivy Carroll^{a,*}

^aChemistry and Life Sciences, Research Triangle Institute, Research Triangle Park, NC 27709, U.S.A. ^bClinical Psychopharmacology Section, NIDA Addiction Research Section, 5500 Nathan Shock Dr., Baltimore, MD 21224, U.S.A.

Received 16 August 1999; accepted 15 September 1999


Abstract: Racemic 4-[(N-allyl-cis-3-methyl-4-piperidinyl)phenylamino]-N,N-diethylbenzamide (3a) was synthesized and found to have good affinity and selectivity for the δ receptor. These compounds can be viewed as an analog of BW373U86 and SNC-80 where an internal piperazine nitrogen has been transposed with a benzylic carbon. Functionally, **3a** behaves as an agonist at the δ receptor with no measurable stimulation of either the μ or κ receptor subtypes and was found to be devoid of any measurable amount of antagonist activity for any opioid receptor. A comparison of **3a** to SNC-80 and DPDPE in the [³⁵S]GTPYS functional assay suggests that **3a** may be more like the peptide DPDPE. © 1999 Elsevier Science Ltd. All rights reserved.

Introduction


In search of analgesics possessing a reduced side-effect profile relative to morphine, much effort has been expended towards finding opioids that operate via δ or κ opioid receptors as opposed to the μ opioid receptor, which meditates the actions of morphine and its congeners.¹ BW373U86 (1)² and SNC-80 (2)³ represent one class of opioid agonists discovered to be selective for the δ opioid receptor. Due to the lack of a clear opioid message substructure (i.e., a tyramine component similar to the enkephalins), compounds 1 and 2 have been referred to as nonclassical opioid ligands.⁴ The piperazine subunit of 1 and 2 is not commonly found in compounds showing activity at the opioid receptors. In contrast, piperidine ring compounds are found in many different classes of opioids.¹ If the internal nitrogen atom in compounds 1 or 2 is transposed with the benzylic carbon, piperidine ring analogs such as 3 are obtained. Even though there are obvious differences between structures 1, 2, and 3, there is sufficient similarity to suggest that 3 might interact with opioid receptors similar to 1 or 2 and thus possess δ selectivity. In this communication, we describe the syntheses of compounds 3a, b and report that compound 3a possesses good affinity and selectivity for the opioid δ receptor in radioligand binding assays. Furthermore, racemic 3a was found to stimulate [³⁵S]GTP γ S binding only in the δ receptor functional assay.

Chemistry

Preparation of **3a,b** began with reductive amination of 1,3-dimethyl-4-piperidone with aniline using titanium (IV) isopropoxide⁵ which gave **4a,b** as a mixture of *cis* and *trans* diastereomers in 75% yield in a ratio of 70:30. These were separated by column chromatography and carried forward independently. These intermediates were

then coupled to the butylated hydroxyanisole (BHA) ester of 4-fluorobenzoic acid to give (**5a,b**) in 91% and 68% yields.⁶ Removal of the BHA group was accomplished by transesterification with refluxing sodium methoxide in toluene/N-methylpyrrolidinone followed by saponification of the methyl ester. The zwitterionic intermediates were isolated as HCl salts and converted directly into diethylamides using benzotriazol-1-yl-oxy-tris-(dimethylamino) phosphonium hexafluorophosphate (BOP a.k.a. Castro's reagent), diethylamine, and triethylamine in a tetrahydrofuran (THF) slurry to give **6a** and **6b** in 90% and 59% yields, respectively. Conversion to the N-allyl group was accomplished by treating **6a,b** with phenyl chloroformate followed by hydrolysis of the resulting carbamates with potassium hydroxide in isopropyl alcohol. N-Alkylation with allyl bromide then gave **3a,b** in 40% and 20% yield, respectively. Compound structures were based on elemental analysis and proton and carbon NMR spectral analyses including COSY and HMQC. The *cis* relative stereochemistry of **3a** was based on a large vicinal coupling constant (J = 13.0 Hz) between H5-axial and H4 which established the equatorial position for the 4-diarylamine group and a correlation in the NOESY spectrum between H5-axial proton and the 3-methyl group which places this group *cis* to the 4-diarylamine group.

Reagents: (a)Ti(O-i-Pr)₄, aniline; (b) NaBH₄, EtOH; (c) *n*-BuLi, THF, HMPA then 1-(2,6-di-*tert*-butyl-4methoxyphenyl)-4-fluorobenzoate; (d) N-methylpyrrolidinone, NaOCH₃, toluene; (e) EtOH, H₂O; (f) Et₂NH, BOP, Et₃N; (g) PhOCOCI; (h) KOH, i-PrOH, H₂O; (i) allyl-Br, EtOH, K₂CO₃

Results and Discussion

The radioligand binding data at all three opioid receptors⁷ for the compounds **3a,b** along with comparative data for BW373U86 (1) and SNC-80 (2) are shown in Table 1. Compound **3a** (the *cis* isomer) is more potent and more selective for the δ opioid receptor relative to both the μ and κ opioid receptors than **3b** (the *trans* isomer). This difference in selectivity is due to a significantly lower affinity of the *trans* isomer for the δ receptor relative to the μ or κ opioid receptors. The 11.9 nM K_i value for **3a** combined with the 1212 nM K_i value at the μ receptor compare favorably to the K_i values for 1 and 2 particularly when one considers that **3a** is racemic and does not possess all the structural features present in 1 and 2, namely the 3'-hydroxy and 3'-methoxy groups, respectively, on the aromatic ring and a methyl group comparable to the piperazine 2-methyl group.

Compd	$K_i (nM \pm SD)$					
	µ [³ H]DAMGOª	δ [³ H]DADLE ^b	к [³ H]U69,593 ^с	μ/δ		
1, BW373U86	36 ± 3.4	0.91 ± 0.05	NA	40		
2, SNC-80	1614 ± 131	1.57 ± 0.19	3535 ± 1841	1030		
3a, (±)-cis-isomer	1212 ± 132	11.9 ± 0.9	3284 ± 299	102		
3b , (±)- <i>trans</i> -isomer	1589 ± 86	126 ± 5	8695 ± 978	13		

Table 1. Radioligand Binding Results at the μ , δ , and κ Opioid Receptors for (±)-4-[(N-Allyl-3-methyl-4-piperidinyl)phenylamino]-*N*,*N*-diethylbenzamide

^a [³H]DAMGO [(D-Ala²,MePhe⁴,Gly-ol⁵)enkephalin]. Tritiated ligand selective for μ opioid receptor. ^b [³H]DADLE [(D-Ala²,D-Leu⁵)enkephalin]. Tritiated ligand selective for δ opioid receptor. ^c [³H]U69,593 {[³H](5\alpha,7\alpha,8\beta)-(-)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4,5]dec-8-yl]benzene-acetamide}. Tritiated ligand selective for κ opioid receptor.

In the receptor binding assay, compound **3a** was about 17-fold less potent than SNC-80 at δ receptors (Table 1). Consistent with these binding data, compound **3a** was 10-fold less potent than SNC-80 in the [³⁵S]GTP_YS functional assay (Table 2).⁸ The lower affinity and efficacy of **3a** relative to **1** and **2** could be due in part to the absence of several structural features present in **1** and **2**. Importantly, **3a** was unable to reverse agonist stimulated [³⁵S]GTP_YS binding at any opioid receptor thus indicating a lack of antagonist activity. As indicated in Table 2, compound **3a** acts as an agonist at the δ receptor since its stimulation of [³⁵S]GTP_YS binding was eliminated by addition of the δ -selective antagonist naltrindole while the μ - and κ -selective antagonists CTAP and norbinaltorphimine (nor-BNI) had relatively little affect on stimulation. In this respect, compound **3a** behaves more like the peptide agonist cyclic [penacillamine,² penacillamine⁵]enkephalin (DPDPE).

Conclusions

We have demonstrated that (\pm) -4-[(N-allyl-*cis*-3-methyl-4-piperidinyl)phenylamino]-*N*,*N*-diethylbenzamide (**3a**) is selective for δ receptors in the radioligand binding assay and acts as an agonist at δ receptors, as assessed in the [³⁵S]GTP₇S functional assay. Even though **3a** is structurally more similar to BW373U86 and SNC-80 than the δ -selective peptide DPDPE, its efficacy in the [³⁵S]GTP₇S assay is more like that of DPDPE. In light of data that SNC-80 and peptidic δ agonists bind to different domains of the δ receptor,⁹ it is possible that **3a** may be a peptidic-like nonpeptide compound, as has been reported by Liao et al.¹⁰ Alternatively, **3a** may be a partial SNC-80 like agonist. These considerations suggest that further structural alterations of 3a, as well as its optical resolution, may lead to novel types of δ agonist compounds.

Table 2. Functional K_d and E_{max} Values of DAMGO, SNC-80, U69,593, and (±)-4-[(N-Allyl-3-methyl-4-piperidinyl)phenylamino]-*N*,*N*-diethylbenzamide Using GTP γ S Binding Assays in Guinea Pig Caudate Membranes

	Unblocked Condition $(nM \pm Sd)$	Blocked with 20 nM NTI ^d	Blocked with 6 nM nor-BNI ^e	Blocked with 6000 nM CTAP ^f
DAMGO ^a K _d	592 ± 105	1850 ± 287	509 ± 111	No stimulation
E _{max}	123 ± 6	124 ± 6	135 ± 7	
SNC-80 ^b K _d	317 ± 54	No stimulation	629 ± 71	673 ± 108
E _{max}	142 ± 6		143 ± 4	131 ± 5
U69,593° K _d	684 ± 74	1980 ± 269	4894 ± 2172	2142 ± 223
E _{max}	177 ± 5	178 ± 8	58 ± 11	167 ± 6
3a K _d	3500 ± 500	No stimulation	3722 ± 1094	4667 ± 1937
E _{max}	63 ± 5		60 ± 7	55 ± 9
DPDPE Kd	577 ± 150			
Emax	51.4 ± 2.8			

^a DAMGO [(D-Ala²,MePhe⁴,Gly-ol⁵)enkephalin]. Agonist selective for μ opioid receptor. ^b SNC-80 ([(+)-4-[(α R)- α -(2S,SR)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-*N*,*N*-diethylbenzamide). Agonist selective for δ opioid receptor. ^c U69,593 [(5 α ,7 α ,8 β)-(-)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4,5]dec-8-yl]benzeneacetamide]. Agonist selective for κ opioid receptor. ^d Naltrindole (NTI). Antagonist selective for δ opioid receptor. ^e nor-Binaltorphimine (nor-BNI). Antagonist selective for κ opioid receptor. ^f CTAP. Antagonist selective for μ opioid receptor.

Acknowledgment: This research was supported by the National Institute on Drug Abuse, Grant DA09045.

References

- 1. Aldrich, J. V. In *Burger's Medicinal Chemistry and Drug Discovery*; M. E. Wolff, Ed.; John Wiley & Sons: New York, 1996; Vol. 3.
- 2. Chang, K. J.; Rigdon, G. C.; Howard, J. L.; McNutt, R. W. J. Pharm. Exp. Ther. 1993, 267, 852.
- 3. Calderon, S. N.; Rothman, R. B.; Porreca, F.; Flippen-Anderson, J. L.; McNutt, R. W.; Xu, H.; Smith, L. E.; Bilsky, E. J.; Davis, P.; Rice, K. C. J. Med. Chem. 1994, 37, 2125.
- 4. Dondio, G.; Ronzoni, S.; Eggleston, D. S.; Artico, M.; Petrillo, P.; Petrone, G.; Visentin, L.; Farina, C.; Vecchietti, V.; Clarke, G. D. J. Med. Chem. 1997, 40, 3192.
- 5. Mattson, R. J.; Pham, K. M.; Leuck, D. J.; Cowen, K. A. J. Org. Chem. 1990, 55, 2552.
- 6. Hattori, T.; Satoh, T.; Miyano, S. Synthesis 1996, 514.
- Thomas, J. B.; Zheng, X.; Mascarella, S. W.; Rothman, R. B.; Dersch, C. M.; Partilla, J. S.; Flippen-Anderson, J. L.; George, C. F.; Cantrell, B. E.; Zimmerman, D. M.; Carroll, F. I. J. Med. Chem. 1998, 41, 4143.
- 8. Xu, H.; Lu, Y.-F.; Partilla, J. S.; Brine, G. A.; Carroll, F. I.; Rice, K. C.; Lai, J.; Porreca, F.; Rothman, R. B. Analgesia **1997**, *3*, 35.
- 9. Befort, K.; Tabbara, L.; Kling, D.; Maigret, B.; Kieffer, B. L. J. Biol. Chem. 1996, 271, 10161.
- 10. Liao, S.; Alfaro-Lopez, J.; Shenderovich, M. D.; Hosohata, K.; Lin, J.; Li, X.; Stropova, D.; Davis, P.; Jernigan, K. A.; Porreca, F.; Yamamura, H. I.; Hruby, V. J. J. Med. Chem. 1998, 41, 4767.