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ABSTRACT: A mild and practical C(sp3)−H lactonization protocol has been achieved by merging photocatalysis and magnesium
(iron, nickel) catalysis. A diverse range of 2-alkylbenzoic acids with a variety of substitution patterns could be transformed into the
corresponding phthalide products. Based on the mechanistic experimentation and reported prior studies, a possible mechanism for
the benzylic oxidative lactonization reaction was proposed with the hypothetic photoactive ternary complex formed between the 2-
alkylbenzoic acid substrate, magnesium ion, and bromate anion.

Phthalides are the bioactive constituents in several
pharmaceutical agents, such as mycophenolic acid

(immunosuppressive), noscapine (antitussive), and butylph-
thalide (neuroprotective).1 Among the versatile strategies
developed so far for the synthesis of phthalide scaffolds,2 the
direct C(sp3)−H lactonization of 2-alkylbenzoic acids
represents the most straightforward synthetic pathway. Along
this line, a number of pioneering and elegant studies have been
reported. Phthalides could be prepared effectively by platinum-
and palladium-catalyzed C(sp3)−H activation methods at
140−150 °C (Figure 1A).3 However, only one example of 3-
substituted phthalide product was prepared in 38% yield by
these methods. Another feasible strategy to construct
phthalides from 2-alkylbenzoic acids is through the radical
C(sp3)−H functionalization pathways (Figure 1B). A benzylic
radical intermediate might be produced by an intermolecular
hydrogen atom transfer (inter-HAT),4 intramolecular hydro-
gen atom transfer (intra-HAT),5 proton-coupled electron
transfer (PCET),6 or single-electron transfer/deprotonation
(SET/DP)7 process, followed by an oxidation/cyclization
sequence to furnish the lactone product. In most cases, R2/R3

should be at least one aryl or two alkyl substituents in order to
activate the ortho benzylic C(sp3)−H bond of the benzoic
acids and thus stabilize the corresponding benzylic radical
intermediate. Although much progress has been made in the
C(sp3)−H lactonization recently, it remains a challenging task.
The current methods typically suffer from moderate yields

(mostly around 30−70%) and narrow scopes. Visible-light-
promoted transition-metal catalysis has very recently emerged
as a new paradigm in organic photocatalysis.8 As part of our
long-term interest in visible-light-promoted organic synthesis,9

herein we report the merging of magnesium (iron, nickel)
catalysis and visible-light photocatalysis at room temperature
to deliver the phthalides from 2-alkylbenzoic acids with rich
functionalities and substitution patterns both on the parent
benzene ring and at the C3 position of phthalides (Figure 1C).
We began our exploration into the C(sp3)−H lactonization

by exposing an acetonitrile solution of 2-methylbenzoic acid,
MgCl2 (10 mol %), and NaBrO3 (0.5 equiv) to the irradiation
of 427 nm LEDs for 18 h. To our delight, the desired phthalide
product was obtained in 78% yield under the standard
conditions (Table 1). The control experiments demonstrated
the critical roles of the light, magnesium catalyst, and oxidant
(entries 1−3). No lactonization product was formed in the
absence of light, NaBrO3, or MgCl2. The reaction did not
occur even under the irradiation of 370 nm UV light without
MgCl2. We tried to achieve a higher conversion by increasing
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the amount of MgCl2 up to 100 mol %. However, it only led to
a slightly lower yield (entry 4). This might be due to the poor
solubility of too much magnesium salt. MgCl2 could be
displaced by a variety of magnesium salts with different anions,
such as MgBr2·Et2O, affording the lactone product in a 73%
yield (entry 5). Alkaline and alkali metal salts, such as CaCl2
and LiCl, could also render the transformation successfully,
although NaCl and KCl failed (entries 6−9). It is worth
mentioning that a positive effect was observed when the
amount of LiCl was doubled (entry 8). Moreover, the first-row
transition metal salts, including but not limited to MnCl2,
FeCl3·6H2O, Fe(NO3)3·9H2O, CoCl2·6H2O, NiCl2·6H2O, and
CuCl2, showed good capability to catalyze the lactonization
reaction (entries 10−15). These control experiments suggested
that the metal salt might play a role as a Lewis acid. It is
notable that the reaction furnished a 67% yield of the phthalide
when only 0.3 equiv of the oxidant NaBrO3 was used (entry
16). Finally, NaClO3 and KIO3 proved to be ineffective for this
oxidative reaction (entries 17 and 18).
With the optimal reaction conditions in hand, we sought to

evaluate the generality of this C(sp3)−H lactonization

protocol. As illustrated in Scheme 1, MgCl2 was applicable
to a variety of 2-alkylbenzoic acid substrates with different
functionalities and substitution patterns, while NiCl2·6H2O
and Fe(NO3)3·9H2O could afford higher yields for some
substrates. First, 2-methylbenzoic acids with versatile sub-
stituents at the phenyl ring were examined, such as methyl,
methoxy, acetoxy, fluoro, chloro, bromo, nitro, cyano, and
trifluoromethyl groups, to provide the phthalides in 38−76%
yields (1−20). Typically, NiCl2·6H2O was superior to MgCl2
for the substrates with electron-donating groups (2−5). In
addition, 2-methyl-1-naphthoic acid was converted into the
lactonization product in 70% yield (20). However, it was
found that 2-methylnicotinic acid did not work for the
reaction. We then turned our attention to the benzoic acids
with an extra alkyl or aryl group at the ortho benzylic position.
3-Substituted phthalides were formed smoothly by this
protocol (21−36, 36−81% yields). Remarkably, the ester
(30), ether (31 and 32), amide (33), and imide (34 and 35)
functionalities attached to the side chain were tolerated well in
the reaction. Furthermore, 2-benzylbenzoic acid performed
quite well to give a 81% yield of 36 with the Fe(III) catalyst.
Lastly, this lactonization protocol was applied to the benzoic
acids with two alkyl or aryl groups at the ortho benzylic
positions using Fe(NO3)3·9H2O as the optimal catalyst to
furnish the products 37−43 in 36−98% yields. Gratifyingly,
spiro phthalides could be forged rapidly via this operationally
simple cyclization method (39−41), while 3,3-bis(aryl)-
phthalides were obtained in excellent yields (42 and 43, 95
and 98% yields).
The practical application of our C(sp3)−H lactonization

protocol was demonstrated by the gram-scale synthesis of 3-n-
butylphthalide (NBP), a medicine for the treatment of cerebral
ischemia (Figure 2).1d The lactonization of 2-pentylbenzoic

Figure 1. Synthetic approaches to phthalides.

Table 1. Optimization for the Lactonization Reactiona

entry variation from standard conditions yield (%)

1 no light 0
2 no NaBrO3 0
3 no MgCl2 (427 or 370 nm LED) 0
4 increase the amount of MgCl2 to 100 mol % 61
5 MgBr2·Et2O instead of MgCl2 73
6 CaCl2 instead of MgCl2 56
7 LiCl instead of MgCl2 45
8 20 mol % LiCl instead of MgCl2 64
9 NaCl or KCl instead of MgCl2 0
10 MnCl2 instead of MgCl2 31
11 FeCl3·6H2O instead of MgCl2 50
12 Fe(NO3)3·9H2O instead of MgCl2 41
13 CoCl2·.6H2O instead of MgCl2 16
14 NiCl2·6H2O instead of MgCl2 69
15 CuCl2 instead of MgCl2 34
16 reduce the amount of NaBrO3 to 0.3 equiv 67
17 NaClO3 instead of NaBrO3 0
18 KIO3 instead of NaBrO3 0

aYield determined by 1H NMR using 1,3-benzodioxole as the internal
standard in CDCl3. LED = light-emitting diode.

Figure 2. Gram-scale synthesis of the medicine NBP.
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acid under the standard conditions successfully provided 1.2 g
of NBP in 60% yield in one step.
In order to gain an insight into the reaction mechanism,

multiple experiments were carried out as shown in Figure 3. 2-

Phenethylbenzoic acid was selected as a probe to check
whether a carboxylate radical intermediate was involved in the
benzylic C−H oxidative lactonization reaction (Figure 3A).
According to the reported studies,4b if the carboxylate radical

Scheme 1. Scope of the Lactonization Reactiona

aIsolated yields.
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was generated from 2-phenethylbenzoic acid, a 1,5-hydrogen
atom transfer event would occur preferentially to furnish the 5-
membered lactone 3-benzylphthalide as the major product. In
sharp contrast to those results from the carboxylate radical
pathway, when 2-phenethylbenzoic acid was subjected to the

standard conditions of our protocol, the oxidative cyclization
happened at the more electron-rich benzylic position to form
the six-membered lactone 44 and its overoxidized derivative 45
in a combined yield of 79%. The control experiment
demonstrated that the product 44 could be oxidized further
to the product 45 under the standard conditions. Moreover, it
is well-known that alkyl carboxylate radicals are prone to
undergo decarboxylative fragmentation.9a However, under the
standard conditions of this protocol, 2-(o-tolyl)acetic acid and
4-phenylbutanoic acid yielded the lactonization products 46
and 47, respectively, which were not likely formed through the
alkyl carboxylate radical intermediates.7b In conclusion, the
carboxylate radical mechanism should be not operative for our
protocol. Next we tried to figure out if the benzylic radical
intermediate was produced in the reaction (Figure 3B).
Although the model reaction could be completely inhibited by
the common radical quenchers, such as 2,2,6,6-tetramethylpi-
peridine-1-oxyl (TEMPO), 2,6-di-tert-butyl-4-methylphenol
(BHT), and 1,1-diphenylethylene (DPE), no benzylic
radical−quencher adduct was detected. The reaction might
be inhibited via a nonradical mechanism. The radical clock
experiment with 2-(cyclopropylmethyl)benzoic acid only
furnished the phthalide product 27 with a yield of 56%. No
cyclopropyl ring-opened product was detected. At this stage,
there is no conclusion whether the benzylic radical
intermediate was involved in the transformation. Furthermore,
in control experiments, no conversion of methyl 2-methyl-
benzoate was observed under the standard conditions for 18 h,
indicating an essential role of coordination of the carboxylate
anion to magnesium ion (Figure 3C). Also, no reaction
occurred between benzoic acid and toluene, suggesting
intermolecular direct oxidation of benzylic C(sp3)−H bond
was not feasible via this protocol. Finally, no carbocation
rearrangement product in the case of 27−29 was observed.
Therefore, it could not be confirmed whether the benzylic
cation intermediate was involved in the reaction. Our
speculation on the possible mechanism is outlined in Figure
3D. A ternary complex of the 2-alkylbenzoic acid, MgCl2, and
NaBrO3 should be formed first. Upon the irradiation of visible
light, the benzylic C(sp3)−H bond would be oxidized by the
bromate ion at close proximity. There might be two different
pathways leading to the final product; in pathway a, a benzylic
cation intermediate would be generated, while in pathway b a
benzylic oxygenated species would be produced.
In summary, we have developed a mild and practical

protocol for the C(sp3)−H lactonization of 2-alkylbenzoic
acids via the merger of photocatalysis and magnesium (iron,
nickel) catalysis. A diverse array of substrates with rich
substitution patterns were successfully converted into the
valuable phthalide products. The practical application was
demonstrated by the gram-scale synthesis of NBP. Moreover, a
possible mechanism was proposed with the hypothesis of a
photoactive ternary complex.
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