- 14 R. Barzen und W. Schunack, Arch. Pharm. (Weinheim) 314, 617 (1981).
- 15 Bristol-Myers Co. (Erf. A. A. Algieri und R. R. Crenshaw), FR 2 505 835 (19. 11. 1982); C. A. 99, 22320a (1983).
- 16 I. Yanagisawa, Y. Hirata und Y. Ishii, J. Med. Chem. 27, 849 (1984).

[Ph 72]

Arch. Pharm. (Weinheim) 319, 443-450 (1986)

Protonenkatalysierte Methanolyse und stereoelektronisch kontrollierte C-3-Epimerisierung des Reserpins

Erich Schiffl und Ulf Pindur*+)

Institut für Pharmazie und Lebensmittelchemie der Universität, Am Hubland, 8700 Würzburg Eingegangen am 22. April 1985

Die Methanolyse von Reserpin (1) im Chlorwasserstoff-Medium führt quantitativ zum Reserpsäuremethylester (2) und zum 3,4,5-Trimethoxybenzoesäuremethylester nach 24 h Erhitzen am Rückfluß. Eine regio- und stereospezifische C-3-Epimerisierung von 1 wird nur unter drastischeren Bedingungen erreicht. Die Gleichgewichtskonzentrationen von 1 und 3-Isoreserpin (3) des Epimerisierungsprozesses werden analysiert und die Ergebnisse diskutiert. Die Stabilitäten von 1 und 3 werden angesprochen und damit verbunden die Cyclisierung eines intermediären Iminium-Ions unter dem Aspekt der stereoelektronischen Kontrolle erörtert.

Proton-Catalyzed Methanolysis and Stereoelectronically Controlled C-3 Epimerization of Reserpine

Methanolytic cleavage of reserpine (1) in a medium containing hydrogen chloride yields quantitatively methyl reserpate (2) and methyl 3,4,5-trimethoxybenzoate after 24 h at reflux temperature. A regio- and stereospecific C-3 epimerization of 1 is achieved under forced conditions. The equilibrium concentrations of 1 and 3-isoreserpine (3) resulting from the epimerization process are analysed and discussed. The stabilities of 1 and 3 are considered. The cyclization of the intermediate iminium ion 4 is discussed under the aspect of stereoelectronic control.

Reserpin (1) zählt zu den chemisch relativ labilen Alkaloiden^{1,2)}. In vivo wie in vitro kann es leicht einer Hydrolyse zum Reserpsäuremethylester (2), einer Oxidation zum 3,4-Dehydroreserpin und einer C-3-Epimerisierung zum 3-Isoreserpin (3) unterliegen^{1,2,3)}. Optimale Stabilitäten werden in wäßrigen Lösungen bei pH 3-4 beobachtet^{1,2)}. In der pharmazeutischen Analytik wird Reserpin (1)

⁺⁾ Neue Anschrift: Prof. Dr. Ulf Pindur, Fachbereich Pharmazie der Universität, Saarstraße 21, D-6500 Mainz

^{0365-6233/86/0505-0443 \$ 02.50/0}

[©] VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986

u.a. durch eine protonenkatalysierte Farbreaktion mit Arylaldehyden qualitativ und quantitativ erfaßt ¹⁾. Wir konnten an Modellreaktionen von 1 mit einigen reaktiven Arylaldehyden den Reaktionsmechanismus dazu klären, der zu Polymethin-Farbstoffen mit integriertem Reserpingerüst führt^{4,5)}. Das Reserpinmolekül bleibt unter den relativ milden Bedingungen der Farbreaktion bezüglich Konstitution und Stereochemie intakt und wird von den Arylaldehyden am Phenylkern des Indolgerüstes an 1 weitgehend regioselektiv elektrophil subsituiert^{4,5)}. Dieses zunächst unerwartete Ergebnis an einem der labilsten Alkaloide³⁾, daß 1 unter den Bedingungen der Farbreaktion (chlorwasserstoffgesättigtes Methanol, RT, 1–2 h Reaktionszeit) noch keine signifikante Methanolyse oder C-3-Epimerisierung eingeht⁵⁾, hat uns veranlaßt, systematisch die Stabilität und die Grenzen der strukturellen Veränderungen an 1 mit modernen analytischen Methoden zu untersuchen. Da die Literatur über das Reaktionsverhalten des Reserpins (1) in dieser Hinsicht nur wenige präzise Angaben macht^{1,2,3)} und die experimentellen Daten meist auf klassischem Wege ermittelt wurden, sollten unsere Studien dazu für die Alkaloid-Chemie von allgemeinem Interesse sein.

In der vorliegenden Arbeit wird die zeit- und temperaturabhängige chlorwasserstoffkatalysierte Methanolyse an 1 und die literaturbekannte^{6,7,8)} regio- und stereospezifische Reserpin-Isomerisierung zum 3-Epimer 3 unter neuen analytischen und präparativen Aspekten behandelt. Bei der Isomerisierungsreaktion sollten neben der verläßlichen Ermittlung der Gleichgewichtslage der Hin- und Rückreaktion $(1 \rightleftharpoons 3)$ vor allem die kinetisch und thermodynamisch kontrollierten Schritte in erster Linie im Licht der stereoelektronischen Kontrolle behandelt werden.

Ergebnisse und Diskussion

Chlorwasserstoffkatalysierte Methanolyse von Reserpin (1)

Reserptin (1) bleibt in einer mit Chlorwasserstoff gesättigten methanolischen Lösung bei Raumtemp. ca. 1-1 1/2 Tage intakt, was durch laufende DC-Kontrollen zu verfolgen ist. Nach diesem Zeitraum läßt sich eine allmähliche Methanolyse an der labileren Trimethoxybenzoat-Struktur zum Reserpsäuremethylester (2) und zum 3,4,5-Trimethoxybenzoesäuremethylester¹) dünnschichtchromatographisch erkennen. Nach einer Woche Reaktionszeit sind von dem eingesetzten 1 ca. 50-60 % methanolysiert. Wird hingegen die Methanolyse im gleichen Medium unter Erhitzen am Rückfluß durchgeführt, so verläuft sie innerhalb ca. 20 Std. quantitativ. Aus 1 werden nahezu gleiche Teile an 2 und 3,4,5-Trimethoxybenzoesäuremethylester gebildet, wie die präparative Isolierung dieser Reaktionsprodukte ergab. Trotz des sauren Reaktionsmilieus konnten bei diesen Methanolysestudien keine nennenswerten Mengen eines C-3-Epimerisierungsproduktes 3 (< 1%) gefunden werden. Diese Ergebnisse zeigen, daß 1 in einem hochaciden Medium bei Raumtemp. relativ methanolysestabil und erst bei ca. 65° quantitativ spaltbar ist. Eine nennenswerte C-3-Epimerisierung von 1 zum 3-Isoreserpin (3) wird selbst unter Erhitzen am Rückfluß nicht festgestellt, da offenbar die Methanolyse schneller erfolgt und die angebotene Rückflußtemperatur für den energetisch aufwendigen Isomerisierungsprozeß nicht hoch genug ist.

3

R

0CH3

0СН3

1

2

R = H

Zur Analyse der "Reserpin≓3-Isoreserpin"-Isomerisierung und zur Gewinnung des 3-Isoreserpins (3) als Vergleichssubstanz für die Methanolyse-Studien wählten wir die in der Literatur beschriebene gezielte Essigsäure-katalysierte Epimerisierung von 1 im Bombenrohr bei ca. 140°6). Nach Optimierung dieses Verfahrens gelang es, 1 zu 3 nach 3 Tagen Reaktionszeit bis zu einer Gleichgewichtskonzentration von 70% (3): 30 % (1) (DC-Auswertung) zu epimerisieren. Umgekehrt konnten wir bei dieser thermodynamisch kontrollierten Reaktionsführung 3 praktisch bis zur gleichen Gleichgewichtskonzentration von 72 % (3) : 28 % (1) (DC-Auswertung) ins Gleichgewicht setzen. Diese Ergebnisse stimmen qualitativ mit den in der Literatur beschriebenen älteren Epimerisierungsdaten überein⁸⁾.

OCH₃

OCH₃

Зb

Dieser Befund sollte in erster Näherung die Aussage gestatten, daß 1 das kinetisch und 3 das thermodynamisch kontrollierte Reaktionsisomer darstellt. Der Stabilitätsunterschied von 1 und 3 kann einer sterischen Interaktion mit den Substituenten im Ring E zugeschrieben werden²). Unter Normalbedingungen nimmt nämlich 1 die Vorzugskonformation 1a und 3 die Vorzugskonformation 3a mit maximaler Anzahl an äquatorialen Substituenten im Ring E ein. Da jedoch die Konformation 1a des Reserpins eine destabilisierende 1,3-diaxiale Wechselwirkung zwischen dem anellierten Indolgerüst und den H-Atomen an C-15 und C-21 aufweist, muß das β -Epimer 1 im Vergleich zum α -Epimer 3 eine geringere thermodynamische Stabilität aufweisen. Diese Vorstellung wird auch durch den Experimentalbefund bei der Reserpinsynthese nach *Woodward*⁷) erhärtet.

Der Mechanismus der säurekatalysierten C-3-Epimerisierung gilt heute als gesichert^{6,9)}. Die an der 11-Position am Indolgerüst ständige Donorfunktion in 1 führt zu einer Erhöhung der π -Ladungsdichte in 2-Stellung im Vergleich zur 7-Position, so daß der Angriff eines Protons durch die Coulomb-Wechselwirkung regioselektiv an der Indol-2-Stellung in 1 (oder bei der Rückisomerisierung in 3) erfolgt⁹⁾. Die so entstehende kationische Spezies unterliegt einer retro-*Pictet-Spengler*-Reaktion²⁾ zum Iminium-Ion 4, welches eine zentrale Schlüsselverbindung darstellt. Diese kann an der prochiralen C=N-Partialstruktur in Abhängigkeit von der Reaktionsführung zu 3 oder zurück zu 1 cyclisieren. Die Regioselektivität der Cyclisierung steht mit den *Baldwin*-Regeln¹⁰⁾ im Einklang, wonach generell ein 6-endo-trig-Prozeß (Aufbau eines 6-Ringes auf dem Weg zu 1 oder 3) elektronisch und sterisch begünstigt ist.

Zur Abschätzung einer 'langsamen' oder 'schnellen' Cyclisierung des Iminium-Salzes **4** ist es sinnvoll, die Reaktionsführung und Ergebnisse präparativ durchgeführter Iminium-Salz-Cyclisierungen an ähnlichen Systemen zu verfolgen. Die Strategie dieser Cyclisierungen wurde erfolgreich zum regiound stereokontrollierten Aufbau von Yohimban-Alkaloiden eingesetzt¹¹⁻¹⁴⁾. Im Regelfall erfolgt unter relativ milden Reaktionsbedingungen durchweg die Bildung der 3-β-stereoisomeren Tetrahydro-β-carboline¹¹⁻¹⁴⁾, die infolge der günstigen stereoelektronischen Wechselwirkung in den Übergangszuständen Ergebnisse der kinetisch kontrollierten (begünstigten) *trans*-Addition an die Iminium-Doppelbindung sind. Diese Modellbetrachtung^{16,17)} soll nun bei der Reserpin/3-Isoreserpin-Isomerisierung angewendet werden.

Bei der Cyclisierung von 4 zum Aufbau des Ringes C kann im Prinzip das Indol-2-pAO das prochirale kationische Zentrum der Iminium-Struktur von der Si- oder Re-Seite angreifen. Als heuristisches Prinzip zur Deutung der 'schnellen' oder 'langsamen' Cyclisierung von 4 zu 1 bzw. zu 3 sollte die stereoelektronische Theorie¹⁵) dienen.

Schema 1: Konformative Veränderung des Ringes D bei der 3-Epimerisierung von 1 und 3 über das Iminium-Ion 4. Nu = intramolekulares Indol-Nukleophil

Der Aufbau der 3- β -Konfiguration im Reserpin (1) resultiert aus der stereoelektronisch favorisierten *trans*-Addition des Indol-C-2-Zentrums an die Iminium-Doppelbindung in 4, was im Einklang mit den Synthese-Studien an ähnlichen Systemen steht^{15,17}, die vor allem milde Cyclisierungsbedingungen beinhalten. Wir leiten dazu an flexiblen Molekülmodellen ab, daß bei der Cyclisierung von 4 zu 1 im Übergangszustand 5 eine nahezu kolineare Geometrie der wechselwirkenden p-AO's leicht möglich wird, da einmal im Übergangszustand der aufzubauende Ring C relativ wenig gespannt ist, und vor allem der Ring D aus der Halbsesselkonformation im Grundzustand eine günstige sesselartige Konformation im Übergangszustand einnehmen sollte (principle of the least motion) (Schema 1). Die Cyclisierung von 4 zu 1 ist demnach ein kinetisch kontrollierter Prozeß (Schema 2). Als indirekter Beweis für die Entstehung des weniger stabilen, kinetisch kontrollierten Cyclisierungsproduktes 1 kann letztlich auch die experimentell nur thermodynamisch kontrolliert durchführbare Rückisomerisierung von 3 zu 1 angesehen werden. In diesem Fall liegt 1 nur zu ca. einem Drittel im Gleichgewicht neben 3 vor. Die Cyclisierung des Iminium-Ions 4 zum thermodynamisch stabileren 3 muß über eine *cis*-Addition verlaufen. In diesem Fall sollte im Übergangszustand 6 im aufzubauenden Ring C eine höhere Spannung induziert werden und der Ring D eine energiereichere bootartige Konformation (Schema 1) einnehmen. Die hier offenbar vorhandene stereoelektronische Barriere führt im Vergleich zur Cyclisierung von 4 nach 1 hier zu einer Verzögerung zur Bildung des 3-Isoreserpins (3). Da 3 im Vergleich zu 1 eine stabilere Grundzustandskonformation einnimmt und die Reaktion von 4 zu 3 offensichtlich eine höhere Aktivierungsenergie fordert, stellt 3 das thermodynamisch kontrollierte Stereoisomer dar (Schema 2). Diese Aussage kann durch das von uns thermodynamisch kontrolliert durchgeführte Isomerisierungsexperiment erhärtet werden.

Schema 2: Energie-Reaktions-Diagramm der C-3-Epimerisierung von 1 und 3 (vereinfachte Darstellung)

Wir danken Prof. Dr. S. Ebel und Apotheker U. Schäfer für die Unterstützung bei den quantitativen DC-Messungen.

Experimenteller Teil

IR-Spektren: Beckman IR 4240. ¹H-NMR-Spektren und ¹³C-NMR-Spektren: Bruker WM 400. MS: LKB 2091 Producter. CNH-Mikroanalysen: Carlo Erba Strumentazione Mod. 1106. Quantitative DC durch Remissionsmessung: Camag II. Auswertung der quantitativen DC: Rechner HP 9816. DC-Platten HPTLC Kieselgel 60 F₂₅₄ Merck. Schmp.: (unkorr.): Linströmgerät.

Methanolyse von Reserpin (1)

750 mg (1,23 mmol) 1 werden in 400 ml Methanol gelöst und ca. 30 h am Rückfluß erhitzt. DC-Kontrolle: keine strukturellen Veränderungen an 1 nachweisbar.

Methanolyse von Reserpin (1) mit Chlorwasserstoff

1 g (1,64 mmol) 1 werden in 150 ml Methanol suspendiert und unter Eiskühlung ca. 2 h HCl eingeleitet. Die strukturellen Veränderungen an 1 werden über laufende DC-Kontrollen (Chloroform/Aceton 8 : 2 bzw. Chloroform/Aceton 8 : 2 und 5 Tropfen konz. Ammoniaklösung auf 100 ml) innerhalb 7 d verfolgt. Nach ca. 1,5 d beginnende Methanolyse zu 2 und 3,4,5-Trimethoxybenzoat, welche nach 7 d zu ca. 50–60 % eingetreten ist. Der Rückstand des Ansatzes wurde durch präp. DC aufgetrennt (Kieselgel 60 $F_{254 + 366}$ 2 mm 'Merck'; Aceton/Chloroform 2 : 8 und 5 Tropfen konz. Ammoniaklösung auf 100 ml). Obere Zone: 3,4,5-Trimethoxybenzoesäuremethylester, Schmp.: 82°; $C_{11}H_{14}O_5$ (226,2), MS (m/e): 226 (M⁺). Untere Zone: 2^{19} , Schmp.: 244°; $C_{23}H_{30}N_2O_5$ (414,50), MS (m/e): 414 (M⁺).

Methanolyse von Reserpin (1) mit Chlorwasserstoff bei 70°

500 mg (0,82 mmol) 1 werden in 75 ml Methanol suspendiert und am Rückfluß erhitzt, nachdem unter Eiskühlung 2 h HCl eingeleitet wurde. Nach 20 h ist die Methanolyse zu 3,4,5-Trimethoxybenzoesäuremethylester und 2 im Verhältnis 1 : 1 quantitativ.

C-3-Epimerisierung von Reserpin (1)

Modifizierte Vorschrift nach Lit.⁶⁾: 2,04 g (3,2 mmol) 1 werden in 20 ml Eisessig gelöst und in einem evakuierten Bombenrohr 3 d bei 140° gehalten. Danach wird der Inhalt auf zerstoßenes Eis gegeben und mit konz. Ammoniaklösung neutralisiert. Nach Extraktion mit Chloroform wird die organische Phase über Natriumsulfat getrocknet. Nach dc Auswertung (Kieselgel, Chloroform/Aceton 8 : 2) liegen ca. 7 T. 3 und 3 T. 1 vor. Die Epimere werden sc getrennt (Kieselgel 60 Merck, Chloroform/Aceton 8 : 2) und dabei 3 rein in 44 % Ausb. gewonnen.

C-3-Epimerisierung von 3-Isoreserpin (3)

800 mg (1,31 mmol) **3** werden wie bei der Epimerisierung von **1** behandelt. Das Rohprodukt wird einer quantitativen DC durch Remissionsmessung unterworfen (HPTLC, Kieselgel 60 F_{254} Merck, Chloroform/Aceton 8 : 2). Mittelwert aus 3 Messungen: 28,2 % **1**; 71,7 % **3**.

Strukturanalytische Daten von Reserpin (1) und 3-Isoreserpin (3)

1: $C_{33}H_{40}N_2O_9$ (608,70); IR-, ¹H-NMR-Daten s. Lit.^{1,18}); ¹³C-NMR-Daten s. Lit.¹². **3**: ¹H-NMR (CDCl₃): δ (ppm) = 1,8 und 3,2 (br. m, 16 H, alicycl. H); 3,46 (s, 3 H, C-17-OCH₃); 3,80; 3,83; 3,87; 3,89 (4 s, 15 H, C-16-OCOCH₃, C-11-OCH₃, Trimethoxy-benzoat-OCH₃); 5,1 (m, 1H, C-18-H); 6,76 (dd, 1H, J_o = 8,5 Hz; J_m = 2 Hz, C-10-H); 6,82 (d, 1H, J_m = 2 Hz, C-12-H); 7,28 (s, 2H, Trimethoxyphenyl-H); 7,31 (d, 1h, J_o = 8,5 Hz, C-9-H); 7,82 (s, 1H, NH). IR (KBr): 3400 (NH), 3020–2780 (CH), 1740 (C=O, CH₃OCO–), 1720 (C=O, Trimethoxybenzoat) cm⁻¹. ¹³C-NMR (CDCl₃): δ (ppm) = 21,82 (C-6); 27,92 (C-14); 30,47 (C-19); 34,92 (C-20); 37,29 (C-15); 51,79 und 52,10 (C-16-OCH₃); 53,08 (C-5); 55,76 (C-11-OCH₃); 56,25 (3'-OCH₃, Trimethoxybenzoat); 59,68 (C-21); 59,85 (C-3); 60,80 (C-17-OCH₃), 4'-OCH₃, Trimethoxybenzoat); 77,81 (C-17), 78,08 (C-18); 95,16 (C-12); 106,91 (C-2', Trimethoxybenzoat); 108,27 (C-7); 108,87 (C-10); 118,61 (C-9); 121,79 (C-8); 125,33 (C-1', Trimethoxybenzoat); 156,19 (C-11); 165,40 (C=O, Trimethoxybenzoat); 172,48 (C=O). MS (m/e): 610 (7); 609 (34), 608 (100); 607 (52); 395 (41); 251 (17); 214 (11); 200 (14); 199 (11); 195 (37) bei 70 eV. Schmp.: 152–155° (Methanol). C₃₃H₄₀N₂O₉ (608,70) Ber. C 65,1 H 6,62 N 4,6 Gef. C 65,1 H 6,75 N 4,6.

Literatur

- 1 H. Böhme und K. Hartke, Kommentar Ph. Eur. III, S. 731, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1979. K. Florey, Analytical Profiles of Drug Substances, Vol. 4, S. 385, Academic Press, San Francisco – London 1975.
- 2 R. T. Brown in J. E. Saxton, Indoles, Part. IV, S. 170, Wiley-Interscience, New York 1984.
- 3 H. Pötter und R. Voigt, Pharmazie 21, 291 (1966).
- 4 U. Pindur, Arch. Pharm. (Weinheim) 312, 270 (1979).
- 5 U. Pindur und E. Schiffl, Pharm. Acta Helv. 60, 48 (1985).
- 6 A. J. Gaskell und J. A. Joule, Tetrahedron 23, 4053 (1967).
- 7 R. B. Woodward, F. E. Bader, H. Bickel, A. J. Frey und R. W. Kierstead, J. Am. Chem. Soc. 78, 2023 (1956).
- 8 C. F. Huebner, M. E. Kuehne, B. Korzun und E. Schlittler, Experientia 12, 249 (1956). T. J. Hakkesteegt, Pharm. Weekbl. 105, 801 (1970).
- 9 A. H. Jackson, B. Naidoo und P. Smith, Tetrahedron 24, 6119 (1968).
- 10 J. E. Baldwin, J. Chem. Soc. Chem. Commun. 1976, 734.
- 11 G. Stork und R. N. Guthikonda, J. Am. Chem. Soc. 94, 5109 (1972).
- 12 E. Wenkert, Ch.-J. Chang, H. P. S. Chawla, D. W. Cochran, E. W. Hagaman, J. C. King und K. Orito, J. Am. Chem. Soc. 98, 3645 (1976).
- 13 E. Wenkert, Heterocycles 21, 325 (1984).
- 14 E. Wenkert, T. D. J. Halls, G. Kunesch, K. Orito, R. L. Stephens, W. A. Temple und J. S. Yadav, J. Am. Chem. Soc. 101, 5370 (1979).
- 15 Für eine ausführliche Diskussion über zahlreiche Aspekte der Stereoelektronischen Kontrolle vgl.: P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon Press, Oxford 1983.
- 16 F.-A. Kung, J.-M. Gu, Sch. Chao, Y. Chen und P. S. Mariano, J. Org. Chem. 48, 4262 (1983).
- 17 Anwendung dieser Theorie auf strukturverwandte Systeme: R. V. Stevens, Acc. Chem. Res. 1984 (17), 289.
- 18 W. C. Rosen und J. N. Shoolery, J. Am. Chem. Soc. 83, 4816 (1961).
- 19 A. Hofmann, Helv. Chim. Acta 37, 849 (1954).

[Ph 73]