Contents lists available at ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/bmcl

A rapid synthesis of lavendustin-mimetic small molecules by click fragment assembly

Jieun Yoon, Jae-Sang Ryu*

Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul 120-750, Republic of Korea

ARTICLE INFO

Article history: Received 30 March 2010 Revised 3 May 2010 Accepted 6 May 2010 Available online 12 May 2010

Keywords: Lavendustin Click chemistry Library Triazole Anticancer

ABSTRACT

Lavendustin-mimetic small molecules modifying the linker $-CH_2-NH-$ with an 1,2,3-triazole ring have been synthesized via a click chemistry. Two pharmacophoric fragments of lavendustin were varied to investigate chemical space and the auxophoric $-CH_2-NH-$ was altered to an 1,2,3-triazole for rapid click conjugation. The small molecules were evaluated against HCT116 colon cancer and CCRF-CEM leukemia cell lines. Among 28 analogues, 3-phenylpropyl ester **26b** inhibited CCRF-CEM leukemia cell growth with GI_{50} value of 0.9 μ M.

© 2010 Elsevier Ltd. All rights reserved.

Due to the growing interest in small molecules to help understand biological processes, the demand for the generation of small-molecule libraries inspired by bioactive natural products and their metabolites has increased significantly. In this context, a rapid access to natural product-like small molecules has become crucial for systematically dissecting the complex protein functions and for discovering drug leads. Chemistry tailored to produce molecules rapidly and reliably by connecting small units is click chemistry,¹ which is a chemical philosophy introduced by Barry K. Sharpless. The Cu(I)-catalyzed Huisgen [3+2] cycloaddition,² the representative click chemistry, has been used in various applications such as drug discovery and chemical biology due to high chemical yield, high selectivity, wide scope, atom economy, and simple purification. Especially, fragment-based rapid assembly using click chemistry and in situ screening are emerging as a versatile tool to identify novel inhibitors guickly against a number of biological targets.³ The resulting 1,4-disubstituted 1,2,3-triazoles are similar to amide bonds in terms of distance and planarity, and often used as a scaffold in the discovery of enzyme inhibitors. Recently, potential pharmaceuticals based on 1,2,3-triazoles have been developed exponentially.

Lavendustin A (1) (Fig. 1), a metabolite of *Streptomyces griseolavendus*, was first isolated by Onoda in 1989.⁴ This natural metabolite and its synthetic partial structure **3** were reported to inhibit protein-tyrosine kinase (PTK) in cell-free extract.⁴ However, due to their high polarity and poor cell permeability, they significantly lost their cellular activity in intact cell line.⁴ The further research on improving cell penetration and antiproliferative activity led to the discovery of novel structures including compound **4** and its derivatives,⁵ which were found to inhibit not only the nonreceptor PTK Syk and the receptor PTK EGFR but also tubulin polymerization.

Lavendustin C (3) consists of two fragments, salicylic acid and hydroxybenzene, which are responsible for biological activity and also found in lavendustin A (1) and B (2). However, such polar fragments are also considered to decrease cell permeability. Therefore, when devising a rapid route to lavendustin-mimetic small molecules, the followings should be considered: (1) the modification of pharmacophoric fragments to improve cell permeability; (2) the change of the auxophoric -CH₂-NH- with a linkage to facilitate the assembly of fragments. In this study, we synthesized a series of lavendustin-mimetic small molecules replacing the -CH₂-NHwith an 1,2,3-triazole ring. The salicylic acid fragment and the hydroxybenzene fragment were varied structurally to explore subtle chemical space and linked with a rigid lipophilic triazole (Fig. 2). This bioisosteric triazole replacement would increase hydrophobicity and make these molecules suitable for rapid parallel synthesis. Particularly, click chemistry would allow the substituents of the 1,2,3-triazole ring to be easily varied through the use of different azides or alkynes. Similar bioisosteric triazole replacements are often found in the literatures. Recently, Genazzani and co-workers modified the -CH=CH- of natural product resveratrol

^{*} Corresponding author. Tel.: +82 2 3277 3008; fax: +82 2 3277 2851. *E-mail address*: ryuj@ewha.ac.kr (J.-S. Ryu).

Figure 1. Structures of lavendustin analogues.

Figure 2. Fragment-based click approach for lavendustin-mimetic small molecule synthesis.

with 1,2,3-triazole and identified a potent antiproliferative agent showing low nanomolar IC_{50} .^{3b}

We used six alkynes and five azides for the rapid assembly of salicylate fragments and hydroxybenzene fragments of lavendustin-mimetic small molecules. Alkyne 7 and 12 were readily prepared under Corey–Fuchs conditions⁶ from the aldehyde **5** and **8**, respectively (Scheme 1). Commercially available alkynes 13-16 were also used to investigate the role of -OH in the hydroxybenzene fragment of lavendustin C (3). Five different azide building blocks bearing salicylamide or alkylsalicylate were synthesized as lipophilic surrogates of the salicylate fragment (Scheme 2). Synthesis of the azide 23 commenced from commercially available 5-aminosalicylic acid (17). After esterification, a treatment of the diazonium salt, formed by the addition of aqueous solution of NaNO₂ to a HCl solution of 22, with NaN₃ led to an azide 23. However, the same condition did not provide azide 18. After changing HCl to H₂SO₄,⁷ we were able to obtain azide **18** in 99% yield, which was coupled with amines and alcohols in the presence of 1, 1'-carbonyldiimidazole.

With alkyne and azide building blocks in hand, we performed a small screening of catalytic conditions for azide **18**, **23** and alkyne **13**, **16** to find the optimal conditions for click reaction (Table 1). In this simulation, azide **23** bearing methylester afforded the corresponding triazoles in almost quantitative yields. However, azide **18** bearing salicylic acid did not react with alkynes even in the presence of 20 mol% of catalyst. Interestingly, when we used 20 mol% of catalyst, we observed the line broadening effect in ¹H NMR of the crude reaction mixture, presumably caused by the bidentate complex formation of Cu and salicylic acid.⁸ Therefore, the salicylic acid analogues **28a–28f** were synthesized from hydrolysis of the corresponding methylsalicylate analogues **27a–27f** after click reaction of azide **23** and alkyne **7**, **12–16** (Scheme 3).

Scheme 1. Structure and synthesis of alkyne building blocks.

Library synthesis was well proceeded in 24 conical tubes. After four days, the resulting triazoles were precipitated, separated by centrifugation, and washed with H₂O and ether. The conical tube reactions really facilitated work-up processes such as solid separation by centrifugation and solvent removal by GeneVac[™] without sample transfer. All precipitated compounds were submitted to HPLC and ¹H NMR analysis to verify their purity and authenticity. Indeed, 23 out of 24 were confirmed as the expected product. Only 25b was not yielded under standard conditions (Table 2). To ensure the complete removal of a trace of Cu, which is a potentially bioactive metal, all crude products were further purified through a short pad of silica gel before bioassay. Hydrolysis of methyl ester analogues 27a-27f provided the salicylic acid analogues 28a and 28c-28f except 28b. We eventually synthesized the 28-membered lavendustin-mimetic small molecules with minimum side products, as judged by HPLC and ¹H NMR characterizations. The yields of the synthesized compounds are shown in Table 2. The yields of the salicylic acid analogues 28a-28f are for two steps; click reaction and hydrolysis.

The 28-membered library was next screened for antiproliferative activity against HCT116 colon cancer and CCRF-CEM leukemia cell lines.⁹ For easy comparison, the potency was expressed as % inhibition at 10 μ M concentration of the reaction products (Table 2). GI₅₀ values for selected compounds are listed in Table 3 compared to the anticancer drug, doxorubicin, as a positive control. Among the 28 small molecules, two ester (**26b** and **27b**) analogues and seven salicylamide (**24a**, **24c**, **24d**, **24f**, **25a**, **25e**, and

Scheme 2. Structure and synthesis of azide building blocks.

Table 1	
Screening of loadings of catalyst and reducing agent	

Entries	Azide	Alkyne	CuSO ₄ (mol %)	Na ascorbate (mol %)	Yield (%)
1	23	13	2	10	99
2	23	16	2	10	77
3	23	13	20	100	99
4	23	16	20	100	99
5	18	13	2	10	0 ^a
6	18	16	2	10	0 ^a
7	18	13	20	100	0 ^b
8	18	16	20	100	0 ^b

^a No reaction.

^b No reaction, the line broadening in ¹H NMR was observed.

Scheme 3. Click assembly for lavendustin-mimetic small molecules.

25f) analogues showed moderate potency with GI_{50} values of 0.9–23 μ M. Particularly, 3-phenylpropyl ester **26b**¹⁰ was the best

among a series of compounds against CCRF-CEM leukemia cell lines and exhibited the GI₅₀ value of 0.9 μ M. Interestingly, 4-fluorophenylethyl amide **24b**, a rigid triazole analogue of **4**, was less active (15% inhibition of CCRF-CEM and 18% inhibition of HCT116 at 10 μ M) than **4**, which showed GI₅₀ values of 0.29 μ M (CCRF-CEM) and 9.2 μ M (HCT116).¹¹

Previously, it was reported that lavendustin C potently inhibited EGF-R tyrosine kinase in A431 cell-free extract with 0.012 μ g/mL IC₅₀.⁴ However, lack of cellular activity was observed in the HaCaT keratinocyte proliferation assay (IC₅₀ >100 μ M).¹² It was attributed to insufficient cell penetration caused by the polar functional groups, in particular the carboxylic moiety.¹² Not surprisingly, all the salicylic acid analogues **28a**, **28c–28f** exhibited no cellular activity presumably due to the high polarity and poor cell permeability of salicylic acid. This result is consistent with the cell-based assay of natural lavendustins⁴ and supports the library design that the salicylic acid fragment should be replaced by a lipophilic surrogate.

In conclusion, we have developed synthetic protocol for the rapid assembly of 28-membered lavendustin-mimetic small molecules using 'click chemistry': Cu(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides, which afforded triazoles in good yields after minimum work-up processes. Further silica gel filtration completely removed a trace of Cu and afforded pure compounds suitable for biological evaluation against cancer cell lines. In antiproliferative screening, **26b** showed cytotoxic activity on the CCRF-CEM leukemia cell line with Gl_{50} value of 0.9 μ M. This compound could be a good candidate for further design of cell-permeable antiproliferative agents.

Table 2 Chemical yields and cell growth inhibition of lavendustin-mimetic small molecules synthesized by 'click chemistry' (28a-28f yields for two steps)

		OCH ₃	OH	ОН	OCH3	OCH3	OCH3
		ОСН ₃ 7	ОН 12	13	14	15	16
$N_3 $ V H	Yield (%) % Inhibition (HCT116) ^a % Inhibition (CCRF-CEM) ^a	24a , 70 44 35	24b , 41 18 15	24c, 57 0 35	24d , 80 62 21	24e , 60 23 11	24f , 75 43 35
N ₃ H OH CF ₃	Yield (%) % Inhibition (HCT116) ^a % Inhibition (CCRF-CEM) ^a	25a , 29 46 15	25b , 0 _	25c , 99 25 13	25d , 21 9 12	25e , 24 61 65	25f , 45 62 73
20							
N ₃ OH	Yield (%) % Inhibition (HCT116) ^a % Inhibition (CCRF-CEM) ^a	26a , 76 13 5	26b , 34 39 81	26c , 72 11 9	26d , 81 12 5	26e , 69 7 4	26f , 76 19 8
21							
	Yield (%) % Inhibition (HCT116) ^a % Inhibition (CCRF-CEM) ^a	27a , 84 6 3	27b , 29 15 52	27c , 77 6 5	27d , 85 6 16	27e , 74 8 6	27f , 94 3 3
23							
N ₃ OH OH	Yield (%) % Inhibition (HCT116) ^a % Inhibition (CCRF-CEM) ^a	28a , 74 ^b 0 9	28b , 0 ^b 	28c , 82 ^b 5 3	28d , 64 ^b 8 9	28e , 78 ^b 4 9	28f , 76 ^b 2 9
18							

 $^a\,$ Inhibition at 10 $\mu M.$ $^b\,$ Yields for two steps; click reaction and hydrolysis.

Table 3

GI50 of selected lavendustin-mimetic small molecules

Compounds	GI ₅₀ (μM)	
	HCT116	CCRF-CEM
H ₃ CO-OCH ₃		
$24a \xrightarrow{N}_{HO} \overset{O}{\underset{HO}} \overset{O}{\underset{N}} \overset{O}{\underset{N}} \overset{O}{\underset{N}} \overset{O}{\underset{N}}$	13.57 ± 0.96	22.87 ± 0.67
24c F O O O O O O O O O O O O O O O O O O	>100	22.78 ± 0.04
24d F O N N N N N	12.50 ± 0.77	>100
$24f \xrightarrow{H_3CO} OCH_3$	16.10 ± 1.54	>100
$25a \qquad \qquad$	12.90 ± 0.79	>100
25e $r_{3}C$ N	7.92 ± 0.67	10.45 ± 0.37
25f F_3C N H N	4.37 ± 0.39	6.41 ± 0.50
26b 0 HO HO HO HO	20.40 ± 2.79	0.93 ± 0.03
27b 0 Ho-V-N-N' H ₃ CO V-N-N'	>100	13.90 ± 1.66
HO' ~ Doxorubicin	0.40 ± 0.21	0.02 ± 0.003

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-313-E00645). J.Y. was supported by the Brain Korea 21 project. Authors thank Hwayoung Yun and Dr. Seung-Mann Paek for mass spectroscopy.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2010.05.014.

References and notes

- Kolb, H. C.; Finn, M. G.; Sharpless, B. K. Angew. Chem., Int. Ed. 2001, 40, 2004.
 For recent reviews on the Huisgen 1,3-dipolar cycloaddition reaction see: Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
- (a) Kalesh, K. A.; Liu, K.; Yao, S. Q. Org. Biomol. Chem. 2009, 7, 5129; (b) Pagliai,
 F.; Pirali, T.; Grosso, E. D.; Brisco, R. D.; Tron, G. C.; Sorba, G.; Genazzani, A. A. J. Med. Chem. 2006, 49, 467; (c) Srinivasan, R.; Uttamchandani, M.; Yao, S. Q. Org. Lett. 2006, 8, 713.
- Onoda, T.; linuma, H.; Sasaki, Y.; Hamada, M.; Isshiki, K.; Naganawa, H.; Takeuchi, T.; Tatsuta, M.; Umezawa, K. J. Nat. Prod. 1989, 52, 1252.
- Mu, F.; Coffing, S. L.; Riese, D. J. I.; Geahlen, R. L.; Verdier-Pinard, P.; Hamel, E.; Johnson, J.; Cushman, M. J. Med. Chem. 2001, 44, 441.
- 6. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.

- 7. Xiong, Y.; Bernardi, D.; Bratton, S.; Ward, M. D.; Battaglia, E.; Finel, M.; Drake, R. R.; Radominska-Pandya, A. *Biochemistry* **2006**, *45*, 2322.
- 8. Hanic, F.; Michalov, J. Acta Crystallogr. 1960, 13, 299.
- Cytotoxic activity of the synthesized compounds against human cancer cell 9 lines was investigated using the MTT assay. HCT116 (Human colorectal carcinoma:KCLB) were supplied from the KCLB/ATCC and grown in RPMI 1640/DMEM (Gibco BRL) supplemented with 10% (V/V) heat inactivated Fetal Bovine Serum (FBS) and maintained at 37 °C in a humidified atmosphere with 5% CO₂. The cells $(5 \times 10^4 \text{ cells/ml})$ were seeded into 96-well plate. Various concentrations of samples was added to each well in duplicate, then incubated at 37 °C with 5% CO₂ for two days such that time cells are in the exponential phase of growth at the time of sample addition. Add 15 µL of the Dye Solution (Promrga, Cell Titer 96) to each well. Incubate the plate at 37 °C for up to 4 h in a humidified, 5% CO_2 atmosphere. After incubation, add 100 μ L of the Solubilization Solution/Stop Mix (Promrga, Cell Titer 96) to each well. Allow the plate to stand overnight in a sealed container with a humidified atmosphere at room temperature to completely solubilize the formazan crystals. The optical density was measured using a microplate reader (Versamax, Molecular Devices) with a 570 nm wavelength and the anticancer effective concentration was expressed as a GI₅₀.
- 10. Yield: 34%. TLC: *R*_f 0.27 (EtOAc/Hex = 2:3). ¹H NMR (400 MHz, acetone-*d*₆): δ 10.96 (br s, 1H), 9.66 (br s, 1H), 8.92 (s, 1H), 8.35 (d, 1H, *J* = 3.2 Hz), 8.10 (dd, 1H, *J* = 8.8 Hz, 3.2 Hz), 7.92 (br s, 1H), 7.39 (d, 1H, *J* = 3.2 Hz), 7.29-7.26 (m, 4H), 7.23 (d, 2H, *J* = 8.8 Hz), 7.13 (m, 1H), 6.86 (d, 1H, *J* = 8.8 Hz), 6.77 (dd, 1H, *J* = 8.8 Hz, 3.2 Hz), 4.49 (t, 2H, *J* = 6.8 Hz), 2.85 (t, 2H, *J* = 7.2 Hz), 2.19 (m, 2H). ¹³C NMR (100 MHz, acetone-*d*₆): δ 205.9, 170.1, 162.5, 151.2, 149.3, 147.5, 142.2, 130.1, 129.3, 129.2, 126.8, 123.1, 120.6, 119.7, 118.2, 117.6, 116.2, 113.9, 113.3, 66.4, 32.8, 30.8. LRMS (FAB) *m/z* (rel int): (pos) 432 ([M+H]⁺, 9). HRMS *m/z* calcd C₂₄H₂₂N₃O₅ 432.1559; found 432.1565.
- Mu, F.; Hamel, E.; Lee, D. J.; Pryor, D. E.; Cushman, M. J. Med. Chem. 2003, 46, 1670.
- 12. Nussbaumer, P.; Winiski, A. P.; Cammisuli, S.; Hiestand, P.; Weckbecker, G.; Stutz, A. J. Med. Chem. 1994, 37, 4079.