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Abstract A novel, one-pot, multicomponent synthesis of 5'-amino-
2,2'-dioxospiro[indoline-3,3’-pyrrole]-4'-carbonitriles is described. The
Knoevenagel condensation reaction between isatin derivatives and
malononitrile gave the corresponding cyclic arylmethylidenemalononi-
triles that, on treatment with isocyanides, afforded 2,2'-dioxospiro-bis-
y-lactams in good to excellent yields.
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Spiro[indoline-3,3'-pyrrole] motifs are found in many
natural products and biologically active synthetic com-
pounds. For example, indole alkaloids strychnofoline,
spirotryprostatin A, and spirotryprostatin B have been
shown to possess antimitotic properties, so are of interest
as anticancer drugs.! Rhynchophylline is a noncompetitive
NMDA antagonist and calcium channel blocker,? and hors-
filine presents analgesic effects.?> Synthetic compound
MI-219 is a potent, highly selective, and orally active inhib-
itor of the MDM2-p53 interaction, which has been studied
as a new agent for cancer treatment (Figure 1).# A promi-
nent structural feature of all these natural and synthetic
products is the presence of a spiro[indoline-3,3'-pyrrole]
core. Thus, development of new approaches for the prepa-
ration of these spiro compounds have attracted a great deal
of attention.>-!1

In a continuation of our studies on the development of
efficient methods for the synthesis of biologically active
heterocyclic compounds from readily accessible precur-
sors,!? we have recently described a one-pot and four-com-
ponent synthesis of pyrrolo[1,2-a]quinoline-3-carboni-
triles. The 2-arylmethylidenemalononitriles generated in
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Figure 1 Examples of natural products and synthetic molecules with a
spiro[indoline-3,3'-pyrrole] core structure

situ from Knovenagel condensation reaction of malononi-
trile and aromatic aldehydes were treated with quinoline
and cyclohexyl isocyanide under solvent-free conditions to
afford the corresponding pyrrolo[1,2-a]quinolines.’* We
were prompted to investigate whether isatin derivatives
could play the role of the carbonyl component in this multi-
component reaction, which would lead to a new skeleton.
Thus, a mixture of isatin 1a and malononitrile 2 were con-
densed at 100 °C under solvent-free conditions to give cy-
clic arylmethylidenemalononitrile 3 within 10 minutes.
Quinoline 4 and cyclohexyl isocynide 5a were then added
to the mixture, which was stirred at 100 °C for a further 24
hours. TLC monitoring of the reaction mixture indicated
formation of a new product (Table 1, entry 2), which was
purified. Identification of its structure by NMR spectrosco-
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Scheme 1 Condensation of isatin and malononitrile followed by treatment with quinoline and cyclohexyl isocynide

py revealed that it was 5'-amino-1'-cyclohexyl-2,2'-dioxo-
1',2'-dihydrospiro[indoline-3,3'-pyrrole]-4'-carbonitrile
(6a), obtained in 20% yield and not the expected spiro[pyr-
roloquinoline-2,3’-indoline] 7 (Scheme 1). However, further
investigations showed that the presence of quinoline in this
reaction was crucial; omission of the base led to a very low
yield of the product (entry 8). To improve the yield of 6a,
the effects of different bases, reaction temperatures, reac-
tion times and solvents were examined in this model reac-
tion, for which the reaction conditions would be optimized.
By varying the parameters, the highest yield was obtained
with one equivalent of pyridine as base, EtOH-H,0 (1:1) as
the reaction medium, at 80 °C after 20 hours; under these
conditions, 6a was obtained in 85% yield (entry 9).

Table 1 Optimization of the Reaction Conditions for Synthesis of 6a?

Entry  Solvent Base T(°C) t(h) Yield of 6a (%)°
1 CH5CN quinoline reflux 24 trace
2 none quinoline 100 24 20
3 CH,Cl, quinoline reflux 24 trace
4 toluene quinoline 60 24 trace
5 toluene quinoline reflux 24 trace
6 EtOH-H,0 quinoline 60 6 70
7 EtOH-H,0 quinoline 80 20 82
8 EtOH-H,0 - 80 20 trace
9 EtOH-H,0  pyridine 80 20 85

10 EtOH-H,0 DMAP 80 20 50
1 EtOH-H,0 isoquinoline 80 20 83

2 Reaction conditions: isatin (1 mmol), malononitrile (1 mmol), cyclohexyl
isocynide (1.1 mmol), base (1 mmol).
b Isolated yield.

After optimization of the reaction conditions, to explore
the generality of the reaction, a series of 5'-amino-2,2'-di-
oxospiro[indoline-3,3'-pyrrole]-4'-carbonitriles 6 was pre-
pared from isatins 1a-f and isocynides 5a and 5b (Figure 2).
Thus, a mixture of isatin 1, malononitrile 2, isocynide 5
and pyridine in EtOH-H,0 (1:1) was stirred at 80 °C for 20
or 24 h to afford the corresponding spiro[indoline-3,3"-pyr-
role] derivatives 6a-1. TLC and NMR spectroscopic analysis

of the reaction mixtures clearly indicated the formation of 6
in good to excellent yields.'* The results are summarized in
Table 2.
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Figure 2 Starting materials for the multicomponent reaction

The structures of the isolated products were deduced
on the basis of IR, H and 3C NMR spectroscopy, mass spec-
trometry, and elemental analysis. The IR spectrum of 6e
showed the stretching bands for N-H bonds at 3343, 3265,
and 3191, nitrile bond at 2187, and C=0 bonds at 1739 and
1667 cm™!. The mass spectrum of 6e displayed the molecu-
lar ion [M*] peak at m/z 364, which was consistent with the
1:1:1 adduct of N-isopropylisatin (1e), malononitrile (2),
and cyclohexyl isocynide (5a). Fragment ions such as 321
[M* - C3Hy], 282 [M* - CgHy0], 239 [M* - (CgHy; + C3Hg), M* -
(CeHyo + CsHy), or M* - (NH,C=NCy)], 212 [M* - (NHC=NCy-
CO)], 197 [M* - (CyN=C=0 + C3Hg) or M* - (Me,CHN=C=0 +
C¢Hi,)] were consistent with the structure of 6e. The
'H NMR spectrum of 6e exhibited characteristic multiplets
at § = 1.02-2.10 and 3.78-3.90 ppm for the cyclohexyl moi-
ety along with a doublet at § = 1.39 ppm and a septet at § =
4.49 ppm (J = 6.9 Hz) for the isopropyl group. Characteristic
signals were seen at § = 7.02-7.35 ppm for the four protons
of the phenylene moiety of the oxindole ring, as well as a
fairly sharp singlet at 8 = 7.79 ppm for the NH, group. The
'H-decoupled '*C NMR spectrum of 6e showed characteris-
tic signals at 8 = 19.4, 19.5, 25.0, 25.7, 29.0, 29.2, 44.6, and
53.0 ppm for the cyclohexyl and isopropyl substituents.
Distinguishing signals were observed at 0 = 53.6 ppm for
the spiro-carbon atom, 8 = 117.9 ppm for the nitrile group,
and 6 =171.9 and 172.1 ppm due to the two amide carbon-
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Table 2 Synthesis of 5'-Amino-2,2'-dioxo-1',2'-dihydrospiro[indoline-3,3'-pyrrole]-4'-carbonitriles 6a-1

HoN
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EtOH-H,O (1:1) R3-NC 5
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1 2 3 6
Entry R! R? R3 6 t(h) Yield of 6 (%)?

1 H H Cy 6a 20 85
2 Me H Cy 6b 20 95
3 Et H Cy 6¢ 20 85
4 Bn H Cy 6d 20 85
5 i-Pr H Cy 6e 20 89
6 NO, Cy 6f 24 85
7 H t-Bu 6g 24 90
8 Me H t-Bu 6h 24 85
9 Et H t-Bu 6i 24 72
10 Bn H t-Bu 6j 24 82
11 i-Pr H t-Bu 6k 24 70
12 H NO, t-Bu 6l 24 87

3 Isolated yield.

yls of the two fused rings. Two other carbon atoms of the
pyrroline ring appeared as a shielded signal at § = 61.6 ppm
and a deshielded signal at = 160.4 ppm (due to the C=CN,
carbon atoms, respectively), as well as six other distinct res-
onances (4 x CH and 2 x C) arising from the phenylene moi-
ety of the oxindole ring, in agreement with the proposed
structure.'

A reasonable mechanistic rationalization for the forma-
tion of the spiro-bis-y-lactams is provided in Scheme 2.
First, Knoevenagel reaction of isatin 1 and malononitrile 2
gives the condensation product 3. Next, the a,B-unsaturat-

Scheme 2 Proposed mechanism for the formation of 5’-amino-2,2'-
dioxospiro[indoline-3,3'-pyrrole]-4'-carbonitriles 6

ed system may undergo nucleophilic addition of the isocya-
nide 5 followed by protonation to form the positively
charged isonitrilium intermediate 8. The isonitrilium moi-
ety may undergo hydrolysis to produce amide intermediate
9. One of the nitrile groups of 9 can then undergo nucleop-
hilic addition of the adjacent amide functionality, which is
facilitated by the added base, to give the imino amide inter-
mediate 10. This imino amide can then tautomerize under
the reaction conditions to afford 5'-amino-2,2'-dioxo-
spiro[indoline-3,3’-pyrrole]-4'-carbonitriles 6.

In conclusion, we have developed a novel, one-pot and
multicomponent approach for the preparation of spiro[in-
doline-3,3'-pyrrole] derivatives. To our knowledge, this is
the first report of the synthesis of 2,2'-dioxospiro[indoline-
3,3'-pyrrole]| derivatives with the two carbonyl functions
located next to the spiro-carbon atom.'” The mild condi-
tions and good to excellent yields of the products are the
main advantages of this reaction. In view of the general bio-
logical activities of oxindoles and 2-pyrrolinones, combina-
tion of these structures in a single entity might lead to en-
hanced properties.
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55 (47), 41 (52). Anal. Calcd for C,;H,,N,0, (364.44): C, 69.21;
H, 6.64; N, 15.37. Found: C, 69.18; H, 6.71; N, 15.30.

(15) To our knowledge, there are two reports concerning the synthe-
sis of 2-oxo0-2'-thioxospiro[indoline-3,3'-pyrrole] derivatives
with carbonyl and thiocarbonyl functions located next to the
spiro-carbon atom; see ref. 11.
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