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ABSTRACT: The direct and chemoselective conversion of the carbon-metal bond of gem-dimetallic reagents enables rapid and 
sequential formation of multiple carbon-carbon and carbon-heteroatom bonds, thus representing a powerful method for efficiently 
increasing structural complexity. Herein, we report a visible-light-induced, nickel-catalyzed, chemoselective cross-coupling reaction 
between gem-borazirconocene alkanes and diverse aryl halides, affording a wide range of alkyl Bpin derivatives in high yields with 
excellent regioselectivity. This practical method features attractively simple reaction conditions and a broad substrate scope. 
Additionally, we systematically investigated a Bpin-directed chain walking process underlying the regioselectivity of 
alkylzirconocenes, thus uncovering the mechanism of the remote functionalization of internal olefins achieved with our method. 
Finally, DFT calculations indicate that the high regioselectivity of this reaction originates from the directing effect of the Bpin group.

 INTRODUCTION

The selective cross-coupling of bimetallic nucleophiles is 
attracting increasing attention because it facilitates diverse 
transformations to rapidly elaborate structural complexity.1 
Among reported bimetallic reagents,1b, 1g, 2 gem-
borazirconocene alkanes are recognized as particularly valuable 
synthons that possess great synthetic potential (Figure 1A).3  
This stable reagent is easily generated from hydrozirconation of 
various alkenyl boronic esters with 
bis(cyclopentadienyl)zirconium chloride hydride (Schwartz 
reagent) in high yield and with excellent functional group 
tolerance. The difference in the polarity of the carbon-
zirconium bond vs the carbon-boron bond allows for the 
sequential functionalization    of    gem-borazirconocene alkanes 
via a variety of reactions such as cross-coupling, nucleophilic 
substitution, or nucleophilic addition. Organozirconium 
compounds are much more reactive than organoboranes, which 
allows for the chemoselective conversion of organozirconium 
reagents to afford versatile organic boron intermediates.3j 
Despite the multiple advantages offered by these reagents, they 
have received substantially less attention for cross-couplings 
compared with alternative nucleophilic substitutions like 
halogenation,3a-d deuteration,3e amination,3j, 3k as well as Michael 
addition,3f or nucleophilic addition to acyl chlorides (Figure 
1A).3g Indeed, the efficient utilization of organozirconium 
reagents for cross-coupling reaction would be of great value to 
rapidly increase structural complexity.4 While cross-coupling 
reaction of primary alkylzirconocene reagents has been 
reported recently by our group,5 to date, no general cross-
coupling reaction has been developed for secondary  
alkylzirconocene including gem-borazirconocene alkanes,3h 
likely owing to the lack of available π-systems to stabilize the 
binding capability of zirconium to achieve suitable 

transmetalation.6 Furthermore, the considerable steric 
hindrance caused by the zirconium complex decreases the 
nucleophilicity of the alkyl group with coupling partners. 
(Figure 1B).3j

C) This work: Chemoselective cross-coupling of gem-borazirconocene alkanes

B) Challenges of the chemoselective cross-coupling of the gem-borazirconocene alkanes
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Figure 1. A) Previous strategy for the direct functionalization of 
gem-borazirconocene alkanes. B) Challenges with chemoselective 
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cross-coupling of gem-borazirconocene alkanes. C) 
Chemoselective cross-coupling of gem-borazirconocene alkanes.

The development of remote functionalization methods is 
receiving growing interest, probably because such methods 
allow for the activation of challenging C−H and C−C bonds 
distant from the initiation position via a fascinating “chain 
walking” process.7 However, the manipulation of remote 
functional groups at different carbon centers represents a major 
challenge in synthetic chemistry.8 Hydrozirconation of internal 
alkenes produces primary alkylzirconocene complexes wherein 
facile Zr–H eliminations and reinsertions enable the Cp2ZrCl 
moiety to “chain walking” to the least sterically hindered 
terminal position of the alkyl chain.6 To the best of our 
knowledge, there is no general method to selectively direct this 
chain walking process to afford stable secondary 
alkylzirconocenes with predictable regioselectivity.

The present study describes, for the first time, a Bpin group 
directed “chain walking” process for alkylzirconocenes, 
selectively generating diverse gem-borazirconocene alkanes. 
Inspired by our own recent findings5, we speculated that the  -
radical stabilizing effect of boron is likely to favor homolytic 
cleavage of the C–Zr bond, thus the  gem-borazirconocene 
alkanes may serve as especially attractive secondary sp3-
hybridized alkylzirconocenes that undergo C-Zr activation in 
the presence of boron to enable chemoselective cross-coupling 
reactions (Figure 1C). Herein, we report a visible-light-induced 
nickel-catalyzed chemoselective cross-coupling reaction of gem-
borazirconocene alkanes with aryl halides, affording a wide 
range of alkylborane derivatives. Such derivatives are well-
established high-value building blocks, which can be employed 
for lithiation-borylation,9 Zweifel olefinations,10 Suzuki cross-
couplings,1h, 1j, 1l, 11 as well as the recently reported alkylborane 
cross-coupling reaction from the Fu group that enables rapid 
and efficient formation of sp3 C-C bonds under mild conditions 
while offering both high regioselectivity and excellent substrate 
scope.12

Table 1. Variation of reaction parameters

I

+ ZrCp2Cl

1.0 equiv. 2.0 equiv.

Ni(dtbbpy)Br2 (1 mol%)

THF (0.15 M), Ar, rt, 24 h
36 W blue LED bulbs

Ni(dtbbpy)Br2 (2 mol%)

96 (86)

91

w/o light 0

w/o Ni(dtbbpy)Br2 0

none

15 W blue Light strip, instead of LED bulbs, + TBAB (1 equiv.)

15 W blue Light strip, instead of LED bulbs, + Bu4N+OTs- (1 equiv.)

8415 W blue Light strip, instead of LED bulbs

82

94

trace

Change from standard conditionsEntry Yield (%)a

trace

1

2

3

4

5

6

7

8

9

10

Bpin
Bpin

NiCl2, instead of Ni(dtbbpy)Br2

Ni(COD)2, instead of Ni(dtbbpy)Br2

92PhBr, instead of PhI

aAll optimization reactions were carried out at a 0.1 mmol scale. 
The yields determined by 1H NMR of crude samples using 1,3,5-
trimethoxybenzene as an internal standard, in parenthesis is the 
isolated product yield (0.30 mmol scale). TBAB: 
Tetrabutylammonium bromide.

 RESULTS AND DISCUSSION

Our initial efforts focused on examining ethyl gem-
borazirconocene with iodobenzene under blue light excitation. 
After an extensive survey of catalysts, additives, solvents, and 
light sources (for detailed optimization studies, see Table S1-
S7.), the desired cross-coupling product of aryl ethylboronate 
was achieved in 86% yield using a nickel precatalyst containing 
a 4,4'-tert-butyl-2,2'-bipyridine ligand in THF, with the aid of 
irradiation from blue-light-emitting bulbs at room temperature. 
Various control experiments including light–dark intervals 
revealed that the nickel catalyst and continuous irradiation with 
visible light are both essential for the reaction (Table 1, entries 
2, 3, 8, 9, and the supplemental information, Figure S1). The 
reaction yield was increased upon addition of TBAB and by 
simply increasing the power of the light source from 15 W to 36 
W (Table 1, entries 5 vs 7, entries 1 vs 5). We determined that 
the highly efficient nickel precatalyst could be reduced as low as 
1 mol% (Table 1, entries 1 vs 4). Finally, we found that 
bromobenzene possesses comparable reactivity to iodobenzene 
under the optimized reaction conditions (Table 1, entry 10).
Table 2. The scope of gem-borazirconocene alkanes componenta

Substrate ProductProduct No.

2a

2b

2c

2d

2e

2g

2h

2i

2f

pinB 3
Ar1

Bpin

5

Yield (%)

71
(72)b

75

74
(61)b

83

81

74

66

63

68

ClpinB

tBu
pinB

TMS
pinB

TIPS
pinB

OPhpinB

OTBDPSpinB

NpinB
Ts

OMepinB

2jpinB
Ph

Ar1 Cl
Bpin

4

Ar1 tBu
Bpin

Ar1 TMS
Bpin

Ar1 TIPS
Bpin

Ar1 OPh

Bpin

3

Ar1 OTBDPS

Bpin

3

Ar2 N
Ts

Bpin

3

Ar1 OMe

Bpin

Ar2 Ph
Bpin

3
75

73

68
(65)b

81

68

75

53

86

0c

85

2k

2l

2m

2n

2o

2q

2r

2s

2p

Ph
pinB

pinB

Cl

pinB

OMe

danB 3

NeolB 3

Bpin

Ph

Bpin

pinB

pinB

Ar2 Ph
Bpin

Ar1

Cl
Bpin

Ar2

OMe
Bpin

Ar1

Bdan

5

Ar1

BNeol

5

Ar1

Bpin

Ar1

Bpin

Ar1

Bpin

Ar1

Bpin

3

1

2

3

4

5

7

8

9

6

10

11

12

13

14

15

17

18

19

16

Entry

+ R1

ZrCp2Cl

Bpin Ni(dtbbpy)Br2 (1 mol%)

THF (0.15 M), Ar, rt, 24 h
36 W blue LED bulbs

Ar R1

Bpin
Ar-I

Single regioisomer

N NNi
Br Br

Ni(dtbbpy)Br2

tBu tBu
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aUnless otherwise noted, yields of isolated products given at a 0.3 
mmol scale; all reactions were performed with Ni(dtbbpy)Br2 (1 
mol%), gem-borazirconocene alkanes (0.6 mmol), aryl iodides (0.3 
mmol), and THF (2 mL), at 25-30 °C with two 36 W blue LED 
bulbs for 24 hours. See the supplemental information for detailed 
reaction conditions, Ar1 = 4-HOCH2(C6H4), Ar2 = 4-
AcNH(C6H4). bThe gem-borazirconocene alkanes were generated 
in situ from alkynes, HBpin, and the Cp2ZrHCl reagents. c85% of 
starting material S3o was recovered.

With the optimal reaction conditions in hand, we next turned 
our attention to investigate the synthetic utility of this visible-
light-induced nickel-catalyzed reaction. First, the substrate 
scope of gem-borazirconocene alkanes was examined, which 
were prepared in situ from hydrozirconation of corresponding 
alkenyl boronic esters. As illustrated in Table 2, a series of 
simple (2a, 2j, 2n, 2o) and substituted borazirconocene alkanes 
containing chloro (2b), silane (2d, 2e), ether (2f, 2g, 2i), or 
sulfonamide groups (2h), were viable coupling partners in our 
cross-coupling method. Substrates generated from 
hydrozirconation of electron-rich and electron-deficient aryl 
alkenyl boronic esters (2k-2m), as well as more sterically 
hindered alkenyl boronic esters (2c-2e) were also amenable to 
the cross-coupling reaction. The gem-borazirconocene alkanes 
generated simply in situ from alkynes, HBpin, and Cp2ZrHCl 
reagents (2a, 2c, 2l) were also found to be productive coupling 
partners. (See the supplemental information for detailed 
reaction conditions). Notably, the alkenylboronate systems, 
such as entries 16-18, exhibit 1,2-boron migration during 
hydrozirconation until the stable gem-borazirconocene alkanes 
are generated, which also possess moderate to high reactivity in 
our cross-coupling reaction (2p-2r, 53-86 yield).13  However, 
when the Bpin group is located further away from the terminal 
position (more than 2 carbons), neither boron migration nor 
cross-coupling product was observed. This indicated that long 
chain boron migration is likely more difficult than boron-
directed zirconocene migration (entry 19, 2s, 0% yield).

To further assess the scope of this selective coupling reaction, 
a series of aryl iodides and bromides were investigated for this 
reaction. As shown in Table 3, this method displayed excellent 
functional group tolerance for the aryl iodides bearing chloro 
(3b), fluoro (3c), methoxy (3d, 3i, 3j, 3m), methyl (3e), and 
trifluoromethyl (3q) groups, as well as more reactive functional 
groups such as amides (3f), esters (3g, 3h, 3m, 3r, 3ab -3ad), 
primary alcohols (3k, 3o), phenols (3p), anilines (3z), and 
nitriles (3aa). Additionally, we observed that aryl tosylates and 
aryl boronic esters were also well tolerated under the mild 
conditions (3l, 3n), illustrating a facile access to these 
compounds for further chemical modification. Notably, the 
electronic properties and substitution pattern had a negligible 
effect on the yield, and the corresponding cross-coupling 
products were all obtained in good to excellent yields with high 
regioselectivity (branch:linear >40:1, for detailed 1H NMR of 
the crude samples, see supplemental information, Spectral 
data.). Compared with aryl iodides, aryl bromides were also 
feasible cross-coupling partners (3m, 3w, 3x, 3aa). Furthermore, 
the potential application of this cross-coupling method in 
modern synthesis was demonstrated by carrying out at a gram 
scale process without compromising much efficiency (3t, 73% 
yield).

Regarding the scope of heteroaromatic halides, thiophene 
(3u), non-protected indole (3v), furan (3w), pyrimidine (3x), 
and pyrazole (3y), were all well tolerated, affording the 
corresponding products in moderate yields. Finally, aryl iodide 
derivatives from natural products, including xylofuranose (3ab), 
cholesterol (3ac), and aminopenicillanic acid (3ad), were 
compatible with the optimized cross-coupling conditions, 
showcasing the utility of this new process for the late-stage 
modification of complex natural products. Additional cross-
coupling reactions of different electrophilic partners have been 
conducted to extend the scope of this method (discussed in 
detail in supplemental information, Table S8). Substrates, 
including primary alkyl and alkenyl halides were feasible cross-
coupling partners although the yield of products were moderate 
(35-68%).14

Table 3. The scope of aryl halide coupling partnersa

+
ZrCp2Cl

Bpin
Ni(dtbbpy)Br2 (1 mol%)

THF (0.15 M), Ar, rt, 24 h
36 W blue LED bulbs

Bpin

X X X

F3CHO

OMe

OMe CH2OH

S

TsO

Bpin

pinB

AcO

Bpin
O

OH

HH

H

OMe

X = I or Br

O

Bpin

O

O

HOH2C

BpinBpin Bpin Bpin

Bpin

Bpin Bpin

Bpin
Bpin Bpin

Bpin

Bpin

Bpin

Bpin

N
H

Bpin

Bpin

Bpin

Bpin

OH

O

O

O

Ph

Bpin

MeO2C

R

3a, 86% 3b, X = Cl, 81%
3c, X = F, 75%

3d, X = OMe, 83%
3e, X = Me, 75%

3h, 66% 3i, 80% 3j, 79% 3k, 86%

3l, 82% 3n, 83%

3p, 78%c 3q, 77% 3r, 64% 3s, 75%

3t, 88%, (73%)d 3u, 55% 3v, 57% 3w, 55%b

3o, 82%

3aa, 68%b

3m, 74%b

3ab, 82% 3ac, 75%

NC

Bpin

Boc
HN

O

O
O

SH

N

3ad, 72%

H2N

Bpin

N

NMeO

Bpin

N
N

Bpin

3x, 56%b 3z, 62%3y, 61%

R
X Bpin

ClCp2Zr
+ + R

Bpin

minormajor
major

Bpin
Cp2ZrHCl,

THF

regioisomers

minor

MeO2C

> 40:1

3f, X = NHAc, 71%
3g, X = CO2Me, 73%

Bpin

aUnless otherwise noted, yields of isolated products given at a 0.3 
mmol scale; all reactions were performed with Ni(dtbbpy)Br2 (1 
mol%), ethyl gem-borazirconocene (0.6 mmol), aryl iodides (0.3 
mmol), and THF (2 mL), at 25-30 °C with two 36 W blue LED 
bulbs for 24 hours. The regioisomeric ratio (branch/linear) in 
parentheses was determined by 1H NMR of crude samples. See the 
supplemental information for detailed reaction conditions. 
bBromoarene was used. c4 equiv. alkylzirconocene was used. dyields 
of isolated products given at a 3.6 mmol scale (1.008 g).

Under thermodynamic control, the general terminal or 
internal alkenes would all generate terminal linear 
alkylzirconocenes from hydrozirconation and subsequent rapid 
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“chain walking” in the latter case that occurs to relieve the steric 
hindrance.6 However, in the presence of terminal Bpin, we 
wondered whether this Bpin could be harnessed as a directing 
group to reverse the chain walking selectivity. To pursue this 
and gain insights about the regioselectivity of this type of chain 
walking and cross-coupling protocol, we designed a series of 
terminal Bpin substituted internal alkenes with different chain 
lengths and geometric isomers of the double bonds (Table 4). 
To our delight, when the double bonds are located in a 
reasonable range (half way or closer) to the Bpin group, the 
Bpin group directs the hydrozirconation and the “chain 
walking” process, generating the branched gem-
borazirconocene alkanes exclusively, which further cross 
couples with aryl iodides to afford the benzylic secondary Bpin 
products in high regioselectivity (4b-4e, >40:1).
Table 4. The scope of chain walking strategya

pinB
4

pinB

pinB 2 3

pinB

Entry Substrate P1 Yield (%)

1

2

3

4

pinB

pinB

pinB

pinB

5

6

7

8

Ar1 Bpin7Ar1
6

Bpin

P2 Ratio (P1:P2)

Ar1
7

Bpin

Ar1 Bpin8

Ar1
7

Bpin

Ar1 Bpin8

Ar1
3

Bpin

Ar1 Bpin4

Ar1

Bpin

Ar1 Bpin2

Ar2 Bpin

Ar2

Ar2

Bpin

3
Bpin

2:1 75b

>40:1 74

>40:1 72

only P1

>40:1

72

72

only P2

only P2

only P2

75c

74c

72c

Ar2

Bpin

Ar2

Bpin

Ar2
3

Bpin

Product

4a

4b

4c

2s (4d)

2r (4e)

4f

4g

4h

9 Ph
Bpin 4i

Ar1 Ph4

Bpin

Ar1 Bpin4

Ph

only P1 54d

Bpin
n

FG
Steric release

[Zr]
ClCp2Zr Bpin

mB-direction

[Zr]
R1

ZrCp2Cl

Bpin

Ar R1

Bpin Bpin
m

Ar

Ar-I Ar-I[Ni] [Ni]

P1 P2

10

11

12

13

pinB OPh
4j

4k

4l

4m

Ar1 OPh
5

Bpin

Ar1 Bpin5

OPh

Ar1 TMS5

Bpin

Ar1 Bpin5

TMS

Ar1 SMe
5

Bpin

Ar1 Bpin5

SMe

Ar1
5

Bpin

Ar1 Bpin5

S

only P1

only P1

--

--

78e

81e

0e,f

0e,f

S

23

pinB TMS

pinB SMe

pinB
S

aUnless otherwise noted, yields of isolated products given at a 0.3 
mmol scale; the temperature of hydrozirconation is 50 0C. all 
reactions were performed with Ni(dtbbpy)Br2 (1 mol%), gem-
borazirconocene alkanes (0.6 mmol), aryl iodides (0.3 mmol), and 
THF (2 mL), at 25-30 °C with two 36 W blue LED bulbs for 24 
hours, the regioisomeric ratio (branch/linear) in parentheses was 
determined by 1H NMR of crude samples. See the supplemental 
information for detailed reaction conditions. Ar1 = 4-
HOCH2(C6H4), Ar2 = 4-AcNH(C6H4). b4 equiv. gem-
borazirconocene alkanes was used. c1 equiv. of Bu4N+OTs- was 
added. d35% of starting material S3o was recovered. e yields of 
isolated products given at a 0.2 mmol scale. fMore than 90% of 
starting material S3o was recovered.

Further exploration showed that, in a more regio-biased case, 
when the double bond is much far away (such as more than five 
carbons) from the Bpin group and closer to the unsubstituted 
terminal carbon (less than two carbons), gem-borazirconocene 
alkane is still the main product (4a, branch:linear = 2:1), 
although the terminal linear alkylzirconocenes can also be 
generated as minor products. Interestingly, allylic and 
homoallylic boronates exclusively generate the linear 
alkylzirconocenes and afford the corresponding products (4f-
4h), findings in accordance with previous studies.13

0.0

22.8

19.2

2.6

25.4

3.2

20.8

-2.6

0.9

19.5

-0.4

16.2
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+
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Cp Zr
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BPin
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Zr-4 Zr-3 Zr-2 Zr-1

Figure 2. The DFT calculation result of the hydrozirconation 
process of 1-pinacolboron-2-butene (S4e). More details of the 
calculations are described in the supplementary information.

To gain insights into the relative propensity of Bpin directed 
effect of chain walking versus other potential directing group 
such as heteroatom, we designed several substrates containing 
different type of functional groups, which might affect the chain 
walking direction (entries 9-13). Substrates containing phenyl, 
ether, silane groups would not affect the migration selectivity of 
the Zr moiety and the corresponding cross-coupling products 
can be afforded in moderate to high yield (4i-4k, 54-81%). 
However, when thioether or thiophene groups were installed at 
the other terminal position, the Bpin directed chain walking 
process was almost completely inhibited (entries 12-13). The 
D2O-quenching reaction showed the major products were the 
isomeric mixtures of the reduced substrates. And only trace 
amount of D-incorporation at the α-carbon of Bpin or 
thiophene group were observed, which indicated the chain 
walking selectivity in these substrates is not optimal due to the 
interruption by the thioether or thiophene groups.

To illustrate the chemical selectivity of the chain walking 
process, we carried out a DFT calculation of zirconocene 
“walking” forward (towards Bpin group) or backward on 1-
pinacolboron-2-butene substrate (S4e). Analysis of the 
transition state of hydrozirconation revealed two clear types of 
TSs: endo-type and exo-type. For an endo-type TS, an alkylene 
inserts the Zr-H bond inside the H-Zr-Cl angle in 138 degrees 
(TS1-TS6); and for an exo-type TS, an alkylene inserts the Zr-H 
bond inside the H-Zr-Cl angle in 73 degrees (TS7-TS12). The 
DFT analysis indicated that the endo-type is more favorable 
than exo-type, and the Gibbs free energies are about 10 
Kcal/mol lower for endo-type (discussed in detail in 
supplemental information, Table S10). The calculation results 
of endo-types are shown in Figure 2: terminal alkylzirconocene 
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species are the most stable, and the branch gem-
borazirconocene alkane Zr-1 is more stable than the linear 
alkylzirconocene Zr-4 (ΔG (Zr-1, Zr-4) = -3.2 kcal/mol). 
Considering that the walking processes of the non-terminal 
species are reversible at room temperature (ΔGTS<23kcal/mol) 
(Table 4, entries 1-5), we speculate that the zirconocene should 
move from the middle position to Bpin side under 
thermodynamic control due to the stability of branch gem-
borazirconocene alkane Zr-1. Kinetically, for the non-terminal 
species, the barrier of Zr walking forward is 22.8 kcal/mol, 
which is 2.6 kcal/mol lower than the barrier of walking 
backward. Using the Boltzmann distribution, we can calculate 
the ratio of Zr-4 to Zr-1 as 1.2%, which is close to the 
experimental ratio (<1:40). However, once the zirconocene has 
already isomerized to the terminal (Table 4, entries 6-8, S4f-S4h, 
and the more region-biased substrate, entry 1, S4a), the barrier 
to walk back to another side would be significantly high 
(>27kcal/mol) due to the stability of terminal- 
alkylzirconocene species. This calculation data was also 
confirmed by the experimental data of the chemoselectivity of 
substrate 4g. 

Figure 3. The localized molecular orbitals (LMO) of the Zr-1(gray: 
Carbon, white: Hydrogen, red: Oxygen, green: Chlorine, cyan: 
Zirconium, pink: Boron). (a) The bonding orbital of C-B bond. (b) 
The bonding orbital of C-Zr bond. LMOs were generated by 
Multiwfn 3.6 program15 and drawn by VMD program16. 

Table 5. Mayer Bond Orders of C-Zr bond and C-B bond. Generate 
by Multiwfn 3.6 program.

Mayer Bond Orders17

C-Zr C-B

Zr-1 0.88 1.14

Zr-4 0.97 1.05

After localized the molecular orbital of Zr-1, as shown in 
Figure 3, the C-Zr bonding orbital delocalized to boron’s p 
orbital. This σ-p hyperconjugation between C-Zr bond to 
boron’s unoccupied p orbital enhances the C-B bond strength. 
Further evidence comes from the Mayer bond order, which 
indicates the electron pairs that are shared between two atoms. 
Table 5 shows that the Mayer bond order of C-Zr in Zr-1(gem-
borazirconocene alkane) is decreased comparing with the Zr-4’s 
(terminal alkylzirconocene), while it’s increased in C-B bond. 
This complementary variation also indicates the σ-p 
hyperconjugation. This unique effect in Zr-1 might raise the 
activity of C-Zr bond and stabilized the gem-borazirconocene 
alkane species.

Inspired by the DFT calculation result mentioned above, we 
then investigate the possibility of reversing the chain walking 
selectivity of terminal-Zr motifs (Table 4, entries 1, 6, 8). As 
illustrated in Table 6, when the temperature of 
hydrozirconation of S4a and S4g-h were increased from 50 oC to 
110 oC, which should be sufficient for the terminal-Zr motifs to 
cross the energy barrier (>27 kcal/mol), the terminal-Zr motifs 
could be gradually converted into the corresponding gem-
borazirconocene via the Bpin directed chain walking process 
and further cross couples with aryl iodides to afford the benzylic 
secondary Bpin products in high regioselectivity (entries 1 vs 2, 
entries 3 vs 4, entries 5 vs 6). More interestingly, with these data 
in hand, we are able to design substrates (as entries 3-6) to 
synthesize a variety of broad branch (>110 oC) or linear (room 
temperature to 50 oC) alkylborane derivatives selectively. To 
the best of our knowledge, this is the first study demonstrating 
the conversion of primary zirconium alkane to secondary 
zirconium alkane with high regioselectivity via Bpin directed 
chain walking process. 
Table 6. The study of chain walking selectivitya

Entry Substrate P1 Yield (%)

1

2

3

4

pinB

pinB5

6

Ar1 Bpin7Ar1
6

Bpin

P2 Ratio (P1:P2)

Ar2

Ar2

Bpin

3
Bpin

2:1 75b

only P2

only P2

74d

72d

Ar2

Bpin

Ar2
3

Bpin

Product

4a

4g

4h

ClCp2Zr Bpin
mAr R1

Bpin
Bpin

m
ArAr-I Ar-I

[Ni] [Ni]
P1 P2

pinB Ar1 Bpin only P1 78
Ar1

Bpin
2r (6b)

pinB Ar2
3

Bpin only P1 35c

Ar2
3

Bpin
6c

Ar1 Bpin7Ar1
6

Bpin
42c6a

X oC/ Y hours

50/36

110/24

50/1

110/24

110/24

50/1

pinB
4

only P1

[Zr]
B-direction

X oC/ Y hours

[Zr]
Steric release
X oC/ Y hours

110 oC

pinB
4

G >27 kcal/mol
ClCp2Zr R1

Bpin

Bpin
n

Alkyl

aUnless otherwise noted, yields of isolated products given at a 0.3 
mmol scale; all reactions were performed with Ni(dtbbpy)Br2 (1 
mol%), gem-borazirconocene alkanes (0.6 mmol), aryl iodides (0.3 
mmol), and THF (2 mL), at 25-30 °C with two 36 W blue LED 
bulbs for 24 hours, the regioisomeric ratio (branch/linear) in 
parentheses was determined by 1H NMR of crude samples. See the 
supplemental information for detailed reaction conditions. Ar1 = 4-
HOCH2(C6H4), Ar2 = 4-AcNH(C6H4). b4 equiv. gem-
borazirconocene alkanes was used. c More than 40% of starting 
material S3o was recovered. d1 equiv. of Bu4N+OTs- was added.

Scheme 1. Synthetic application and preliminary result of 
enantioselective reaction.
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O

N N

O

Cy Cy

Bpin
I

Ni(glyme)Br2 (5 mol%)

(7 mol%)
THF, Ar, rt, 36 W blue LED bulbs

71% yield, 56% ee

+
ZrCp2Cl

Bpin

1 equiv. 2 equiv.

B) Preliminary result of enantioselective reaction

A) Synthetic application

Bpin

I

Ni(dtbbpy)Br2 (1 mol%)
THF (0.15 M), Ar, rt, 24 h
36 W blue LED bulbs

3t, 73% yield

NaBO3, THF/H2O
OH

7a, 85% yield BrMg

I2, MeOH

7b, 82% yield

Pd2(dba)3
PPh3
Ag2O
THF

I

OMe

OMe

7c, 53% yield

n-BuLi, pOMe-PhCHO,
DMP,

O

7d, 55% yield

S n-BuLi, NBS

7e, 83% yield

S

(S)-3t

OMe

THF

The utility of our method is also summarized in Scheme 1.  As 
illustrated, the Bpin group can act as a starting point, affording 
a series of different derivatizations of 3t in moderate to high 
yield (7a-7e, 53%-85% yield), including the oxidation, 
lithiation-borylation, Zweifel olefinations, and Suzuki cross-
couplings. Since enantiomerically enriched organoboron 
compounds are important and versatile intermediates in 
chemical synthesis18 due to the wide applicability of the C-B 
bond and their stereospecific transformation, the development 
of enantioselective version of our method is of great 
significance. From our preliminary results, (S)-3t could be 
obtained with moderate enantioselectivity (56% ee) and yield 
(71%) using a chiral (R, R)-Cy-Biox ligand, which showed great 
potential to develop the enantioselective cross-coupling 
reaction between gem-borazirconocene alkanes and a variety of 
aryl halides.
 CONCLUSION

In conclusion, we have disclosed a visible-light-induced 
nickel-catalyzed chemoselective cross-coupling reaction 
between the gem-borazirconocene alkanes and aryl halides, 
affording a range of secondary alkyl boronic esters in high 
regioselectivtity. Furthermore, by selectively harnessing the 
directing effect of the Bpin group, we have demonstrated that 
internal alkenes bearing a terminal Bpin can be converted into 
the desired coupled products with high regioselectivtity. 
Further ongoing work is focusing on the flow chemistry setting 
of hydrozirconation, chain walking and sequential cross-
coupling of resulting gem-borazirconocene alkanes and 
R1R2B(pin). The catalytic asymmetric version is also under 
investigation.
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