One-Pot Regioselective Synthesis of *meta*-Terphenyls via [3 + 3] Annulation of Nitroallylic Acetates with Alkylidenemalononitriles

Elumalai Gopi and Irishi N. N. Namboothiri*

Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai, Maharashtra 400 076, India

S Supporting Information

ABSTRACT: A highly efficient one-pot method has been developed for the synthesis of *meta*-terphenyls via a regioselective [3 + 3] annulation-elimination sequence involving Morita–Baylis–Hillman (MBH) acetates of nitro-alkenes and alkylidenemalononitriles. The reaction takes place in a regioselective manner under mild conditions (Et₃N, room

temperature) to afford a wide variety of *meta*-terphenyls bearing aryl, heteroaryl and styrenyl groups. This novel [3 + 3] annulation takes advantage of the 1,3-bielectrophilic character of MBH acetates and 1,3-binucleophilic character of alkylidenemalononitriles and proceeds in a cascade fashion comprising an S_N2' substitution, intramolecular 6-endo-trig Michael addition and double elimination. Representative synthetic transformations of the products, for instance, to *meta*-terphenyl derived isoindolinones have also been demonstrated.

INTRODUCTION

Synthesis of polysubstituted benzene derivatives via various annulation strategies, viz [2+2+2], [3+3], [4+2] and [5+1], often performed under acid/base or transition metal catalyzed conditions, is well documented in the literature.¹ However, the scope of acid/base mediated annulations and conventional functionalization methods is curtailed by poor regioselectivity and requirement of harsh reaction conditions. Synthesis of terphenyls, a chain of three benzene rings, is of particular interest as these are part of many natural products present in the plant kingdom, e.g., mushrooms, and exhibit various biological activities such as anticoagulant, antithrombotic, immunosuppressant, lipoxygenase inhibitory, neuroprotective and cytotoxic activities.² While most of the terphenyl natural products are paraderivatives and few are meta, no o-terphenyl natural products are thus far reported in the literature.² The few *m*-terphenyls that were isolated from natural sources include trifucol 1 (from seaweed Fucus vesiculosus),³ macranthol 2, dunnialol 3, simonsinol 4 (from Chinese flowering plant Illicium macranthum),⁴ mulberrofuran R 5 (from mulberry tree Morus ihou Koidz.)⁵ and dictyoterphenyl 6 (from the cellular slime mold Dictyosteliumdiscoideum).⁶ Possible applications of *m*-terphenyl derivatives as ligands in catalysis⁷ and as versatile synthetic materials⁸ have been extensively explored in recent years (Figure 1).

Synthesis of *m*-terphenyls⁹ has been achieved via metal catalyzed coupling,^{6,10} multicomponent reactions, including cyclotrimerization,¹¹ [3 + 3] annulation^{12,13} and Bronsted acid catalyzed cyclization.¹⁴ As for [3 + 3] annulation, a four-step method involving base mediated annulation of chalcone with ethyl acetoacetate followed by hydrolysis and aromatization¹² and a one-pot base mediated synthesis involving chalcone and allyl *p*-tolyl sulfone¹³ are known in the literature. While a single example is reported following the former multistep method, a

mixture of *m*-terphenyls, with and without sulfone, is reported based on the latter method.

In the above scenario, we embarked on the idea of employing a [3 + 3] annulation strategy for the synthesis of *m*-terphenyls using the 1,3-bielectrophilic MBH acetate 7 and the 1,3binucleophilic malononitrile derivative 8 as 3-carbon components. In recent years, we and others have extensively exploited the 1,3-bielectrophilic nature of 7 in the synthesis of a variety of heterocycles.¹⁵ However, construction of carbocycles using 7 as the 3-carbon component received much less attention¹⁶ and aromatic compounds have never been the targets of such approaches. Although malononitrile derivative 8 has been employed as a 4-carbon nucleophile–electrophile in [4 + 2]annulation with nitroalkenes,¹⁷ and as a 3-carbon component in [3+2] annulations,¹⁸ the role of 8 as a 3-carbon binucleophile in [3 + 3] annulation received much less attention¹⁹ and has not been exploited, to our knowledge, in the synthesis of aromatics, particularly, terphenyls (Figure 2).

RESULTS AND DISCUSSION

At the outset, MBH acetate 7a was treated with nitrile 8a in the presence of different bases and in different solvents at room temperature (Table 1). While the reaction remained incomplete with 1 and 2 equiv of Et₃N in THF even after 48 h (entries 1–2), complete conversion was achieved upon increasing the amount of Et₃N to 3 and 4 equiv giving terphenyl 9a in 60 and 65% yields, respectively (entries 3–4). Though there is only marginal difference in these yields (entries 3–4), further improvement in the yield to 73% and reaction time to 7 h was possible by changing the solvent to CH_2Cl_2 by using 4 equiv of Et₃N (entry 5). A hydrocarbon solvent such a toluene was not the best for our

Received: May 29, 2014

Figure 1. *m*-Terphenyl natural products.

Figure 2. Proposed reactivity of MBH acetate 7 and alkylidenemalononitrile 8.

reaction (entry 6). Although other amine bases such as DABCO and Huenig's base (entries 7–8) as well as inorganic bases such as K_2CO_3 and Cs_2CO_3 (entries 9–10) were screened, only DABCO provided the desired terphenyl **9a**, though in low yield (entry 7). Having found Et₃N to be the best base (entry 5), the yield and the reaction time were further improved, though marginally, from 73%, 7 h to 75%, 5 h, by changing the solvent from CH₂Cl₂ to (CH₂)₂Cl₂ (entries 5 and 11).

The above optimized conditions, viz Et_3N (4 equiv), $(CH_2)_2Cl_2$, room temperature, were then employed to investigate the scope of MBH acetates 7 using nitrile **8a** as the model binucleophile (Table 2). The reaction of nitrile **8a** with different MBH acetates **7a**-**k** proceeded well to provide cyanoesters **9a**-**k** in 65–78% yield (entries 1–11). No appreciable substituent effect was observed in these reactions as MBH acetates with electron rich aryl **7a**-**e** (entries 1–5), electron deficient aryl **7g** (entry 7), parent phenyl **7f** (entry 6), heteroaryl **7h**-**i** (entries 8–9) and styrenyl **7j** (entry 10) afforded the cyanoesters **9a**-**j** in good yields (70–78%) in 3–15 h. However, marginally lower yield was encountered with MBH acetate **7k** possessing unsubstituted styrenyl group (65%, entry 11) and only a complex mixture was isolated in the case of aliphatic MBH acetate **7m** (entry 12).

Subsequently, one of the MBH acetates 7h was adopted to study the scope of nitriles 8 under our optimized conditions (Table 3). Nitriles with electron rich aryl 8b-d (entries 1-3), electron poor aryl 8e-h (entries 4-7), heteroaryl 8i (entry 8)

Table 1. Optimization Studies for the Synthesis of Terphenyl 9a from Alkylidenemalononitrile 8a and MBH Acetate 7a

	$\begin{array}{c} AcO \\ Ar \\ Ar \\ Ta \end{array} \begin{array}{c} CO_2Et \\ Ph \\ Ph \end{array} \begin{array}{c} NC \\ Ph \\ Ra \\ 8a \end{array}$	$\begin{array}{c} & & & \\ \hline base & & \\ \hline solvent, RT & & \\ \hline Ar = 4-MeOC_6H_4 & & 9a \end{array}$	NC CN Ph Ar 10 (entries 9-10)	
entry	base (equiv)	solvent	time (h)	% yield ^a
1	$Et_3N(1)$	THF	48	15 ^b
2	$Et_3N(2)$	THF	48	40^{b}
3	$Et_3N(3)$	THF	20	60
4	$Et_3N(4)$	THF	12	65
5	$Et_3N(4)$	DCM	7	73
6	$Et_3N(4)$	toluene	6	50
7	DABCO (4)	DCM	3	33
8	$i Pr_2 EtN$ (4)	DCM	3	_c
9	$K_2 CO_3 (4)$	DCM	1	$_^d$
10	$Cs_2CO_3(4)$	DCM	1	$-^d$
11	$Et_{3}N(4)$	DCE	5	75

"Isolated yield after silica gel column chromatography. ^bIncomplete conversion. ^cComplex mixture. ^dProduct 10 was formed in 68–70% yield presumably via elimination of β -nitroacrylate after the initial S_N2' reaction (see Scheme 1, vide infra).

Table 2. Synthesis of 2-Cyano-3,5-disubstituted Benzoates 9 from Alkylidenemalononitrile 8a and MBH Acetates 7

		NO_2 $+$ Ph DC EI DC Ba	S ₃ N NC CE, RT Ph	CO ₂	Et `R¹
entry	7	\mathbb{R}^1	time (h)	9	% yield ^a
1	7a	4-OMeC ₆ H ₄	5	9a	75
2	7b	$2,4-(OMe)_2C_6H_3$	10	9b	76
3	7c	$3,4-(OMe)_2C_6H_3$	12	9c	70
4	7d	5-Benzo[d][1,3]dioxole	15	9d	77
5	7e	$4-MeC_6H_4$	6	9e	76
6	7 f	C ₆ H ₅	6	9f	72
7	7g	$4-FC_6H_4$	10	9g	74
8	7h	2-Furyl	12	9h	78
9	7i	2-Thienyl	12	9i	76
10	7j	2-OMeC ₆ H ₄ CH=CH	3	9j	70
11	7k	C ₆ H ₅ CH=CH	4	9k	65
12	71	Cyclohexyl	12	91	b

"Isolated yield after silica gel column chromatography. ^bComplex mixture.

Table 3. Synthesis of 2-Cyano-3,5-disubstituted Benzoates 11 from (Ethylidene)malononitriles 8 and MBH Acetate 7h

K	AcO	$O_2Et NC CN E NO_2 R^2 CO_2Et NC CN E NO_2 R^2 CN E NO_2 R^2 CN E NO_2 CN $	Et_3N NC DCE, RT R ²	CO ₂ Et	F)	
	7h	8		11 (0_//	
entry	8	R ²	time (h)	11	% yield ^{a}	
1	8b	4-MeC ₆ H ₄	5	11b	79	
2	8c	2-OMeC ₆ H ₄	10	11c	80	
3	8d	4-OMeC ₆ H ₄	12	11d	76	
4	8e	4-ClC ₆ H ₄	12	11e	75	
5	8f	$4-BrC_6H_4$	12	11f	83	
6	8g	$4-FC_6H_4$	12	11g	79	
7	8h	$3-BrC_6H_4$	15	11h	70	
8	8i	2-Furyl	15	11i	69	
9	8j	C ₆ H ₅ CH=CH	12	11j	76	
10	8k	4-FC ₆ H ₄ CH=CH	15	11k	73	
^a Isolated yield after silica gel column chromatography.						

and styrenyl 8j-k (entries 9–10) groups reacted well with MBH acetate 7h under our optimized conditions to furnish cyanoesters 11b-k in good to excellent yield (69–83%). Again, no appreciable substituent effect was observed in these reactions except that the yield was marginally lower in the case of nitrile with a heteroaryl group 8i (69%, entry 8) and an electron poor styrenyl group (73%, entry 10). The reaction time was consistently 12–15 h (entries 2–10) except for nitrile 8b (entry 1).

Having investigated the scope of MBH acetate 7 and nitrile 8 in the synthesis of 2-cyano-3,5-disubstituted benzoates 9 and 11, we subjected primary MBH acetates 12 to the Et_3N mediated reaction with nitrile 8 in anticipation that 2,4-diarylbenzonitrile 13 would be formed (Table 4). Thus, treatment of acetate 12a with various nitriles 8a,b and 8d delivered 2,4-diarylbenzonitriles 13a-c in 72-76% yield (entries 1-3). Interestingly, the reaction of 12a with 8c provided intermediate 14d in 71% yield which did not undergo aromatization via elimination of HCN under our experimental conditions (entry 4). However, in a separate experiment, DBU (1.5 equiv) was added to the reaction mixture after complete conversion of 12a and 8c to 14d and the resulting mixture was stirred for 1 h to achieve elimination of HCN from 14d to form terphenyl 13d in 62% yield (entry 4). Heteroaryl MBH acetates 12b,c also reacted well with various nitriles 8a, 8c,d and 8f leading to 2,4-diarylbenzonitriles 13e-h in good to excellent yield (70-83%, entries 5-8). Finally, MBH acetates bearing an electron poor aryl group and parent phenyl group 12d and 12e, respectively, were also subjected to [3 + 3] annulation with a representative nitrile 8d to afford terphenyls 13i and 13j in 73-77% yield (entries 9-10). Unlike in the case of secondary MBH acetates 7 where the reaction was complete in 15 h or less (Tables 2 and 3), the reaction times for primary MBH acetates 12 were long (1-4 d) which are attributable to the active role the electron withdrawing ester group played in the reaction of 7 (see Scheme 1, vide infra).

The structure of benzonitriles 9 and 11 were established by extensive spectral analysis. That the two protons in the central aromatic ring appearing, in general, as doublets at δ 8.20–8.40 and 7.70–7.90 are meta to each other was confirmed by their low coupling constants (I = 1.4 - 1.8 Hz). The regiochemistry was confirmed by ¹H-¹H 2D-NOESY experiment with **9a** in that the proton *ortho* to the ester group appearing at δ 8.26 had a positive NOE with only the anisyl protons whereas the para-proton exhibited NOE with both anisyl protons and phenyl protons (see the Supporting Information). Further unambiguous structural assignment was made by single crystal X-ray analysis of a representative product 11f (see the Supporting Information). As for benzonitrile 13, out of the three protons of the central aromatic ring appearing, in general, in a narrow range of 7.60-7.80, one appeared as a doublet with a small J value (1.5-1.8 Hz), another as a doublet with a large J value (7.7-8.2 Hz) and the third as a dd with a large and a small J value. This pattern was consistent with the regiochemistry in 13 which was further unambiguously established by ¹H-¹H 2D-COSY experiment with a representative compound 13g. Thus, while the proton *ortho* to cyano group appeared at δ 7.73 as a doublet with a J value of 8.1 Hz, of the two meta-protons, one appeared as a doublet at δ 7.69 with a small J value (1.7 Hz) and the other as dd at δ 7.62 with large and small J values (8.1, 1.7 Hz). The observed unsymmetrical ¹H and ¹³C NMR pattern of **9f**, **11i** and **13c** (Ar¹ = Ar^2) also ruled out regioisomers of terphenyls 9, 11 or 13. Structural and regiochemical assignment of intermediate 14d was performed based on ¹H NMR and ¹H-¹H 2D-COSY spectra. The CH₂ protons of 14d appeared as a doublet at δ 3.15 coupled only to one olefinic proton appearing at δ 6.21 with a J value of 4.3 Hz. Although the ⁴J coupling of this olefinic proton with the other appearing at δ 6.74 is not measurable enough, the cross-peaks are clearly observed in the COSY spectrum (see the Supporting Information).

The proposed mechanism for the formation of benzonitrile 9, 11 or 13 is outlined in Scheme 1. Deprotonation of the methyl group of nitrile 8 and addition of the resulting stabilized anion to MBH acetate 7 or 12 in a Michael fashion followed by elimination of the acetate in an overall S_N2' reaction generates intermediate I. Deprotonation at the allylic position of intermediate I generates a stabilized carbanion whose intramolecular Michael addition in a 6-endo-trig fashion to the newly formed nitroalkene moiety in I provides the cyclized product II. Finally, Et_3N mediated elimination of HNO_2 and HCN furnishes the aromatized product 9, 11 or 13. This overwhelming preference for the 6-endo-trig cyclization over 5-exo-trig

Table 4. Addition of Various Alkylidenemalononitriles 8 to MBH Acetates 12

		Ar1 OAc +	$\frac{\text{NC}}{\text{Ar}^2} CN = \frac{\text{Et}_3 N}{\text{DCE}_3}$	$\xrightarrow{\text{NC}}_{\text{Ar}^2} \xrightarrow{\text{Ar}^1}$	NC NC Ar ² Ar ¹		
		12	8	13	14d (entry 4)		
entry	12	Ar^{1}	8	Ar^{2}	time (d)	13	% yield ^a
1	12a	4-OMeC ₆ H ₄	8a	C ₆ H ₅	3.0	13a	76
2	12a	4-OMeC ₆ H ₄	8b	$4-MeC_6H_4$	1.0	13b	75 ^b
3	12a	4-OMeC ₆ H ₄	8d	4-OMeC ₆ H ₄	4.0	13c	72
4	12a	4-OMeC ₆ H ₄	8c	2-OMeC ₆ H ₄	4.0	13d	62 ^c
5	12b	2-Furyl	8a	C ₆ H ₅	1.5	13e	79
6	12c	2-Thienyl	8c	2-OMeC ₆ H ₄	4.0	13f	80
7	12c	2-Thienyl	8d	4-OMeC ₆ H ₄	1.5	13g	83
8	12c	2-Thienyl	8f	$4-BrC_6H_4$	2.0	13h	70
9	12d	$4-ClC_6H_4$	8d	4-OMeC ₆ H ₄	2.0	13i	77
10	12e	C ₆ H ₅	8d	4-OMeC ₆ H ₄	2.0	13j	73

^{*a*}Isolated yield after silica gel column chromatography. ^{*b*}The reaction was carried out under microwave irradiation at 80 °C. ^{*c*}The intermediate 14d (71% isolated yield) underwent elimination to form 13d only after addition of DBU (1.5 equiv) and stirring at room temperature for 1 h.

cyclization obviously arises from the possibility of aromatization of the initial cycloadduct II. In fact, this is for the first time, the $S_N 2'$ products of secondary MBH acetates 7 deviated from their normal cyclization mode of 5-*exo-trig* to 6-*endo-trig*.¹⁵ Additional support for this mechanism emanated from the isolation of an intermediate in one case (14d, entry 4, Table 4). The reluctance of intermediate 14d to undergo elimination to 13d in the presence of Et₃N (p K_a 10.8) is attributable to the poor acidity of allylic proton in 14d due to the *o*-OMe group. Therefore, a stronger base such as DBU (p K_a 12.0) was needed for elimination of HCN from 14d (entry 4, Table 4). An alternate pathway followed by allylic anion derived from intermediate I in the presence of Bronsted bases (entries 9–10, Table 1) to form diene 10 is also shown in Scheme 1.

A representative terphenyl **9h** was subjected to LiOH mediated selective hydrolysis of the ester group under mild conditions to 2-cyano-3,5-diarylbenzoic acid **15** in excellent yield (86%, Scheme 2). Preferential reactivity of cyano group was demonstrated by indium mediated addition of allyl bromide to **9a** and **9h** under MW irradiation conditions. Interestingly, both **9a** and **9h** undergo a cascade double allylation–intramolecular lactamization under these conditions to generate synthetically useful isoindolinones **16a,b** in high yield (77–81%, Scheme 2).

Scheme 2. Selected Synthetic Transformations of Terphenyl

CONCLUSIONS

Polysubstituted *m*-terphenyls have been synthesized in high yield (62–83%) through a one-pot [3 + 3] annulation of Morita–Baylis–Hillman acetates of nitroalkenes and alkylidenemalononitrile in the presence of Et₃N at room temperature. The annulation takes place via a regioselective cascade $S_N 2'$ -intramolecular Michael reaction, which was confirmed by isolation of the intermediate cycloadduct, in one case, before

The Journal of Organic Chemistry

aromatization and its subsequent transformation to the aromatized product. The scope of the reaction was demonstrated using nitroallylic acetates and alkylidenemalononitriles bearing aryl, heteroaryl and styrenyl groups at the β -position of the nitro/ cyano group. Representative transformations of *meta*-terphenyl cyanoesters to corresponding carboxylic acids and isoindolinones have also been carried out.

EXPERIMENTAL SECTION

General Methods. The melting points recorded are uncorrected. NMR spectra were recorded with TMS as the internal standard for ¹H, ¹H decoupled ¹³C, ¹³C-APT, ¹H–¹H-2D-COSY and NOESY and C₆H₅CF₃ as the external standard for ¹⁹F. The coupling constants (*J* values) are given in Hz. High resolution mass spectra were recorded under ESI Q-TOF conditions. X-ray data were collected on a diffractometer equipped with graphite monochromated Mo K*α* radiation. The structure was solved by direct methods shelxs97 and refined by full-matrix least-squares against F² using SHELXL97 software. The secondary MBH acetates 7 (E = CO₂Et)²⁰ and the primary MBH acetates **11** (E = H)²¹ were prepared from corresponding alcohols.^{22,23} Malononitrile derivatives **8** were prepared from corresponding methyl ketone and malononitrile.²⁴

General Procedure for the Synthesis of *m*-Terphenyls 9, 11, 13. To a stirred solution of MBH-acetate 7 or 12 (0.17 mmol) in DCE (3 mL) at rt, was added alkylidene malononitrile 8 (0.17 mmol) followed by triethylamine (0.1 mL, 69 mg, 0.68 mmol), and the completion of the reaction was monitored by TLC. The crude product was directly purified by silica gel column chromatography by eluting with 5–20% EtOAc–pet ether (gradient elution). In the case of entry 4, Table 4, the intermediate 14d was either isolated or treated in situ with DBU (38 μ L, 0.25 mmol) to afford 13d.

Ethyl 4'-cyano-4-methoxy-[1,1':3',1"-terphenyl]-5'-carboxylate (9a). Pale yellow solid: yield 75%, 46 mg; mp 101 °C; IR (KBr, cm⁻¹) 3176 (vw), 2852 (vw), 2225 (w), 1726 (m), 1643 (vs), 1520 (w), 1457 (w), 1257 (m), 1171 (w), 1023 (w), 834 (w), 768 (w); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 1.9 Hz, 1H), 7.81 (d, *J* = 1.9 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.57 (dd, *J* = 7.9, 1.5 Hz, 2H), 7.54–7.47 (m, 3H), 7.02 (d, *J* = 8.8 Hz, 2H), 4.51 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 160.7, 148.5, 144.6, 138.3, 134.9, 131.6, 130.6, 129.2, 129.1, 128.8, 128.7, 127.8, 117.0, 114.8, 109.0, 62.6, 55.6, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 375 ([M + H₂O]⁺, 48), 358 (MH⁺, 100), 312 (21); HRMS (ES⁺, Ar) calcd for C₂₃H₂₀NO₃ (MH⁺) 358.1443, found 358.1444. Confirmed by ¹H–¹H-2D-NOESY experiment.

Ethyl 4'-cyano-2,4-dimethoxy-[1,1':3',1"-terphenyl]-5'-carboxylate (9b). Dark yellow solid: yield 76%, 50 mg; mp 126 °C; IR (KBr, cm⁻¹) 2928 (m), 2224 (w), 1720 (vs), 1610 (vs), 1510 (m), 1465 (w), 1339 (m), 1306 (m), 1262 (m), 1209 (m), 1030 (m), 702 (m); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 1.7 Hz, 1H), 7.81 (d, J = 1.7 Hz, 1H), 7.88 (dd, J = 8.0, 1.4 Hz, 2H), 7.52–7.46 (m, 3H), 7.31 (d, J = 8.3 Hz, 1H), 6.60 (dd, J = 8.3, 2.2 Hz, 1H), 6.58 (d, J = 2.2 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 161.8, 157.8, 147.6, 142.7, 138.4, 134.6, 134.1, 131.5, 130.7, 129.3, 128.9, 128.7, 120.6, 117.2, 108.7, 105.3, 99.2, 62.4, 55.8, 55.7, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 426 (MK⁺, 31), 425 ([M – 1]K⁺, 45), 410 (MNa⁺, 65), 388 (MH⁺, 96), 360 (100), 342 (54), 298 (8), 279 (9), 213 (20), 196 (25); HRMS (ES⁺, Ar) calcd for C₂₄H₂₂NO₄ (MH⁺) 388.1549, found 388.1549.

Ethyl 4'-cyano-3,4-dimethoxy-[1,1':3',1"-terphenyl]-5'-carboxylate (9c). Dark yellow solid: yield 70%, 46 mg; mp 120 °C; IR (KBr, cm⁻¹) 2936 (m), 2223 (w), 1726 (m), 1596 (m), 1519 (m), 1464 (w), 1341 (w), 1264 (s), 1023 (m), 737 (w), 703 (w); ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, *J* = 1.9 Hz, 1H), 7.80 (d, *J* = 1.9 Hz, 1H), 7.58 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.54–7.47 (m, 3H), 7.25 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.14 (d, *J* = 2.1 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 3.95 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 150.3, 149.7, 148.5, 144.9, 138.3, 134.9, 131.7, 131.1, 129.3, 129.2, 128.9, 127.9, 120.3, 116.9, 111.8, 110.4, 109.2, 62.6, 56.3, 56.2, 14 0.3; MS (ES⁺, Ar) *m*/*z* (rel intensity) 388 (MH⁺, 86), 360 (100), 342 (50); HRMS (ES⁺, Ar) calcd for $C_{24}H_{22}NO_4$ (MH⁺) 388.1549, found 388.1549.

Ethyl 5-(benzo[d][1,3]dioxol-5-yl)-2-cyano-[1,1'-biphenyl]-3carboxylate (9d). Pale yellow solid: yield 77%, 49 mg; mp 104 °C; IR (KBr, cm⁻¹) 2988 (w), 2902 (w), 2225 (m), 1725 (s), 1597 (m), 1505 (m), 1494 (m), 1459 (m), 1446 (m), 1341 (m), 1250 (vs), 1229 (s), 1038 (s), 1016 (m), 929 (w), 734 (w), 702 (w); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.77 (s, 1H), 7.57–7.49 (m, 5H), 7.15 (d, *J* = 8.1 Hz, 1H), 7.13 (s, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.04 (s, 2H), 4.51 (q, *J* = 7.0 Hz, 2H), 1.47 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 148.8, 148.5, 144.7, 138.1, 134.9, 132.4, 131.8, 129.17, 129.22, 128.8, 127.9, 121.6, 116.9, 109.3, 109.1, 107.7, 101.8, 62.6, 14.3; MS (ES⁺, Ar) m/z (rel intensity) 410 (MK⁺, 35), 394 (MNa⁺, 100); HRMS (ES⁺, Ar) calcd for C₂₃H₁₇NO₄Na (MNa⁺) 394.1050, found 394.1049.

Ethyl 4'-cyano-4-methyl-[1,1':3',1''-terphenyl]-5'-carboxylate (9e). Colorless solid: yield 76%, 44 mg; mp 102 °C; IR (KBr, cm⁻¹) 3027 (w), 2982 (m), 2923 (m), 2854 (w), 2225 (m), 1726 (vs), 1598 (m), 1458 (w), 1438 (w), 1369 (w), 1340 (w), 1280 (m), 1252 (s), 1175 (m), 1075 (m), 1014 (w), 820 (w), 788 (w), 702 (w); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 1.9 Hz, 1H), 7.84 (d, *J* = 1.9 Hz, 1H), 7.59–7.56 (m, 4H), 7.54–7.48 (m, 3H), 7.31 (d, *J* = 7.9 Hz, 2H), 4.51 (q, *J* = 7.1 Hz, 2H), 2.42 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 148.5, 145.0, 139.5, 138.2, 135.4, 134.9, 132.0, 130.1, 129.2, 129.1, 128.8, 128.1, 127.3, 117.0, 109.4, 62.6, 21.4, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 359 ([M + H₂O]⁺, 57), 342 (MH⁺, 100), 314 (46), 296 (30); HRMS (ES⁺, Ar) calcd for C₂₃H₂₀NO₂ (MH⁺) 342.1494, found 342.1508.

Ethyl 4'-cyano-[1,1':3',1"-terphenyl]-5'-carboxylate (9f). Colorless solid: yield 72%, 40 mg; mp 117 °C; IR (KBr, cm⁻¹) 2923 (m), 2226 (w), 1728 (s), 1599 (w), 1456 (w), 1339 (w), 1279 (m), 1249 (m), 1206 (w), 1076 (w), 765 (m), 701 (m); ¹H NMR (400 MHz, CDCl₃) *δ* 8.30 (d, *J* = 1.9 Hz, 1H), 7.86 (d, *J* = 1.9 Hz, 1H), 7.68–7.65 (m, 2H), 7.58 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.54–7.44 (m, 6H), 4.52 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) *δ* 164.9, 148.6, 145.1, 138.3, 138.1, 134.9, 132.3, 129.4, 129.3, 129.3, 129.2, 128.9, 128.4, 127.5, 116.9, 109.8, 62.6, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 366 (MK⁺, 70), 350 (MNa⁺, 85), 345 ([M + H₂O]⁺, 75), 328 (MH⁺, 100), 300 (38); HRMS (ES⁺, Ar) calcd for C₂₂H₁₈NO₂ (MH⁺) 328.1338, found 328.1334.

Ethyl 4'-cyano-4-fluoro-[1,1':3',1"-terphenyl]-5'-carboxylate (9g). Colorless solid: yield 74%, 43 mg; mp 101 °C; IR (KBr, cm⁻¹) 2925 (m), 2852 (w), 2225 (w), 1727 (vs), 1604 (m), 1514 (m), 1340 (w), 1280 (m), 1248 (s), 1162 (w), 1076 (w), 838 (m), 701 (w), 529 (w); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 1.9 Hz, 1H), 7.81 (d, *J* = 1.9 Hz, 1H), 7.65 (dd, *J* = 8.7, 5.2 Hz, 2H), 7.57 (dd, *J* = 7.9, 1.7 Hz, 2H), 7.54–7.48 (m, 3H), 7.20 (t, *J* = 8.7 Hz, 2H), 4.52 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 163.6 (d, *J*_{C-F} = 249.8 Hz), 148.7, 144.0, 138.0, 135.0, 134.5 (d, *J*_{C-F} = 3.2 Hz), 132.1, 129.25, 129.34, 129.2 (d, *J*_{C-F} = 2.9 Hz), 128.9, 128.2, 116.8, 116.5 (d, *J*_{C-F} = 21.8 Hz), 109.9, 62.7, 14.3; ¹⁹F NMR (470 MHz, CDCl₃) δ –113.3; MS (ES⁺, Ar) *m*/*z* (rel intensity) 346 (MH⁺, 100), 319 (18), 318 (82), 300 (52), 274 (10), 213 (18), 196 (15); HRMS (ES⁺, Ar) calcd for C₂₂H₁₇NO₂F (MH⁺) 346.1243, found 346.1229.

Ethyl 2-cyano-5-(furan-2-yl)-[1,1'-biphenyl]-3-carboxylate (9h). Pale yellow solid: yield 78%, 42 mg; mp 103 °C; IR (KBr, cm⁻¹) 2851 (vw), 2223 (m), 1725 (vs), 1608 (s), 1492 (vw), 1367 (w), 1333 (m), 1249 (m), 1199 (m), 1181 (m), 1073 (m), 1018 (s), 746 (s), 702 (m); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 1.6 Hz, 1H), 7.89 (d, J = 1.6 Hz, 1H), 7.56–7.55 (m, 2H), 7.53–7.48 (m, 4H), 6.91 (d, J = 3.3 Hz, 1H), 6.56 (dd, J = 3.3, 1.7 Hz, 1H), 4.51 (q, J = 7.1 Hz, 2H), 1.48 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 151.4, 148.6, 144.3, 138.0, 135.0, 134.1, 129.17, 129.21, 128.8, 128.1, 124.7, 116.9, 112.6, 109.4, 109.1, 62.6, 14.3; MS (ES⁺, Ar) m/z (rel intensity) 318 (MH⁺, 100), 290 (71), 272 (88), 205 (25), 85 (25); HRMS (ES⁺, Ar) calcd for C₂₀H₁₆NO₃ (MH⁺) 318.1130, found 318.1122.

Ethyl 2-cyano-5-(thiophen-2-yl)-[1,1'-biphenyl]-3-carboxylate (9i). Pale yellow solid: yield 76%, 43 mg; mp 132 °C; IR (KBr, cm⁻¹) 3054 (w), 2988 (w), 2226 (w), 1728 (m), 1598 (w), 1422 (w), 1323 (w), 1266 (s), 738 (vs), 704 (m); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 1.9 Hz, 1H), 7.83 (d, *J* = 1.9 Hz, 1H), 7.58–7.55 (m, 2H), 7.54–7.49 (m, 4H), 7.44 (dd, *J* = 5.0, 0.8 Hz, 1H), 7.15 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 148.7, 141.2, 138.2, 137.9, 135.1, 130.3, 129.15, 129.24, 128.8 (× 2), 127.9, 126.6, 126.1, 116.8, 109.3, 62.7, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 372 (MK⁺, 10), 356 (MNa⁺, 100), 301 (12), 193 (15), 148 (17), 102 (10); HRMS (ES⁺, Ar) calcd for C₂₀H₁₅NO₂SNa (MNa⁺) 356.0716, found 356.0718.

Ethyl (*E*)-2-cyano-5-(2-methoxystyryl)-[1,1'-biphenyl]-3-carboxylate (9j). Pale yellow solid: yield 70%, 46 mg; mp 142 °C; IR (KBr, cm⁻¹) 3062 (vw), 2925 (m), 2851 (w), 2223 (m), 1726 (vs), 1593 (m), 1489 (m), 1464 (m), 1439 (m), 1369 (w), 1340 (w), 1249 (vs), 1199 (m), 1108 (w), 1074 (w), 1025 (s), 754 (s), 701 (m); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 1.5 Hz, 1H), 7.75 (d, *J* = 1.5 Hz, 1H), 7.67 (d, *J* = 16.5 Hz, 1H), 7.61–7.46 (m, 6H), 7.32 (td, *J* = 8.4, 1.4 Hz, 1H), 7.18 (d, *J* = 16.5 Hz, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 3.91 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 157.5, 148.3, 142.1, 138.2, 134.7, 131.1, 130.2, 129.2, 129.1, 128.8 (× 2), 127.7, 127.2, 126.3, 125.1, 121.0, 117.1, 111.2, 109.0, 62.5, 55.6, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 422 (MK⁺, 78), 415 ([M + MeOH]⁺, 100), 406 (MNa⁺, 92), 401 (41), 384 (24); HRMS (ES⁺, Ar) calcd for C₂₃H₂₁NO₃Na (MNa⁺) 406.1414, found 406.1417.

Ethyl (*E***)-2-cyano-5-styryl-[1,1'-biphenyl]-3-carboxylate (9k).** Pale yellow solid: yield 65%, 39 mg; mp 102 °C; IR (KBr, cm⁻¹) 2876 (m), 2223 (m), 1725 (vs), 1635 (s), 1593 (w), 1449 (w), 1369 (w), 1267 (s), 1199 (s), 1073 (m), 1021 (m), 963 (m), 751 (vs), 701 (s); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 1.5 Hz, 1H), 7.74 (d, *J* = 1.5 Hz, 1H), 7.58–7.48 (m, 7H), 7.42–7.32 (m, 3H), 7.32 (d, *J* = 16.2 Hz, 1H), 7.15 (d, *J* = 16.2 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 148.5, 141.4, 138.1, 136.2, 134.8, 133.8, 131.3, 129.2, 129.2, 129.16, 129.20, 128.8, 127.6, 127.2, 125.9, 117.0, 109.4, 62.6, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 392 (MK⁺, 100), 376 (MNa⁺, 32), 354 (41), 249 (9), 177 (13), 124 (8); HRMS (ES⁺, Ar) calcd for C₂₄H₁₉NO₂K (MK⁺) 392.1047, found 392.1047.

Ethyl 2-cyano-5-(furan-2-yl)-4'-methyl-[1,1'-biphenyl]-3-carboxylate (11b). Pale yellow solid: yield 79%, 45 mg; mp 140 °C; IR (KBr, cm⁻¹) 2954 (s), 2923 (vs), 2856 (m), 2222 (w), 1731 (m), 1608 (m), 1461 (m), 1377 (w), 1260 (m), 1019 (m), 744 (w); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 1.7 Hz, 1H), 7.88 (d, J = 1.7 Hz, 1H), 7.57 (d, J = 1.5 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 3.4 Hz, 1H), 6.56 (dd, J = 3.4, 1.5 Hz, 1H), 4.51 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.48 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 151.4, 148.7, 144.3, 139.2, 135.1, 135.0, 134.0, 129.5, 129.0, 128.1, 124.5, 117.0, 112.6, 109.3, 109.0, 62.6, 21.5, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 354 (MNa⁺, 65), 332 (MH⁺, 100), 318 (22), 304 (74), 286 (92), 274 (40), 233 (83); HRMS (ES⁺, Ar) calcd for C₂₁H₁₈NO₃ (MH⁺) 332.1287, found 332.1280.

Ethyl 2-cyano-5-(furan-2-yl)-2'-methoxy-[1,1'-biphenyl]-3carboxylate (11c). Pale yellow solid: yield 80%, 47 mg; mp 120 °C; IR (KBr, cm⁻¹) 2931 (w), 2225 (w), 1726 (s), 1608 (m), 1493 (w), 1464 (w), 1333 (w), 1254 (vs), 1021 (m), 753 (m); ¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, *J* = 1.4 Hz, 1H), 7.85 (d, *J* = 1.4 Hz, 1H), 7.55 (d, *J* = 1.5 Hz, 1H), 7.44 (td, *J* = 7.7, 1.3 Hz, 1H), 7.29–7.24 (m, 1H), 7.07 (t, *J* = 7.7 Hz, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 6.88 (d, *J* = 3.3 Hz, 1H), 6.54 (dd, *J* = 3.3, 1.5 Hz, 1H), 4.50 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 156.7, 151.6, 145.8, 144.1, 134.1, 133.9, 130.9, 130.8, 128.9, 127.2, 124.6, 120.9, 116.8, 112.5, 111.5, 111.3, 109.0, 62.5, 55.7, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 348 (MH⁺, 100), 320 (27), 302 (64), 277 (8); HRMS (ES⁺, Ar) calcd for C₂₁H₁₈NO₄ (MH⁺) 348.1236, found 348.1233.

Ethyl 2-cyano-5-(furan-2-yl)-4'-methoxy-[1,1'-biphenyl]-3carboxylate (11d). Pale yellow solid: yield 76%, 45 mg; mp 121 °C; IR (KBr, cm⁻¹) 2988 (w), 2839 (w), 2223 (m), 1726 (vs), 1609 (s), 1515 (m), 1335 (m), 1287 (m), 1254 (vs), 1182 (m), 1074 (m), 1022 (m), 836 (m), 739 (m); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 1.3 Hz, 1H), 7.87 (d, *J* = 1.3 Hz, 1H), 7.55–7.58 (unresolved m, 1H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 3.4 Hz, 1H), 6.58–6.52 (m, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 3.87 (s, 3H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 160.4, 151.4, 148.3, 144.3, 135.1, 134.0, 130.5, 130.3, 128.0, 124.3, 117.2, 114.3, 112.6, 109.3, 108.9, 62.6, 55.5, 14.3; MS (ES⁺, Ar) m/z (rel intensity) 386 (MK⁺, 45), 370 (MNa⁺, 100); HRMS (ES⁺, Ar) calcd for C₂₁H₁₇NO₄Na (MNa⁺) 370.1050, found 370.1049.

Ethyl 4'-chloro-2-cyano-5-(furan-2-yl)-[1,1'-biphenyl]-3-carboxylate (11e). Yellow solid: yield 75%, 45 mg; mp 171 °C; IR (KBr, cm⁻¹) 2936 (m), 1967 (m), 1728 (vs), 1608 (w), 1331 (w), 1249 (m), 1028 (m), 739 (s); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 1.7 Hz, 1H), 7.86 (d, *J* = 1.7 Hz, 1H), 7.58 (d, *J* = 1.6 Hz, 1H), 7.53–7.47 (m, 4H), 6.93 (d, *J* = 3.5 Hz, 1H), 6.57 (dd, *J* = 3.5, 1.6 Hz, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 151.2, 147.4, 144.5, 136.4, 135.6, 135.1, 134.3, 130.6, 129.2, 127.9, 125.0, 116.8, 112.7, 109.6, 109.0, 62.7, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 354 ([M + 2]H⁺, 8), 352 (MH⁺, 24), 338 (15), 336 (77), 326 (20), 324 (71), 308 (15), 306 (60), 279 (100), 278 (73), 262 (25), 205 (49), 149 (12); HRMS (ES⁺, Ar) calcd for C₂₀H₁₅NO₃Cl (MH⁺) 352.0740, found 352.0738.

Ethyl 4'-bromo-2-cyano-5-(furan-2-yl)-[1,1'-biphenyl]-3-carboxylate (11f). Yellow solid: yield 83%, 56 mg; mp 178 °C; IR (KBr, cm⁻¹) 2991 (vw), 2911 (vw), 2221 (w), 1728 (vs), 1609 (m), 1509 (w), 1367 (w), 1332 (m), 1293 (w), 1249 (s), 1072 (w), 1025 (m), 836 (m), 737 (m); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 1.7 Hz, 1H), 7.85 (d, J = 1.7 Hz, 1H), 7.64 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 1.6 Hz, 1H),7.43 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 3.4 Hz, 1H), 6.56 (dd, J = 3.4, 1.6 Hz, 1H), 4.51 (q, J = 7.1 Hz, 2H), 1.47 (t, J = 7.1 Hz, 3H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 164.5, 151.1, 147.4, 144.5, 136.9, 135.1, 134.3, 132.1, 130.8, 127.8, 125.0, 123.8, 116.8, 112.7, 109.6, 108.9, 62.7, 14.3; MS (ES⁺, Ar) m/z (rel intensity) 398 ([MH+2]⁺,100), 396 (MH⁺, 80), 369 (97), 367 (100), 351 (63), 349 (60), 302 (18), 242 (55); HRMS (ES⁺, Ar) calcd for $C_{20}H_{15}NO_3Br$ (MH⁺) 396.0235, found 396.0239. Selected X-ray Data: $C_{20}H_{14}BrNO_3$, M = 396.23, Monoclinic, space group P2(1)/n, a = 7.446(3) Å, b = 7.600(3) Å, c = 29.561(11) Å, $\alpha =$ 90.00°, $\beta = 97.206(10)$ °, $\gamma = 90.00$ °, V = 1659.6(11)Å³, $D_c = 1.586$ Mg/ m³, Z = 4, F(000) = 800, $\lambda = 0.71073$ Å, $\mu = 2.496$ mm⁻¹, Total/unique reflections = 11437/3001 [R(int) = 0.0752], T = 100(2) K, θ range = $3.02-25.34^{\circ}$. Final R $[I > 2\sigma(I)]$: R1 = 0.0403, wR2 = 0.0876. R (all data): R1 = 0.0513, wR2 = 0.0920.

Ethyl 2-cyano-4'-fluoro-5-(furan-2-yl)-[1,1'-biphenyl]-3-carboxylate (11g). Yellow liquid: yield 79%, 45 mg; IR (neat, cm⁻¹) 2926 (m), 2214 (w), 1731 (vs), 1609 (m), 1364 (w), 1333 (m), 1251 (s), 1067 (w), 1025 (m), 900 (w), 840 (m), 737 (s); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 1.7 Hz, 1H), 7.87 (d, *J* = 1.7 Hz, 1H), 7.57 (d, *J* = 1.7 Hz, 1H), 7.54 (dd, *J* = 8.6, 5.2 Hz, 2H), 7.20 (t, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 3.4 Hz, 1H), 6.56 (dd, *J* = 3.4, 1.7 Hz, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 163.4 (d, *J*_{C-F} = 249.1 Hz), 151.2, 147.6, 144.4, 135.0, 134.2, 134.0 (d, *J*_{C-F} = 3.3 Hz), 131.1 (d, *J*_{C-F} = 8.5 Hz), 128.0, 124.8, 116.9, 115.9 (d, *J*_{C-F} = 21.8 Hz), 112.7, 109.5, 109.1, 62.7, 14.3; ¹⁹F NMR (470 MHz, CDCl₃) δ -113.4; MS (ES⁺, Ar) *m*/*z* (rel intensity) 336 (MH⁺, 27), 308 (84), 290 (100), 279 (25), 278 (19); HRMS (ES⁺, Ar) calcd for C₂₀H₁₅NO₃F (MH⁺) 336.1036, found 336.1033.

Ethyl 3'-bromo-2-cyano-5-(furan-2-yl)-[1,1'-biphenyl]-3-carboxylate (11h). Pale yellow solid: yield 70%, 47 mg; mp 89 °C; IR (KBr, cm⁻¹) 2953 (m), 2922 (vs), 2850 (m), 2222 (w), 1724 (w), 1640 (br, s), 1555 (w), 1463 (w), 1077 (w), 1252 (w), 1019 (w), 755 (w); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 1.8 Hz, 1H), 7.86 (d, *J* = 1.8 Hz, 1H), 7.67 (t, *J* = 1.7 Hz, 1H), 7.62 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.58 (d, *J* = 1.4 Hz, 1H), 7.52 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 3.4 Hz, 1H), 6.57 (dd, *J* = 3.4, 1.4 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 151.0, 146.9, 144.5, 139.9, 135.0, 134.2, 132.2, 132.0, 130.3, 127.85, 127.92, 125.1, 122.8, 116.5, 112.7, 109.7, 109.0, 62.7, 14.2; MS (ES⁺, Ar) *m/z* (rel intensity) 436 ([MK+2]⁺, 36), 434 (MK⁺, 36), 420 ([MNa +2]⁺, 100), 418 (MNa⁺, 100), 415 (66), 413 (66); HRMS (ES⁺, Ar) calcd for C₂₀H₁₄NO₃BrNa (MNa⁺) 418.0049, found 418.0049.

Ethyl 2-cyano-3,5-di(furan-2-yl)benzoate (11i). Colorless solid: yield 69%, 36 mg; mp 121 °C; IR (KBr, cm⁻¹) 2929 (w), 2221 (w), 1726 (s), 1607 (s), 1494 (m), 1367 (w), 1326 (m), 1297 (m), 1252 (vs), 1225 (m), 1073 (w), 1020 (s), 739 (s); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 1.7 Hz, 1H), 8.19 (d, *J* = 1.7 Hz, 1H), 7.60 (d, *J* = 1.5 Hz, 1H),

7.59 (d, *J* = 1.5 Hz, 1H), 7.53 (d, *J* = 3.4 Hz, 1H), 6.95 (d, *J* = 3.4 Hz, 1H), 6.60 (dd, *J* = 3.4, 1.5 Hz, 1H), 6.57 (dd, *J* = 3.4, 1.5 Hz, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 151.3, 149.1, 144.3, 143.8, 136.0, 135.6, 134.3, 124.06, 124.14, 117.4, 112.7, 112.6, 112.5, 109.4, 104.3, 62.6, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 330 (MNa⁺, 100), 213 (11); HRMS (ES⁺, Ar) calcd for C₁₈H₁₃NO₄Na (MNa⁺) 330.0737, found 330.0734.

Ethyl (*E***)-2-cyano-5-(furan-2-yl)-3-styrylbenzoate (11j).** Pale yellow solid: yield 76%, 44 mg; mp 133 °C; IR (KBr, cm⁻¹) 2924 (m), 2852 (w), 2223 (w), 1726 (vs), 1634 (m), 1605 (m), 1369 (w), 1316 (w), 1316 (w), 1255 (w), 1021 (m), 964 (w), 754 (m); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (ABq, *J* = 1.4 Hz, 2H), 7.66–7.60 (m, 4H), 7.43–7.33 (m, 4H), 6.95 (d, *J* = 3.4 Hz, 1H), 6.58 (dd, *J* = 3.4, 1.8 Hz, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 151.5, 144.2, 143.2, 136.1, 134.9, 134.5, 134.1, 129.3, 129.1, 127.5, 124.9, 124.0, 122.9, 116.4, 112.6, 109.2, 109.0, 62.6, 14.3; MS (ES⁺, Ar) *m/z* (rel intensity) 389 ([M + 2Na]⁺, 14), 382 (MK⁺, 55), 366 (MNa⁺, 100); HRMS (ES⁺, Ar) calcd for C₂₂H₁₇NO₃Na (MNa⁺) 366.1101, found 366.1100.

Ethyl (E)-2-cyano-3-(4-fluorostyryl)-5-(furan-2-yl)benzoate (11k). Pale yellow solid: yield 73%, 45 mg; mp 154 °C; IR (KBr, cm⁻¹) 2989 (vw), 2216 (w), 1724 (s), 1635 (w), 1604 (m), 1508 (s), 1371 (w), 1259 (vs), 1231 (vs), 1028 (m), 738 (s); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 4.0 Hz, 2H), 7.60–7.57 (m, 3H), 7.52 (d, *J* = 16.2 Hz, 1H), 7.09 (t, *J* = 8.5 Hz, 2H), 6.94 (d, *J* = 3.3 Hz, 1H), 6.57 (dd, *J* = 3.3, 1.6 Hz, 1H), 4.50 (q, *J* = 7.1 Hz, 2H), 1.47 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 163.3 (d, *J*_{C-F} = 249.6 Hz), 151.4, 144.3, 143.0, 134.4, 134.1, 133.6, 132.3 (d, *J*_{C-F} = 3.3 Hz), 129.2 (d, *J*_{C-F} = 8.2 Hz), 124.8, 123.7, 122.8, 116.4, 116.1 (d, *J*_{C-F} = 21.8 Hz), 112.6, 109.3, 108.9, 62.6, 14.3; ¹⁹F NMR (376.5 MHz, CDCl₃) δ –111.7; MS (ES⁺, Ar) *m*/*z* (rel intensity) 400 (MK⁺, 64), 384 (MNa⁺, 100), 379 (39), 362 (23), 347 (9), 291 (9); HRMS (ES⁺, Ar) calcd for C₂₂H₁₆FNO₃Na (MNa⁺) 384.1006, found 384.1006.

4-Methoxy-[1,1':3',1"-terphenyl]-4'-carbonitrile (13a). Pale yellow liquid: yield 76%, 37 mg; IR (neat, cm⁻¹) 2924 (m), 2851 (w), 2221 (m), 1602 (vs), 1578 (w), 1518 (m), 1481 (w), 1294 (w), 1251 (vs), 1179 (m), 1027 (m), 824 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.1 Hz, 1H), 7.68 (d, *J* = 1.7 Hz, 1H), 7.63–7.57 (m, 5H), 7.45–7.55 (m, 3H), 7.01 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 146.1, 145.4, 138.5, 134.3, 131.6, 128.9 (× 2), 128.6, 128.3, 125.7, 119.1, 114.7, 109.2, 55.6; MS (ES⁺, Ar) *m/z* (rel intensity) 308 (MH⁺, 100), 301 (31), 278 (29), 255 (8), 239 (9), 204 (19), 185 (22); HRMS (ES⁺, Ar) calcd for C₂₀H₁₅NONa (MNa⁺) 308.1046, found 308.1049.

4-Methoxy-4"-**methyl-**[1,1':3',1"-**terphenyl**]-4'-**carbonitrile** (13b). Pale yellow solid: yield 75%, 38 mg; mp 86 °C; IR (KBr, cm⁻¹) 2925 (m), 2853 (w), 2221 (m), 1601 (s), 1519 (m), 1483 (m), 1293 (m), 1251 (vs), 1179 (m), 1036 (w), 821 (vs); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 7.59 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.58 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 146.1, 145.4, 138.9, 135.6, 134.3, 131.7, 129.6, 128.8, 128.6, 128.2, 125.5, 119.3, 114.7, 109.1, 55.6, 21.5; MS (ES⁺, Ar) *m/z* (rel intensity) 338 (MK⁺, 60), 322 (MNa⁺, 100), 319 (53), 307 (26), 297 (21), 213 (19), 135 (14); HRMS (ES⁺, Ar) calcd for C₂₁H₁₇NONa (MNa⁺) 322.1202, found 322.1203.

4,4"-**Dimethoxy-[1,1**':**3**',**1**"-**terphenyl]-4**'-**carbonitrile (13c).** Pale yellow liquid: yield 72%, 39 mg; IR (neat, cm⁻¹) 2957 (m), 2924 (s), 2851 (m), 2220 (m), 1608 (vs), 1600 (vs), 1578 (w), 1518 (s), 1482 (m), 1465 (w), 1291 (m), 1250 (s), 1178 (s), 1028 (s), 824 (vs), 758 (m), 536 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 1.5 Hz, 1H), 7.59–7.55 (m, 5H), 7.03 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 160.3, 145.8, 145.4, 134.3, 131.7, 130.9, 130.2, 128.6, 128.1, 125.3, 119.4, 114.7, 114.4, 109.0, 55.6, 55.5; MS (ES⁺, Ar) *m/z* (rel intensity) 354 (MK⁺, 10), 338 (MNa⁺, 49), 301 (100), 132 (41), 102 (19); HRMS (ES⁺, Ar) calcd for C₂₁H₁₇NO₂Na (MNa⁺) 338.1151, found 338.1158.

2",4-Dimethoxy-[1,1':3',1"-terphenyl]-4'-carbonitrile (13d). Pale yellow liquid: yield 62%, 33 mg; IR (neat, cm⁻¹) 2929 (vs), 2857 (vs), 2223 (w), 1744 (s), 1683 (m), 1603 (s), 1580 (m), 1463 (vs), 1377 (m), 1291 (s), 1252 (vs), 1179 (m), 1162 (m), 1026 (m), 823 (m), 754 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.1 Hz, 1H), 7.64 (d, *J* = 1.7 Hz, 1H), 7.60 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.58 (d, *J* = 8.6 Hz, 2H), 7.44 (td, *J* = 7.5, 1.6 Hz, 1H), 7.32 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 8.6 Hz, 2H), 3.87 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 156.7, 145.0, 143.1, 133.4, 131.9, 131.1, 130.5, 129.1, 128.6, 127.6, 125.6, 121.0, 119.1, 114.6, 111.5, 111.4, 55.7, 55.6; MS (ES⁺, Ar) *m/z* (rel intensity) 317 ([MH +1]⁺, 48), 316 (MH⁺, 100), 315 ([MH - 1]⁺, 12); HRMS (ES⁺, Ar) calcd for C₂₁H₁₈NO₂ (MH⁺) 316.1332, found 316.1332.

5-(Furan-2-yl)-[1,1'-biphenyl]-2-carbonitrile (13e). Colorless solid: yield 79%, 33 mg; mp 98 °C; IR (KBr, cm⁻¹) 3107 (w), 3074 (w), 2958 (w), 2934 (w), 2837 (w), 2221 (s), 1609 (s), 1600 (s), 1515 (m), 1484 (m), 1295 (m), 1252 (vs), 1180 (m), 1028 (m), 833 (s), 736 (s), 705 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 1.6 Hz, 1H), 7.75, 7.70 (ABq, *J* = 8.2 Hz, the shielded half further split into d, 1.6 Hz, 2H), 7.61–7.58 (m, 2H), 7.54–7.44 (m, 4H), 6.84 (dd, *J* = 3.4, 0.6 Hz, 1H), 6.54 (dd, *J* = 3.4, 1.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 146.2, 143.9, 138.2, 134.8, 134.3, 129.0, 128.87, 128.93, 125.0, 122.6, 119.0, 112.4, 109.4, 108.5; MS (ES⁺, Ar) *m/z* (rel intensity) 268 (MK⁺, 14), 247 ([M + 2]⁺, 21), 246 (MH⁺, 100), 214 (5), 158 (7); HRMS (ES⁺, Ar) calcd for C₁₇H₁₂NO (MH⁺) 246.0919, found 246.0920.

2'-Methoxy-5-(thiophen-2-yl)-[1,1'-biphenyl]-2-carbonitrile (13f). Pale yellow liquid: yield 80%, 40 mg; IR (neat, cm⁻¹) 2924 (vs), 2853 (s), 2224 (m), 1600 (s), 1582 (w), 1496 (m), 1482 (m), 1463 (m), 1434 (m), 1283 (m), 1250 (s), 1024 (m), 821 (m), 755 (s), 703 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (ABq, *J* = 8.1 Hz, shielded half further split into d, *J* = 1.6 Hz, 2H), 7.68 (d, *J* = 1.6 Hz Hz, 1H), 7.47–7.44 (m, 1H), 7.43 (dd, *J* = 3.6, 1.1 Hz, 1H), 7.39 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.31 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.12 (dd, *J* = 5.1, 3.6 Hz, 1H), 7.10 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.07–7.04 (m, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 143.3, 142.4, 138.5, 133.5, 130.9, 130.7, 128.6, 128.0, 127.2, 127.0, 125.2, 124.5, 121.0, 118.8, 111.9, 111.5, 55.6; MS (ES⁺, Ar) *m/z* (rel intensity) 330 (MK⁺, 11), 319 (8), 317 (33), 314 (MNa⁺, 100), 311 (4); HRMS (ES⁺, Ar) calcd for C₁₈H₁₃NOSNa (MNa⁺) 314.0610, found 314.0610.

4'-Methoxy-5-(thiophen-2-yl)-[1,1'-biphenyl]-2-carbonitrile (**13g).** Pale yellow solid: yield 83%, 41 mg; mp 93 °C; IR (KBr, cm⁻¹) 3106 (vw), 2933 (vw), 2836 (vw), 2220 (m), 1600 (s), 1515 (m), 1483 (w), 1295 (m), 1251 (vs), 1180 (m), 1043 (w), 1028 (m), 832 (s), 736 (m), 736 (m), 705 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.69 (d, *J* = 1.7 Hz, 1H), 7.62 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.55 (d, *J* = 8.7 Hz, 2H), 7.45 (dd, *J* = 3.6, 0.9 Hz, 1H), 7.40 (dd, *J* = 5.0, 0.9 Hz, 1H), 7.13 (dd, *J* = 5.0, 3.6 Hz, 1H), 7.04 (d, *J* = 8.7 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 146.0, 142.3, 138.7, 134.4, 130.4, 130.1, 128.7, 127.2, 126.9, 125.3, 124.2, 119.1, 114.4, 109.4, 55.5; MS (ES⁺, Ar) *m/z* (rel intensity) 330 (MK, 18), 324 ([MH+MeOH]⁺, 29), 314 (MNa⁺, 100), 309 (9), 292 (11); HRMS (ES⁺, Ar) calcd for C₁₈H₁₃NOSNa (MNa⁺) 314.0610, found 314.0610. Confirmed by ¹H–¹H COSY experiment.

4'-Bromo-5-(thiophen-2-yl)-[1,1'-biphenyl]-2-carbonitrile (**13h**). Colorless solid: yield 70%, 40 mg; mp 183 °C; IR (KBr, cm⁻¹) 3098 (vw), 2222 (s), 1601 (m), 1478 (m), 1269 (m), 1182 (w), 1074 (w), 837 (m), 818 (vs), 717 (vs); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.7 Hz, 1H), 7.68 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.68 (d, *J* = 1.8 Hz, 1H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 7.46 (dd, *J* = 3.7, 0.9 Hz, 1H), 7.42 (dd, *J* = 5.0, 0.9 Hz, 1H), 7.14 (dd, *J* = 5.0, 3.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 142.0, 139.0, 137.0, 134.5, 132.2, 130.5, 128.8, 127.5, 126.9, 125.6, 125.0, 123.7, 118.6, 109.5; MS (ES⁺, Ar) *m/z* (rel intensity) 364 ([MNa+2]⁺, 100), 362 (MNa⁺, 100), 341 (33), 339 (35); HRMS (ES⁺, Ar) calcd for C₁₇H₁₀BrNSNa (MNa⁺) 361.9610, found 361.9609.

4-Chloro-4"-methoxy-[1,1':3',1"-terphenyl]-4'-carbonitrile (13i). Pale yellow solid: yield 77%, 42 mg; mp 145 °C; IR (KBr, cm⁻¹) 3054 (vw), 2937 (w), 2223 (m), 1601 (s), 1515 (s), 1478 (s), 1381 (m), 1294 (m), 1263 (s), 1251 (vs), 1178 (m), 1095 (w), 1033 (m), 1019 (w), 821 (vs), 809 (vs), 734 (w), 609 (w), 518 (m); ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 1.5 Hz, 1H), 7.58

(dd, J = 8.1, 1.5 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 146.0, 144.5, 137.8, 135.1, 134.4, 130.5, 130.2, 129.5, 128.7, 128.5, 125.7, 119.1, 114.5, 110.1, 55.6; MS (ES⁺, Ar) *m*/*z* (rel intensity) 360 ([MK+2]⁺, 11), 345 ([M + 3]Na⁺, 6), 344 ([M + 2]Na⁺, 50), 343 ([M + 1]Na⁺, 15), 342 (MNa⁺, 100), 320 (3), 301 (6); HRMS (ES⁺, Ar) calcd for C₂₀H₁₄ClNONa (MNa⁺) 342.0656, found 342.0656.

4"-Methoxy-[1,1':3',1"-terphenyl]-4'-carbonitrile (13j). Pale yellow liquid: yield 73%, 36 mg; IR (neat, cm⁻¹) 3053 (vw), 2924 (s), 2850 (w), 2221 (m), 1608 (s), 1601 (s), 1518 (s), 1483 (m), 1290 (s), 1251 (vs), 1178 (m), 1029 (m), 824 (s), 738 (vs), 704 (w), 535 (w); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 1.6 Hz, 1H), 7.65–7.62 (m, 2H), 7.61 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.57 (d, *J* = 8.7 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 145.8, 145.8, 139.4, 134.3, 130.7, 130.2, 129.3, 128.8, 128.7, 127.4, 125.9, 119.2, 114.4, 109.7, 55.6; MS (ES⁺, Ar) *m/z* (rel intensity) 326 ([MK+2]⁺, 6), 309 ([M + 1]Na⁺, 15), 308 (MNa⁺, 100), 301 (9), 286 (MH⁺, 9); HRMS (ES⁺, Ar) calcd for C₂₀H₁₅NONa (MNa⁺) 308.1046, found 308.1047.

2",**4**-Dimethoxy-[1,1':3',1"-terphenyl]-4',**4**'(5'H)-dicarbonitrile (14d). Pale yellow solid: yield 71%, 41 mg; mp 117 °C; IR (KBr, cm⁻¹) 2958 (m), 2923 (vs), 2851 (m), 2222 (w), 1726 (m), 1606 (m), 1513 (m), 1488 (w), 1462 (m), 1250 (s), 1180 (m), 1120 (w), 1025 (s), 834 (w), 756 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (t, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.31 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.04–6.99 (m, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 6.74 (s, 1H), 6.21 (t, *J* = 4.3 Hz, 1H), 3.99 (s, 3H), 3.82 (s, 3H), 3.15 (d, *J* = 4.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 157.1, 137.6, 131.2, 130.6, 130.3, 128.9, 127.1, 125.7, 121.3, 116.4, 115.6, 114.3, 111.1, 55.5, 54.8, 35.6, 35.1; MS (ES⁺, Ar) *m/z* (rel intensity) 381 (MK⁺, 31), 365 (MNa⁺, 100); HRMS (ES⁺, Ar) calcd for C₂₂H₁₈N₂O₂Na (MNa⁺) 365.1260, found 365.1258. Confirmed by ¹H–¹H 2D-COSY experiment.

(*E*)-2-(3-(4-Methoxyphenyl)-1-phenylallylidene)malono-nitrile (10).²⁵ To a stirred solution of MBH–acetate 7a (0.17 mmol) in DCM (3 mL) at rt, was added alkylidene malononitrile 8 (0.17 mmol) followed by K₂CO₃ (94 mg, 0.68 mmol) or Cs₂CO₃ (222 mg, 0.68 mmol) and the completion of the reaction was monitored by TLC. The crude product was directly purified by silica gel column chromatography by eluting with 3-10% EtOAc-pet ether (gradient elution). Yellow solid: yield 68%, 32 mg (K₂CO₃, entry 9, Table 1), 70%, 37 mg (Cs₂CO₃, entry 10, Table 1); mp 119 °C (lit 125 °C, ^{25a} 129 °C^{25b}); IR (KBr, cm⁻¹) 2925 (m), 2854 (w), 2221 (m), 1594 (s), 1569 (m), 1521 (s), 1255 (vs), 1175 (s), 1105 (w), 1027 (m), 834 (w), 762 (br m); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.60 - 7.44 \text{ (m, 6H)}, 7.37 \text{ (d, } I = 6.7 \text{ Hz}, 2\text{H}), 6.91$ (d, J = 8.6 Hz, 2H), 6.83 (d, J = 15.4 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 162.9, 149.3, 133.5, 131.2, 131.0, 129.1, 129.0, 127.3, 122.4, 114.9, 113.9, 113.3, 80.8, 55.7; MS (ES⁺, Ar) m/z (rel intensity) 328 ($[MK+3]^+$, 11), 327 ($[MK+2]^+$, 51), 310 ([MNa+1]⁺, 23), 309 (MNa⁺, 100), 304 (8); HRMS (ES⁺, Ar) calcd for $C_{19}H_{14}N_2ONa~(MNa^+)$ 309.0998, found 309.1000. IR and ¹H NMR data are broadly in agreement with literature.²⁵

General Procedure for Selective Hydrolysis of Ester 9h. Lithium hydroxide (26 mg, 1.103 mmol, 7 equiv) was added to a stirred solution of cyanoester 9h (50 mg, 0.158 mmol) in THF/water (1:1, 1 mL) at room temperature. After overnight stirring, the reaction mixture was poured into 1 N HCl and extracted with diethyl ether (3×10 mL). The combined organic extracts were washed with brine (10 mL), dried (Na₂SO₄), and concentrated in vacuo to give the title compound 15.

2-Cyano-5-(furan-2-yl)-[1,1'-biphenyl]-3-carboxylic acid (15). Pale yellow solid: yield 86%, 39 mg; mp 223 °C; IR (KBr, cm⁻¹) 3647 (br, w), 2926 (br, s), 2223 (w), 1705 (s), 1604 (m), 1468 (m), 1295 (m), 934 (br, s), 695 (vs); ¹H NMR (400 MHz, DMSO) δ 13.97 (br s, 1H), 8.30 (unresolved, 1H), 8.00 (unresolved, 1H), 7.89 (unresolved, 1H), 7.58–7.52 (m, 5H), 7.41 (unresolved, 1H), 6.68 (unresolved, 1H); ¹³C NMR (100 MHz, DMSO) δ 165.5, 150.4, 147.8, 145.2, 137.7, 135.8, 133.5, 129.1, 128.9, 128.5, 127.4, 123.6, 116.6, 112.9, 110.6, 107.9; MS (ES⁺, Ar) *m/z* (rel intensity) 328 (MK⁺, 23), 312 (MNa⁺, 100), 301 (6); HRMS (ES⁺, Ar) calcd for C₁₈H₁₁NO₃Na (MNa⁺) 312.0631, found 312.0634. General Procedure for Synthesis of 4-Phenylisoindolin-1-one Derivatives 16. A stirred mixture of cyanoester 9 (0.140 mmol), allyl bromide (68 mg, 48 μ L, 4.0 equiv, 0.56 mmol), and indium powder (32 mg, 2 equiv, 0.28 mmol) in THF (0.5 mL) was heated to 90 °C under microwave irradiation for 1–2 h. After completion of reaction, the crude product was directly purified by silica gel column chromatography by eluting with EtOAc–pet ether (gradient elution) to afford pure 16.

3,3-Diallyl-6-(4-methoxyphenyl)-4-phenylisoindolin-1-one (16a). Off white solid: yield 81%, 45 mg; mp 181 °C; IR (KBr, cm⁻¹) 3206 (br, w), 3074 (vw), 2929 (vw), 2836 (vw), 1696 (vs), 1609 (w), 1519 (vw), 1468 (m), 1442 (w), 1360 (w), 1288 (w), 1250 (m), 1179 (w), 1030 (vw), 921 (w); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 1.3 Hz, 1H), 7.60 (d, *J* = 8.7 Hz, 2H), 7.54 (d, *J* = 1.3 Hz, 1H), 7.46–7.45 (m, 3H), 7.36–3.35 (m, 2H), 6.97 (d, *J* = 8.7 Hz, 2H), 5.46 (ddt, *J* = 17.2, 10.1, 7.0 Hz, 2H), 5.03–4.99 (m, 4H), 3.84 (s, 3H), 2.48 (dd, *J* = 14.3, 7.0 Hz, 2H), 2.36 (dd, *J* = 14.3, 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 159.7, 143.6, 141.0, 139.8, 138.7, 134.0, 132.5, 132.1, 132.0, 129.2, 128.4, 128.17, 128.22, 120.8, 119.6, 114.5, 65.6, 55.5, 42.5; MS (ES⁺, Ar) *m/z* (rel intensity) 436 ([M + CH₃CN]⁺, 30), 418 (MNa⁺, 100); HRMS (ES⁺, Ar) calcd for C₂₇H₂₅NO₂Na (MNa⁺) 418.1777, found 418.1779.

3,3-Diallyl-6-(furan-2-yl)-4-phenylisoindolin-1-one (16b). White solid: yield 77%, 38 mg; mp 218 °C; IR (KBr, cm⁻¹) 3183 (w), 3072 (w), 2899 (w), 1691 (vs), 1436 (vw), 1353 (w), 1254 (vw), 1017 (vw), 995 (w), 923 (w); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 1.6 Hz, 1H), 7.67 (d, *J* = 1.6 Hz, 1H), 7.46–7.45 (m, 4H), 7.34–7.33 (m, 2H), 7.01–6.99 (br, 1H), 6.75 (dd, *J* = 3.3, 0.3 Hz, 1H), 6.48 (dd, *J* = 3.4, 1.8 Hz, 1H), 5.43 (ddt, *J* = 17.1, 10.1, 7.1 Hz, 2H), 5.01 (d, *J* = 17.1 Hz, 2H), 4.99 (d, *J* = 10.1 Hz, 2H), 2.44 (dd, *J* = 14.3, 7.1 Hz, 2H), 2.34 (dd, *J* = 14.3, 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 153.0, 144.0, 142.7, 139.5, 138.8, 134.1, 131.8, 131.2, 129.4, 129.1, 128.3 (× 2), 119.6, 118.2, 112.0, 106.4, 65.9, 42.4; MS (ES⁺, Ar) *m/z* (rel intensity) 394 (MK⁺, 81), 378 (MNa⁺, 100), 369 (6), 353 (8); HRMS (ES⁺, Ar) calcd for C₂₄H₂₁NO₂Na (MNa⁺) 378.1464, found 378.1461.

ASSOCIATED CONTENT

S Supporting Information

Copies of NMR spectra for all the new compounds as well as CIF for compound **11f**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: irishi@iitb.ac.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

I.N.N.N. thanks DST India for financial assistance. E.G. thanks CSIR India for a senior research fellowship. The authors thank Mr. Kalisankar Bera, Department of Chemistry, IIT Bombay, for X-ray data.

REFERENCES

Reviews: (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.
 Ballini, R.; Palmieri, A.; Barboni, L. Chem. Commun. 2008, 2975.
 Langer, P. Synlett 2009, 2205. Transition metal catalyzed synthesis, an article: (d) García-García, P.; Fernández-Rodríguez, M. A.; Aguilar, E. Angew. Chem., Int. Ed. 2009, 48, 5534.

(2) Review: Liu, J.-K. Chem. Rev. 2006, 106, 2209.

(3) Glombitza, K.-W.; Rauwald, H.-W.; Eckhard, G. Phytochemistry 1975, 14, 1403.

(4) (a) Kouno, I.; Hashimoto, A.; Kawano, N.; Yang, C.-S. *Chem. Pharm. Bull.* **1989**, *37*, 1291. (b) Kouno, I.; Morisaki, T.; Hara, Y.; Yang, C.-S. *Chem. Pharm. Bull.* **1991**, *39*, 2606. (c) Kouno, I.; Iwamoto, C.; Kameda, Y.; Tanaka, T.; Yang, C.-S. *Chem. Pharm. Bull.* **1994**, *42*, 112. (5) Kohno, H.; Takaba, K.; Fukai, T.; Nomura, T. *Heterocycles* **1987**, 26, 759.

(6) Kikuchi, H.; Matsuo, Y.; Katou, Y.; Kubohara, Y.; Oshima, Y. *Tetrahedron* **2012**, *68*, 8884.

(7) Selected recent reviews: (a) Kays, D. L. Dalton Trans. 2011, 40, 769. (b) Kays, D. L. In Organometallic Chemistry; The Royal Society of Chemistry: Cambridge, U.K., 2010; Vol. 36, p 56. Selected articles: (c) Ito, H.; Kato, T.; Sawamura, M. Chem.—Asian J. 2007, 2, 1436. (d) Bishop, P. T.; Dilworth, J. R.; Zubieta, J. A. J. Chem. Soc., Chem. Commun. 1985, 257. (e) Quignard, F.; Leconte, M.; Basset, J.-M. J. Chem. Soc., Chem. Commun. 1985, 1816. (f) Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science 2005, 310, 844. (g) Wehmschulte, R. J.; Steele, J. M.; Young, J. D.; Khan, M. A. J. Am. Chem. Soc. 2003, 125, 1470. (h) Herbert, D. E.; Lara, N. C.; Agapie, T. Chem.—Eur. J. 2013, 19, 16453. (i) Saouma, C. T.; Lu, C. C.; Day, M. W.; Peters, J. C. Chem. Sci. 2013, 4, 4042. (j) Lipke, M. C.; Woloszynek, R. A.; Ma, L.; Protasiewicz, J. D. Organometallics 2008, 28, 188. (k) Stanciu, C.; Fox, A. R.; Richards, A. F.; Fettinger, J. C.; Power, P. P. J. Organomet. Chem. 2006, 691, 2546.

(8) Selected articles: (a) Wu, C.-A.; Chou, H.-H.; Shih, C.-H.; Wu, F.-I.; Cheng, C.-H.; Huang, H.-L.; Chao, T.-C.; Tseng, M.-R. J. Mater. Chem. 2012, 22, 17792. (b) Rajakumar, P.; Ganesan, K.; Jayavelu, S.; Murugesan, K. Synthesis 2006, 528. (c) Camacho, D. H.; Salo, E. V.; Guan, Z. Org. Lett. 2004, 6, 865. (d) Shen, D.; Diele, S.; Pelzl, G.; Wirth, I.; Tschierske, C. J. Mater. Chem. 1999, 9, 661. (e) Goto, K.; Yamamoto, G.; Tan, B.; Okazaki, R. Tetrahedron Lett. 2001, 42, 4875. (f) Riddle, J. A.; Bollinger, J. C.; Lee, D. Angew. Chem., Int. Ed. 2005, 44, 6689. (g) Toyota, S.; Yanagihara, T.; Yoshida, Y.; Goichi, M. Bull. Chem. Soc. Jpn. 2005, 78, 1351. (h) Gudimetla, V. B.; Rheingold, A. L.; Payton, J. L.; Peng, H.-L.; Simpson, M. C.; Protasiewicz, J. D. Inorg. Chem. 2006, 45, 4895. (i) Lüning, U.; Baumgartner, H.; Manthey, C.; Meynhardt, B. J. Org. Chem. 1996, 61, 7922. (j) Karastatiris, P.; Mikroyannidis, J. A.; Spiliopoulos, I. K.; Fakis, M.; Persephonis, P. J. Polym. Sci. A: Polym. Chem. 2004, 42, 2214. (k) Fan, Q.; Wang, C.; Han, Y.; Zhu, J.; Kuttner, J.; Hilt, G.; Gottfried, J. M. ACS Nano 2013, 8, 709.

(9) Maeyama, K.; Yonezawa, N. Recent Res. Dev. Org. Chem. 2003, 7, 63.
(10) Selected articles: (a) Wright, R. S.; Vinod, T. K. Tetrahedron Lett.
2003, 44, 7129. (b) Xue, Z.; Finke, A. D.; Moore, J. S. Macromolecules
2010, 43, 9277. (c) Chang, M.-Y.; Lee, T.-W.; Lin, S.-Y. Tetrahedron
2013, 69, 228. (d) Du, C.-J. F.; Hart, H.; Ng, K.-K. D. J. Org. Chem. 1986,
51, 3162. (e) Saednya, A.; Hart, H. Synthesis 1996, 1455. (f) Hino, S.;
Olmstead, M. M.; Fettinger, J. C.; Power, P. P. J. Organomet. Chem.
2005, 690, 1638. (g) Gupta, H. K.; Reginato, N.; Ogini, F. O.; Brydges,
S.; McGlinchey, M. J. Can. J. Chem. 2002, 80, 1546.

(11) Selected articles: (a) Shaterian, H. R.; Honarmand, M.; Oveisi, A. R. *Monatsh. Chem.* **2010**, *141*, 557. (b) Elmorsy, S. S.; Pelter, A.; Smith, K. *Tetrahedron Lett.* **1991**, *32*, 4175. (c) Kotha, S.; Kashinath, D.; Lahiri, K.; Sunoj, R. B. *Eur. J. Org. Chem.* **2004**, 4003. (d) Li, Z.; Sun, W.-H.; Jin, X.; Shao, C. *Synlett* **2001**, 1947.

(12) Qi, S.; Shi, K.; Gao, H.; Liu, Q.; Wang, H. *Molecules* **2007**, *12*, 988. (13) Chang, M.-Y.; Chan, C.-K.; Lin, S.-Y.; Wu, M.-H. *Tetrahedron* **2013**, *69*, 9616.

(14) Yang, F.; Qiu, Y.-F.; Ji, K.-G.; Niu, Y.-N.; Ali, S.; Liang, Y.-M. J. Org. Chem. 2012, 77, 9029.

(15) Review: (a) Kaur, K.; Namboothiri, I. N. N. *Chimia* **2012**, *66*, 913. Selected articles, furans and pyrans: (b) Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. N. *Tetrahedron Lett.* **2012**, *53*, 3349. (c) Huang, W.-Y.; Chen, Y.-C.; Chen, K. *Chem.—Asian J.* **2012**, *7*, 688. Arenofurans: (d) Kumar, T.; Mobin, S. M.; Namboothiri, I. N. N. *Tetrahedron* **2013**, *69*, 4964. (e) Anwar, S.; Huang, W.-Y.; Chen, C.-H.; Cheng, Y.-S.; Chen, K. *Chem.—Eur. J.* **2013**, *19*, 4344. Imidazopyridines: (f) Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. N. *Org. Lett.* **2012**, *14*, 4580. Different heterocyclic scaffolds: (g) Zhu, H.; Shao, N.; Chen, T.; Zou, H. *Chem. Commun.* **2013**, *49*, 7738. Pyrroles: (h) Magar, D. R.; Ke, Y.-J.; Chen, K. *Asian J. Org. Chem.* **2013**, *2*, 330. (i) Chen, T.; Shao, N.; Zhu, H.; Zhang, B.; Zou, H. *Tetrahedron* **2013**, *69*, 10558. Oxa- and aza-triquinanes: (j) An, J.; Lu, L.-Q.; Yang, Q.-Q.; Wang, T.; Xiao, W.-J. *Org. Lett.* **2013**, *15*, 542. Tetrahydropyridines: (k) Yaqub, M.; Yu, C.-Y.; Jia, Y.-M.; Huang, Z.-T. *Synlett* **2008**, 1357. (16) Cyclopentenes: (a) Yeh, L. F.; Anwar, S.; Chen, K. *Tetrahedron* 2012, 68, 7317. Bicyclic skeletons: (b) Cao, C.-L.; Zhou, Y.-Y.; Zhou, J.; Sun, X.-L.; Tang, Y.; Li, Y.-X.; Li, G.-Y.; Sun, J. *Chem.—Eur. J.* 2009, 15, 11384. For [3 + 3] annulation of Morita–Baylis–Hillman acetates of vinyl ketones with 1,3-dinitropropane: (c) Park, D. Y.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. *Bull. Korean Chem. Soc.* 2008, 29, 701. (d) Park, D. Y.; Lee, K. Y.; Kim, J. N. *Tetrahedron Lett.* 2007, 48, 1633. (17) (a) Gabrielli, S.; Palmieri, A.; Panmand, D. S.; Lanari, D.; Vaccaro, L.; Ballini, R. *Tetrahedron* 2012, 68, 8231. (b) Chen, Z.; Ding, K.; Su, W. Synth. Commun. 2011, 41, 1410. (c) Li, P.; Luo, L.-L.; Li, X.-S.; Xie, J.-W. *Tetrahedron* 2010, 66, 7590. For cyclo-dimerization of 8 in a [4 + 2] fashion. (d) Barnes, D. M.; Haight, A. R.; Hameury, T.; McLaughlin, M. A.; Mei, J.; Tedrow, J. S.; Dalla Riva Toma, J. *Tetrahedron* 2006, 62, 11311.

(18) With cycloheptatriene: (a) Gierisch, S.; Daub, J. Chem. Ber. **1989**, *122*, 69. (b) Broman, S. L.; Brand, S. L.; Parker, C. R.; Petersen, M. A.; Tortzen, C. G.; Kadziola, A.; Kilsaa, K.; Nielsen, M. B. ARKIVOC **2011**, 51. (c) Santella, M.; Mazzanti, V.; Jevric, M.; Parker, C. R.; Broman, S. L.; Bond, A. D.; Nielsen, M. B. J. Org. Chem. **2012**, 77, 8922. With allene: (d) Lu, Z.; Zheng, S.; Zhang, X.; Lu, X. Org. Lett. **2008**, *10*, 3267. With α -bromonitroalkene: (e) Xie, J.; Shang, H.; Luo, L. Faming Zhuanli Shenqing **2010**, 101851177.

(19) (a) Cui, H.-L.; Peng, J.; Feng, X.; Du, W.; Jiang, K.; Chen, Y.-C. Chem.—Eur. J. 2009, 15, 1574. (b) Zheng, S.; Lu, X. Tetrahedron Lett. 2009, 50, 4532.

(20) (a) Reddy, R. J.; Chen, K. Org. Lett. **2011**, 13, 1458. (b) Reddy, R. J.; Lee, P.-H.; Magar, D. R.; Chen, J.-H.; Chen, K. Eur. J. Org. Chem. **2012**, 353.

(21) (a) Yaqub, M.; Yu, C.-Y.; Jia, Y.-M.; Huang, Z.-T. Synlett **2008**, 1357. (b) Cao, C.-L.; Zhou, Y.-Y.; Zhou, J.; Sun, X.-L.; Tang, Y.; Li, Y.-X.; Li, G.-Y.; Sun, J. Chem.—Eur. J. **2009**, 15, 11384.

(22) (a) Deb, I.; Dadwal, M.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2006, 8, 1201. (b) Deb, I.; Shanbhag, P.; Mobin, S. M.; Namboothiri, I. N. N. Eur. J. Org. Chem. 2009, 4091. (c) Kuan, H.-H.; Reddy, R. J.; Chen, K. Tetrahedron 2010, 66, 9875.

(23) (a) Rastogi, N.; Namboothiri, I. N. N.; Cojocaru, M. *Tetrahedron Lett.* **2004**, *45*, 4745. (b) R. Mohan, R.; Rastogi, N.; Namboothiri, I. N. N.; Mobin, S. M.; Panda, D. *Bioorg. Med. Chem.* **2006**, *14*, 8073.

(24) Saha, M.; Roy, S.; Kumar Chaudhuri, S.; Bhar, S. *Green Chem. Lett. Rev.* **2008**, *1*, 113.

(25) (a) Gokhale, U. V.; Seshadri, S. Dyes Pigm. **1986**, 7, 389. (b) Galil, F. M. A.; Elnagdi, M. H. Liebigs Ann. Chem. **1987**, 1987, 477.